
Lesson 18 – Elimination with Groebner Bases 

We have seen that Groebner bases can be used to answer the “ideal membership problem”, and last lesson we 

saw several other applications.  Today we will examine how Groebner bases can be used to solve systems of 

polynomial equations (i.e., to determine affine varieties).  A classical way to approach this problem is to 

eliminate variables sequentially until one obtains a polynomial in only one variable, which may be solved 

explicitly or numerically, and then proceed by back substitution (or extension).   

I. Motivating Example   

Consider the polynomials: 

         

          

           

and let us find the set                      of common zeros. 

Exercise 1  

a)  In “GaussianElimination-like” way, use the   in    to eliminate terms in the latter two 

polynomials, arriving at the new system:  

         

                 

                       

which satisfies                        . 

 

 

 

 

 

b)  Next we choose the term    in polynomial    as the term most suitable for eliminating terms 

containing   in the other polynomials.  Do this to produce the system:  

                    

                    

                               

which satisfies                                    . 

 

 

 

 

 



In the previous example, we replaced a system of polynomial equations with a new system having 

the same zero set as the original system.  The new system is nice because its upper triangular form 

implies that it can be solved more easily.  Let’s see what a reduced Groebner basis does for us.  

Maple’s Basis procedure with the lex ordering (     ), yields: 
 

>   with(Groebner): 

>   G:={x^2+y+z-1,x+y^2+z-1,x+y+z^2-1}; 

>   Basis(G,plex(x,y,z)); 
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The Upshot:  Groebner Bases achieve elimination! 
 

II. Elimination Ideals  

Referring again to the reduced Groebner basis computed above: 

 

                                                

                                                 

                                                  
 

observe that                   , where      
 
  

 
  

 
             . 

The ideal        is said to be the second elimination ideal of   because the two variables x and y 

have been eliminated.  More generally, we have: 

 

Definition  Given an ideal                        , the j
th

 elimination ideal is  

                                

It is an easy exercise to check that the    are indeed ideals. 

 

Remarks:  
 

1. We define the 0
th

 elimination ideal to be  , itself; i.e.,       

2. With elimination we use the lex ordering, and different orderings on the variables will lead to 

different elimination ideals (where different variables are eliminated).  One chooses the ordering on 

the variables purposefully, to eliminate the variable of choice.  In the above definition, it is typically 

the case that        .  (See the Elimination Theorem below.) 

 

Exercise 2  Referring to the example on page 1, identify each of the elimination ideals:        where 

       

 

 



So here’s the important theorem that says that Groebner bases achieve 

elimination: 

Theorem (Elimination Theorem)  If   is a Groebner basis for              with respect to the 

lex order           , then for                          is a Groebner basis for 

the elimination ideal   . 

Proof.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III. Extension 

While the Groebner basis technique gives us bases for the elimination ideals, the extension process 

has its own problems.  It is not clear in advance whether a solution                   extends to 

a solution                       .  Let us consider some examples. 

Exercise 3 Consider the equations    

     

     

in         . 

a) What is the first elimination ideal,   ?  Find a partial solution              . 

 

 

 

b)  Does your partial solution from part a) extend to a full solution?  That is, does there exist      

an such that                ? 

 

 

 

 

Exercise 4 Find all solutions to the equations  

     

     

in         . 

 

 

 

 

 

 

 

So when can we extend a partial solution to get a full solution??? 



The Extension Theorem tells us when we can extend a partial solution in                 to a 

solution                  . 

Theorem (Extension Theorem)  Suppose                        and    is the first 

elimination ideal of  .  For each let       write 

                
                                    

where      and               is non-zero.  If                 is a partial solution such 

that                      , then there exists      so that                  . 

 

Actually, the Extension Theorem can be stated more generally for the j
th

 elimination ideal, but the 

additional indices required make the statement of the theorem more complicated than it’s worth.  

Here’s the more general statement, but I recommend that you work with the above statement instead. 

Theorem (Extension Theorem for extending a partial soln in       to a soln in        .)  

Suppose                        and     =                     .  For each       let 

                  
                                    

where      and                 is non-zero.  If                   is a partial solution  

such that                        , then there exists      so that                       . 

Exercise 5  Consider the equations  

           

                      

Using Maple, we find that                                          is a 

Groebner basis of                       using the lex order with      . 

a)  What is the first elimination ideal   ? 

 

 

 b)  Given a partial solution (b, c) in      , can it be extended to a solution (a, b, c)      ? 

 

 

 

 

Exercise 6   What does the Extension Theorem say about the examples presented in Exercise 4? 


