Lesson 28 – Quotient Ideals

Recall the definition of the Zariski closure of a set...

Definition The **Zariski closure** of a subset of affine space is the smallest affine algebraic variety containing the set. If $S \subseteq k^n$, the Zariski closure of S is denoted by \overline{S} and is equal to V(I(S)). That is,

$$\bar{S} \stackrel{\text{\tiny def}}{=} \mathbf{V}(\mathbf{I}(S))$$

Exercise 1 What is the Zariski closure of the set S = V - W in \mathbb{R}^2 , where $V = \mathbf{V}(xy - x^2)$ and $W = \mathbf{V}(x)$?

The ideal-theoretic analogue of $\overline{V - W}$ is an ideal known as the *quotient ideal*.

Definition If *I* and *J* are ideals in $k[x_1, ..., x_n]$, then the **quotient ideal** or **colon ideal** is the ideal I : J defined by

$$I: J = \{f \in k[x_1, \dots, x_n] \mid fJ \subseteq I\}$$
$$= \{f \in k[x_1, \dots, x_n] \mid fg \in I \forall g \in J\}$$

Remarks.

- 1. We leave it as an exercise to show that I : J is an ideal satisfying $I \subseteq I : J$.
- 2. In fact, I : J is the largest ideal K satisfying $JK \subseteq I$. (For this reason, the notation I/J would better describe the quotient ideal, but that notation is taken!)

Sometimes the quotient ideal is denoted by (I : J) or [I : J].

Exercise 2 Compute the quotient ideal $\langle xy - x^2 \rangle : \langle x \rangle$ in k[x, y].

The quotient ideal I : J is very useful when I is a radical ideal. In particular, it is the vanishing ideal of the set difference V(I) - V(J).

Proposition 1 If *I* is a radical ideal in $k[x_1, ..., x_n]$, then I: J = I(V(I) - V(J))

Applying **V** to both sides of I: J = I(V(I) - V(J)) yields the following alternative way of stating Proposition 1 (this is Theorem 7 in your textbook).

Theorem 2 (Algebraic Analogue of $\overline{\mathbf{V}(I) - \mathbf{V}(J)}$) If k is an algebraically closed field and I is a radical ideal in $k[x_1, ..., x_n]$, then

 $\mathbf{V}(I:J) = \overline{\mathbf{V}(I) - \mathbf{V}(J)}$

Exercise 3 Prove that V and W are varieties in k^n , then I(V): I(W) = I(V - W).

Computing Quotient Ideals

The quotient I : J can be computed via the intersection of quotients of I with generators of J, as formally stated in the following "useful formula".

Useful Formula Let *I* and *J* be ideals in $k[x_1, ..., x_n]$, and assume $J = \langle f_1, f_2, ..., f_r \rangle$. Then

$$I: J = I: \langle f_1, f_2, ..., f_r \rangle = \bigcap_{i=1}^{r} (I: f_i)$$
(*)

To justify the useful formula (*), we need to show $I : (J + K) = I: J \cap I: K$ (Proposition 3 below), and to use this formula, we will need to see how to compute $(I: f_i)$ (Theorem 4 below).

Proposition 3 Let *I* and J_i be ideals in $k[x_1, ..., x_n]$ for $1 \le i \le r$. Then

$$I:\left(\sum_{i=1}^{r}J_{i}\right)=\bigcap_{i=1}^{r}(I:J_{i})$$

Theorem 4 Let *I* be an ideal and *g* a polynomial in $k[x_1, ..., x_n]$. If $\{h_1, h_2, ..., h_p\}$ is a basis of the ideal $I \cap \langle g \rangle$, then $\{\frac{h_1}{g}, \frac{h_2}{g}, ..., \frac{h_p}{g}\}$ is a basis of $I : \langle g \rangle$.

The proof is straightforward and covered by Exercises 4 and 5 below.

Exercise 4 Show that any element in $\langle \frac{h_1}{g}, \frac{h_2}{g}, \dots, \frac{h_p}{g} \rangle$ belongs to $I : \langle g \rangle$.

Exercise 5 Show that every $f \in I: \langle g \rangle$ is a polynomial combination of $\{\frac{h_1}{g}, \frac{h_2}{g}, \dots, \frac{h_p}{g}\}$.

Exercise 6 Given two ideals, $I = \langle f_1, ..., f_r \rangle$ and $J = \langle g_1, ..., g_s \rangle$ in $k[x_1, ..., x_n]$, and use what you have learned to describe an algorithm for computing a basis of a quotient ideal *I*: *J*.

Example Consider the variety $V = \mathbf{V}(xz - y^2, x^3 - yz)$. The graph indicates that the variety contains two components; the line is easily seen to be the *z*-axis as both $xz - y^2$ and $x^3 - yz$ vanish at all points of the form (0, 0, z).

Figure 1: The variety $V(xz - y^2, x^3 - yz)$

Exercise 7 The other component of the variety is $\overline{V - V(x, y)}$. To find this variety, we compute the quotient ideal $\langle xz - y^2, x^3 - yz \rangle : \langle x, y \rangle$.

a) Define $I = \langle xz - y^2, x^3 - yz \rangle$. What does Proposition 3 say about $I : \langle x, y \rangle$?

b) Use the Maple output below to determine the variety I : x.

> sys1 :=
$$[t \cdot (x \cdot z - y^2), t \cdot (x^3 - y \cdot z), (1 - t) \cdot x];$$

 $sys1 := [t(xz - y^2), t(x^3 - yz), (1 - t)x]$

> Groebner[Basis](sys1, plex(t, z, y, x)); $\begin{bmatrix}y^{3}x - x^{5}, zx^{2} - y^{2}x, -x^{4} + zyx, -yx^{3} + z^{2}x, -x + xt, ty^{2} - xz, tyz \\ -x^{3}\end{bmatrix}$

- c) Use the Maple output below to determine the variety I : y.
- > $sys2 := [t \cdot (x \cdot z y^2), t \cdot (x^3 y \cdot z), (1 t) \cdot y];$ $sys1 := [t (xz - y^2), t (x^3 - yz), (1 - t) x]$
- > Groebner[Basis](sys2, plex(t, z, y, x)); $\begin{bmatrix} y^4 - yx^4, zyx - y^3, -yx^3 + y^2z, -y^2x^2 + z^2y, tx^3 - yz, -y + ty, txz \\ -y^2 \end{bmatrix}$

d) Now find $I : \langle x, y \rangle = I : x \cap I : y$ and use this information to identify the second component of the original variety.

e) Guess what happens when you compute $I : \langle -yx^2 + z^2 \rangle$.

The Algebra - Geometry Dictionary		
radical ideals I I(V)	→ →	Varieties V(I) V
$\frac{\text{addition of ideals}}{I+J}$		$\frac{\text{intersection of varieties}}{\mathbf{V}(I) \cap \mathbf{V}(J)}$ $V \cap W$
$\frac{\sqrt{\mathbf{I}(V) + \mathbf{I}(W)}}{\frac{\mathbf{product of ideals}}{I \cdot J}}$		$\frac{\textbf{union of varieties}}{\mathbf{V}(I) \cup \mathbf{V}(J)}$
$\frac{\sqrt{\mathbf{I}(V) \cdot \mathbf{I}(W)}}{\text{intersection of ideals}}$	←	$V \cup W$ <u>union of varieties</u>
$I \cap J$ $\mathbf{I}(V) \cap \mathbf{I}(W)$		$\mathbf{V}(I) \cup \mathbf{V}(J)$ $V \cup W$
$\frac{\text{quotient of ideals}}{I: J}$ $I(V): I(W)$	Theorem 2 Exercise 3 (really, Proposition 1)	$\frac{\text{difference of varieties}}{\overline{V(I) - V(J)}}$ $\overline{V - W}$

Here we update our "algebra-geometry dictionary" :