
Lesson 15 – Buchberger’s Algorithm 

 

I. Preliminary Discussion  
 

Last lesson we examined “Buchberger’s Criterion” – a fairly simple test that will allow you to 

determine if a given basis is a Groebner basis: 

  

Theorem (Buchberger’s Criterion)  Let                 be an ideal of              .  

Then                 is a Groebner basis for   if and only if for all    , the remainder 

upon division of          by   (in some order) is zero. 

 

So how do we construct a Groebner basis for  ?  Buchberger’s Criterion suggests a way. 

 

Exercise 1  True or False:  If we have an ideal with basis               , then              

                        .   

 

 

 

 

 

 

 

 

To construct a Groebner basis for an ideal                 here is the idea... the set                

may not be a Groebner basis, since the basis elements may not generate the leading term ideal.  We can 

get around this by adding in elements that are redundant as generators for the basis (that is, they are 

already generated by the basis elements), but that add another element to the basis of the leading term 

ideal.  These elements will be precisely the  -polynomials,         .  

 

To be more explicit, in “Buchberger’s Algorithm”, if the remainder of a given          upon division by 

  is nonzero, then we have found an element          that lies in   and whose leading term is contained in 

        but not in                         . If this happens, we need to add          to our basis, and 

then check if the new set is now a Groebner basis.  Also, note that we could equivalently add just the 

remainder,                    , to the Groebner basis.  Since this will usually result in a simpler basis set, this is 

what we’ll generally do.  To summarize this process: 
 

 Calculate all  -polynomials 

 Reduce each via   and add any nonzero remainders to   

 Repeat until all  -polynomials reduce                 
 

Recall in the one variable case, we defined   to be a reduction of   by  , i.e.  
          
     , if     

     

     
 . 

Here, we are reducing a multivariable polynomial          by a set of polynomials                  

We may write          
                   
                               or simply          

             
                         



 

II. Buchberger’s Algorithm   
 

Now let’s formalize the process as an algorithm: 

 

Theorem (Buchberger’s Algorithm) Let                  be an ideal of              .  Then a 

Groebner basis for can be constructed in a finite number of steps by the following algorithm: 

 

INPUT:                              ,      for all      

INITIAL VALUES:   := ,                     

ALGORITHM:   While     do 

- Choose       

-             

-           
 
                       

- IF                      , THEN                                    

                                                                    

OUTPUT:                , a Groebner basis for   
  

Let’s make sure we understand the algorithm... 

A Careful Example   
 

Find a Groebner basis for the ideal generated by 
 

                    

                

              
 

in        with respect to the lex order with    . 

 

 

 

 

 

 

 

 

 



Let’s make sure we really understand the algorithm... 

Exercise 1 (True or False):  The Groebner basis produced by Buchberger’s Algorithm, 

              , contains the original set of generators,                 

 

 

 

Exercise 2  Why must the algorithm terminate? 

 

 

 

 

 

 

 

Exercise 3  Why is the terminating set   a Groebner basis?  

 

 

 

 

 

 

III. Reduced Groebner Bases 

 

In the last example we applied Buchberger’s Algorithm to generate a Groebner basis for the ideal 

                         

using the lex order with    .  The result was  

                         

Notice that we could, in fact, simply employ the basis         In other words, the algorithm was 

far from optimal.  We can make a number of improvements that will both produce a “better” 

Groebner basis and do so with greater efficiency. 

 

One clear drawback of the algorithm is that we retain old elements of the basis even when a new 

one is introduced whose leading term divides its leading term. 

 

Definition  A Groebner basis              is minimal if  

1. For all                  

2. For all                   



Exercise 4  (Referring to the above example) Which of the following sets are minimal Groebner 

bases of                   ?    

                                                                        

 

 

 

 

 

Exercise 5  Describe a procedure for obtaining a minimal Groebner basis from a given one, say 

                 

 

 

 

By the Exercise 4, we can see that minimal Groebner bases are not unique. Nevertheless we do 

have the following lemma: 

Lemma 1 If                and                 are minimal Groebner bases for an 

ideal  , then       and                                                  .    

The proof of this lemma will be presented by Group 2 on Friday, February 22. 

 

Question:  Which of the Groebner bases,          or           , do you believe is a 

“better” basis of                    and why?   

 

 

 

 

 

Definition  A Groebner basis                is reduced if  

1. For all                  

2. For all             is reduced with respect to          . 

(i.e., no monomial appearing in    is divisible by a LT(  ) where    ) 

 

Note that a reduced Groebner basis is automatically a minimal one.   

 

 



Theorem 2 Given an ideal   and a fixed monomial order, there is a unique reduced Groebner 

basis for  . 

Sketch of Proof.   

 

Existence follows from this procedure for generating a reduced basis from a minimal one:  

Assume                is a minimal basis for an ideal  . 

 Let               and suppose   

             
         (so                  then 

 Let                   and suppose   

             
         and so on... 

 Let                     and reduce   

             
          

 Now                  is the required reduced Groebner basis. 

For uniqueness, suppose                 and                  are reduced Groebner 

bases.  Since they are necessarily minimal, Lemma 1 implies that       and we may assume 

               for each          

Suppose       for some  . We know         so for some j,                   but 

                       .  So clearly       It follows that               divides 

some term of either    or   , contrary to the assumption that each is reduced.  Thus       for 

all  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


