
Lesson 21 –Resultants 

 

Elimination theory may be considered the origin of algebraic geometry; its history can be traced 

back to Newton (for special equations) and to Euler and Bezout.  The classical method for 

computing varieties has been through the use of resultants, the focus of today’s discussion.  The 

alternative of using Groebner bases is more recent, becoming fashionable with the onset of 

computers.  Calculations with Groebner bases may reach their limitations quite quickly, 

however, so resultants remain useful in elimination theory.  The proof of the Extension Theorem 

provided in the textbook (see pages 164-165) also makes good use of resultants. 

I. The Resultant Let   be a UFD and let          be the polynomials  

        
     

                       

             
     

                               . 

The definition and motivation for the resultant of          lies in the following very simple 

exercise. 

Exercise 1  Show that two polynomials   and   in      have a nonconstant common divisor in 

      if and only if there exist nonzero polynomials u, v such that          where   

       and          . 

 

 

 

 

 

 

 

 

 

 

The equation         can be turned into a numerical criterion for   and   to have a common 

factor.  Actually, we use the equation         instead, because the criterion turns out to be a 

little cleaner (as there are fewer negative signs).  Observe that          iff               

so          has a solution       iff          has a solution       . 



Exercise 2 (to be done outside of class)  Given polynomials          of positive degree, say  

                                        
     

                                   

                                        
     

                               , 

define 

                                                          
       

            

        
       

            

where the l + m coefficients   ,   ,…,     ,   ,   ,…,      are treated as unknowns. Substitute 

the formulas for f, g, u and v into the equation          and compare coefficients of powers 

of x to produce the following system of linear equations with unknowns ci, di and coefficients ai, 

bj, in R.   

                                                                                                                                                

                                                                                                                                   

                                                                                                             

                                                                                                                                               

                                                                                                                                           
  

The system involves  l + m equations in l + m unknowns.  The key point here is that the system 

has a nonzero solution iff the determinant of the corresponding coefficient matrix is zero.   

Definition  Let          be two polynomials of positive degree 

        
     

                       

             
     

                               . 

Then the Sylvester matrix of f and g with respect to x, denoted Syl(f, g, x) is the coefficient 

matrix of the system of equations produced in the previous exercise.  That is, Syl(f, g, x) is the 

following (l + m)   (l + m) matrix: 
   

            

                

                  

                    
             

                
              
          

            
 

where the empty spaces are filled in by zeros.  
   

Definition  The resultant of f and g with respect to x, denoted by Res(f, g, x), is the determinant 

of the Sylvester matrix.  Thus, 

Res(f, g, x) = det(Syl(f, g, x)). 

 

Syl(f, g, x) =  



Remark:  The Sylvester matrix is an            - matrix, where           and 

           because there are   columns consisting of  i’s and   columns consisting of   ’s.   

The gist of the previous page is summarized in the following theorem. 

Theorem  Let   be a UFD; then the polynomials  

              
     

                                   

             
     

                                

in      have a non-constant common divisor in      if and only if the following equivalent 

conditions are satisfied: 

(1)  There exist nonzero polynomials           with                       

       and          

(2)  Res(     ) = 0 

We illustrate the process with a simple example. 

Exercise 3  Take          
         and            .  Derive the Sylvester matrix 

Syl(f, g, x) from the equation          where                        . 

 

 

 

 

 

 

 

 

 

 

 

II. Finding Intersection Points of Curves  Let us now apply resultants to curves.  Consider the 

intersection of the two ellipses                and                  in 

      .  



Exercise 4  Find                             . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observe that, Res(               ) is a function of   and Res(               ) is a function 

of   .  In fact, the following is true:   

Theorem  Let                   have positive degree in   .  Then: 

i) Res(      ) is in the first elimination ideal                 . 

ii) Res(      ) = 0 if and only if   and   have a common factor in               which  

      has positive degree in   . 

Sketch of proof. 

 

 

 



Exercise 5  Fill in the blanks to explain how resultants can be used to compute the points of 

intersection of two affine curves. 

a) If         is a point on the intersection of             and            ,  then 

Res(     ) _______________________________________________________________ 

 

  

b) If         is a point on the intersection of             and            ,  then      

        and              have the common factor _____________________________ 

  

III. Implicitization  Resultants can be used for implicitization:  this is the technique of finding 

an implicit equation of a parameterized curve.  Consider 

                                                   
    

    
   

    

    
                                                 

where GCD(   ) =1 and GCD(   ) =1. 

Exercise 6  Show that                                      
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Exercise 7   Let              and              and define                  .  

Show that a point         is on the paramaterized curve iff            . 

 

 

 

 

 

 



Exercise 8  Apply what you learned in Exercise 7 to derive the equation of the curve 

parameterized by 

  
    

    
       

  

    
 

 

 

 

 

 

 

 

 

One final detail regarding resultants.  Perhaps you noticed that our definition of the resultant 

of two polynomials,           , required that  and   be nonconstant (i.e., of positive degree).  

In fact, we can define the resultant in the case where one or both of the polynomials is constant.  

One just has to have the patience to work out the various cases.  (See Exercise 14 on page 161 in 

your textbook).  Here is what you get: 

     nonconstant,      constant: 

If         
     

         and           then the Sylvester matrix is an     matrix 

with    along the diagonal and zeros everywhere else.  Hence 

                             
 .   

     constant,      nonconstant: 

If         and         
     

          then the situation is similar to the 

previous case and                               
  

     and      both constant: 

If         and           Then we define             
                       
                          

  

 


