Lesson 28 - Quotient Ideals

Recall the definition of the Zariski closure of a set...
Definition The Zariski closure of a subset of affine space is the smallest affine algebraic variety containing the set. If $S \subseteq k^{n}$, the Zariski closure of S is denoted by \bar{S} and is equal to $\mathbf{V}(\mathbf{I}(S))$. That is,

$$
\bar{S} \stackrel{\text { def }}{=} \mathbf{V}(\mathbf{I}(S))
$$

Exercise 1 What is the Zariski closure of the set $S=V-W$ in \mathbb{R}^{2}, where $V=\mathbf{V}\left(x y-x^{2}\right)$ and $W=$ $\mathbf{V}(x)$?

The ideal-theoretic analogue of $\overline{V-W}$ is an ideal known as the quotient ideal.
Definition If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then the quotient ideal or colon ideal is the ideal $I: J$ defined by

$$
\begin{aligned}
I: J & =\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f J \subseteq I\right\} \\
& =\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f g \in I \forall g \in J\right\}
\end{aligned}
$$

Remarks.

1. We leave it as an exercise to show that $I: J$ is an ideal satisfying $I \subseteq I: J$.
2. In fact, $I: J$ is the largest ideal K satisfying $J K \subseteq I$. (For this reason, the notation I / J would better describe the quotient ideal, but that notation is taken!)

Sometimes the quotient ideal is denoted by $(I: J)$ or $[I: J]$.

Exercise 2 Compute the quotient ideal $\left\langle x y-x^{2}\right\rangle:\langle x\rangle$ in $k[x, y]$.

The quotient ideal $I: J$ is very useful when I is a radical ideal. In particular, it is the vanishing ideal of the set difference $\mathbf{V}(I)-\mathbf{V}(J)$.

Proposition 1 If I is a radical ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I: J=\mathbf{I}(\mathbf{V}(I)-\mathbf{V}(J))$

Applying \mathbf{V} to both sides of $I: J=\mathbf{I}(\mathbf{V}(I)-\mathbf{V}(J))$ yields the following alternative way of stating Proposition 1 (this is Theorem 7 in your textbook).

Theorem 2 (Algebraic Analogue of $\overline{\mathbf{V}(I)-\mathbf{V}(J)}$) If k is an algebraically closed field and I is a radical ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\mathbf{V}(I: J)=\overline{\mathbf{V}(I)-\mathbf{V}(J)})
$$

Exercise 3 Prove that V and W are varieties in k^{n}, then $\mathbf{I}(V): \mathbf{I}(W)=\mathbf{I}(V-W)$.

Computing Quotient Ideals

The quotient $I: J$ can be computed via the intersection of quotients of I with generators of J, as formally stated in the following "useful formula".

Useful Formula Let I and J be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, and assume $J=\left\langle f_{1}, f_{2}, \ldots, f_{r}\right\rangle$. Then

$$
\begin{equation*}
I: J=I:\left\langle f_{1}, f_{2}, \ldots, f_{r}\right\rangle=\bigcap_{i=1}^{r}\left(I: f_{i}\right) \tag{*}
\end{equation*}
$$

To justify the useful formula (*), we need to show $I:(J+K)=I: J \cap I: K$ (Proposition 3 below), and to use this formula, we will need to see how to compute (I: f_{i}) (Theorem 4 below).

Proposition 3 Let I and J_{i} be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ for $1 \leq i \leq r$. Then

$$
I:\left(\sum_{i=1}^{r} J_{i}\right)=\bigcap_{i=1}^{r}\left(I: J_{i}\right)
$$

Theorem 4 Let I be an ideal and g a polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$. If $\left\{h_{1}, h_{2}, \ldots, h_{p}\right\}$ is a basis of the ideal $I \cap\langle g\rangle$, then $\left\{\frac{h_{1}}{g}, \frac{h_{2}}{g}, \ldots, \frac{h_{p}}{g}\right\}$ is a basis of $I:\langle g\rangle$.

The proof is straightforward and covered by Exercises 4 and 5 below.
Exercise 4 Show that any element in $\left\langle\frac{h_{1}}{g}, \frac{h_{2}}{g}, \ldots, \frac{h_{p}}{g}\right\rangle$ belongs to $I:\langle g\rangle$.

Exercise 5 Show that every $f \in I:\langle g\rangle$ is a polynomial combination of $\left\{\frac{h_{1}}{g}, \frac{h_{2}}{g}, \ldots, \frac{h_{p}}{g}\right\}$.

Exercise 6 Given two ideals, $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle$ in $k\left[x_{1}, \ldots, x_{n}\right]$, and use what you have learned to describe an algorithm for computing a basis of a quotient ideal $I: J$.

Example Consider the variety $V=\mathbf{V}\left(x z-y^{2}, x^{3}-y z\right)$. The graph indicates that the variety contains two components; the line is easily seen to be the z-axis as both $x z-y^{2}$ and $x^{3}-y z$ vanish at all points of the form $(0,0, z)$.

Figure 1: The variety $\mathbf{V}\left(x z-y^{2}, x^{3}-y z\right)$
Exercise 7 The other component of the variety is $\overline{V-\mathbf{V}(x, y)}$. To find this variety, we compute the quotient ideal $\left\langle x z-y^{2}, x^{3}-y z\right\rangle:\langle x, y\rangle$.
a) Define $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$. What does Proposition 3 say about $I:\langle x, y\rangle$?
b) Use the Maple output below to determine the variety $I: x$.
$>\operatorname{sys} 1:=\left[t \cdot\left(x \cdot z-y^{2}\right), t \cdot\left(x^{3}-y \cdot z\right),(1-t) \cdot x\right] ;$

$$
\text { sys } 1:=\left[t\left(x z-y^{2}\right), t\left(x^{3}-y z\right),(1-t) x\right]
$$

$>\operatorname{Groebner}[$ Basis $]($ sys $1, \operatorname{plex}(t, \mathrm{z}, \mathrm{y}, \mathrm{x}))$;

$$
\begin{aligned}
& {\left[y^{3} x-x^{5}, z x^{2}-y^{2} x,-x^{4}+z y x,-y x^{3}+z^{2} x,-x+x t, t y^{2}-x z, t y z\right.} \\
& \left.\quad-x^{3}\right]
\end{aligned}
$$

c) Use the Maple output below to determine the variety $I: y$.
$>\operatorname{sys} 2:=\left[t \cdot\left(x \cdot z-y^{2}\right), t \cdot\left(x^{3}-y \cdot z\right),(1-t) \cdot y\right] ;$

$$
\text { sys } 1:=\left[t\left(x z-y^{2}\right), t\left(x^{3}-y z\right),(1-t) x\right]
$$

> Groebner[Basis](sys2,plex(t, z, y, x));

$$
\begin{aligned}
& {\left[y^{4}-y x^{4}, z y x-y^{3},-y x^{3}+y^{2} z,-y^{2} x^{2}+z^{2} y, t x^{3}-y z,-y+t y, t x z\right.} \\
& \left.\quad-y^{2}\right]
\end{aligned}
$$

d) Now find $I:\langle x, y\rangle=I: x \cap I: y$ and use this information to identify the second component of the original variety.
e) Guess what happens when you compute I : $\left\langle-y x^{2}+z^{2}\right\rangle$.

Here we update our "algebra-geometry dictionary" :

The Algebra - Geometry Dictionary		
$\begin{gathered} \text { radical ideals } \\ I \\ \mathbf{I}(V) \\ \hline \end{gathered}$		$\begin{gathered} \frac{\text { varieties }}{\mathrm{V}(I)} \\ V \end{gathered}$
$\begin{gathered} \frac{\text { addition of ideals }}{I+J} \\ \sqrt{\mathbf{I}(V)+\mathbf{I}(W)} \end{gathered}$		$\begin{gathered} \hline \text { intersection of varieties } \\ \hline \mathbf{V}(I) \cap \mathbf{V}(J) \\ V \cap W \end{gathered}$
$\begin{gathered} \hline \text { product of ideals } \\ I \cdot J \\ \sqrt{\mathrm{I}(V) \cdot \mathrm{I}(W)} \end{gathered}$		$\begin{gathered} \frac{\text { union of varieties }}{\mathbf{V}(I) \cup \mathbf{V}(J)} \\ V \cup W \end{gathered}$
$\begin{gathered} \text { intersection of ideals } \\ \hline I \cap J \\ \mathbf{I}(V) \cap \mathbf{I}(W) \end{gathered}$		$\begin{gathered} \frac{\text { union of varieties }}{\mathbf{V}(I) \cup \mathbf{V}(J)} \\ V \cup W \end{gathered}$
$\begin{gathered} \text { quotient of ideals } \\ I: J \\ \mathbf{I}(V): \mathbf{I}(W) \end{gathered}$		$\begin{gathered} \text { difference of varieties } \\ \overline{\mathbf{V}(I)-\mathbf{V}(J)} \\ \overline{V-W} \end{gathered}$

