
Lesson 20 – More Practice with Elimination, 

Extension, Implicitization and the Closure Theorem 

 

Let’s recall what the Closure Theorem says: 

The Closure Theorem  Let                     and let    be the k
th

 elimination ideal of 

              .  Then 

(i)       is the smallest affine variety containing             

(ii) When    , there is an affine variety         such that                 

  

Example 1  For our first example, we return to the surface parameterization appearing in the last 

exercise of Wednesday’s Maple lab:                            

The implicitization process involves  

solving the system 

 

                                    
               

                               = 0 

 

via elimination of the variables u and v. 

 

To this end, we use Maple to compute a 

Groebner basis...   

   

 

 

a) What is the equation of the smallest variety    containing the surface S defined by the 

parameterization                          (also denoted by F(  ) =             

           ? 

  

b) Over   what are the points in    missing from the parameterization? 
 

 

 

 

c) Applying part ii) of the Closure Theorem to this situation, can you identify the affine variety W? 



Example 2  In this example, we examine how the Closure Theorem can fail when we work over   

as opposed to   (also known as ).   
 

Consider the ideal:                                   

Let         and let    be the projection taking         to      . 

a) Working over  , prove that            .  (It’s not hard to see that GB = {       ,     } 

is a Groebner basis for   under the lex ordering with          .) 

 

 

 

 

 

b) Working over  , what is       ?  What is      ?  What is the smallest variety containing 

       

 

 

 

MATHEMATICAL REBUS: 

 

 

 

 

 

 

 

 

 

 

 

  

 

  -R   
 



Example 3  Recall our parameterization of the unit circle obtained by the “sweeping line” method: 

                      

By clearing denominators, the above parameterization yields the two polynomial equations 

             and           .  Defining                   and                we 

find a Groebner basis for          : 

>  Basis([                           , plex(t, x, y)); 

                                                   

Aha...the first elimination ideal seems to give the implicit representation for the unit circle.  Seems 

straightforward, right?   Just to make your professor happy, let’s be neurotic and sort out all of the 

notation and lingo. (It’s easiest to do this with an example that makes perfect sense to you.) 

 

a) The parameterization                    
    

    
 

  

    
  is a function       .  Explain the 

meaning of this diagram (which the text uses; it’s a nice way to “package” the information). 

 

 
      
     

  
           
        

    

 

 

b) Referring to the above Groebner basis of          , we see that              .  And we know 

from last class,            .  What exactly is   here?  How does the image of the parameterization, 

     , relate to       and to      ?   

 
  

 

 

 

 

b)  Use the Extension Theorem to show that the parameterization does not fill up the entire variety      
     . 
 

 

 

 

 

 

  
    

    
      

  

    
 

 

Rational Parameterization  

of Unit Circle: 

 



Example 4  Let’s consider another rational parameterization; this time we’ll consider a surface: 

 

 

Rational Parameterization: 

 

                              
 

  
  

 
 

  
  

 
 

    
 

 
 

 

It’s easy to see that the points  
  

 
 

  

 
    lie on the surface          (Check this!) 

 

a)  Defining                                   we compute a Groebner basis under the lex 

ordering with             Here’s Maple’s output: 

 

 
 

What is the second elimination ideal   ?  Is       the smallest variety containing the parameterization?   

 

 

 

 

 

b)   Does it make sense to speak about the following diagram (which is similar to the one on the previous page 

but modified to reflect the fact that we have a surface in 3-space parameterized by two variables)?   

 

 
      
     

   
           
        

    

 
 

 

 

 

 

 

 

 

 

 



 

To ensure the denominators appearing in the parameterization (  and  )  never vanish, we have to be sneaky.  

The trick is to add another variable to the polynomial ring (we’ll add the variable “ ”) and then enlarge the 

ideal   by the polynomial       .   That is, define the ideal   to be: 

                                          
Observe that a point in      cannot possibly be a point at which u or v vanishes.  Now 
 

 
c)  Which elimination ideal should we be examining in order to get our hands on the smallest variety 

containing the parameterization?  Find it! 

 

 

 

 

 

 

 

d)  Which portion of        is parameterized by          
  

 
 

  

 
   ? 

 

 

 

 

 

 

 

 

 

 

More generally, we have the Rational Implicitization Theorem (which you will prove for homework!) 

 

Theorem (Rational Implicitization) If   is an infinite field, let           be the function 

determined by the rational parameterization 

   
              

              
  

   
              

              
  

  

   
              

              
  

where                     are polynomials in                 Let   be the ideal                  
                                             where          , and let        
           be the (  + 1)

st
 elimination ideal. Then         is the smallest variety in    containing 

         
 

 



Exercise  Given a rational parameterization:    

   
              

              
  

   
              

              
  

  

   
              

              
  

there is one case where the naïve ideal                                             obtained 

by “clearing denominators” gives the right answer.  Suppose that    
     

     
 where there is only one parameter 

t.  We can assume that for each  ,       and       are relatively prime in      (so in particular, they have no 

common roots).  If     or    , prove that       is the smallest variety containing        , where 

                and         .  (This is actually true over any infinite field.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


