Lesson 31 – Reducible and Irreducible Varieties

In this lesson we establish a structure theorem for affine varieties which is an analog of unique factorization for polynomials. Recall that a polynomial $f \in k[x_1, ..., x_n]$ is *reducible* if we may factor f nontrivially, that is, if f = gh with neither g nor h a constant polynomial. Otherwise f is *irreducible*. Any polynomial $f \in k[x_1, ..., x_n]$ may be factored

$$f = g_1^{\alpha_1} g_2^{\alpha_2} \cdots g_m^{\alpha_m}$$

where the exponents α_i are positive integers, each polynomial g_i is irreducible and nonconstant, and when $i \neq j$ the polynomials g_i and g_j are not proportional. This factorization is essentially unique as any other such factorization is obtained from this one by permuting the factors and possibly multiplying each polynomial g_i by a constant. The polynomials g_i are *irreducible* factors of f.

Exercise 1 Recall that a hypersurface $V \subseteq k^n$ is an affine variety defined by a single polynomial $f \in k[x_1, ..., x_n]$, i.e., $V = \mathbf{V}(f)$. Assume *f* has unique factorization $f = g_1^{\alpha_1} g_2^{\alpha_2} \cdots g_m^{\alpha_m}$, what does this factorization say about the hypersurface $\mathbf{V}(f)$?

This decomposition property is shared by general affine varieties.

Definition An affine variety $V \subseteq k^n$ is **reducible** if it is the union $V = V_1 \cup V_2$ of proper subvarieties $V_1, V_2 \subsetneq V$. Otherwise, V is **irreducible**. That is, an affine variety $V \subseteq k^n$ is **irreducible** if whenever V is written in the form $V = V_1 \cup V_2$, where V_1 and V_2 are affine varieties, then either $V_1 = V$ or $V_2 = V$.

Figure 1 A reducible variety with 3 components; one is a surface and the other two are curves.

Exercise 2 Show that the variety $V = \mathbf{V}(xy + z, x^2 - x + y^2 + yz)$ is reducible.

The geometric notion of an irreducible variety corresponds to the algebraic notion of a prime ideal. Recall that an ideal $I \subseteq k[x_1, ..., x_n]$ is *prime* if whenever $fg \in I$ with $f \notin I$, then we have $g \in I$. Equivalently, if whenever $f, g \notin I$ then $fg \notin I$.

Proposition 1 An affine variety $V \subseteq k^n$ is irreducible if and only if I(V) is a prime ideal.

Proof. If *V* is an affine variety, set I := I(V).

Exercise 3 Proving the forward direction, assume *V* is irreducible and let $f, g \notin I$. Show that $fg \notin I$ and hence *I* is a prime ideal.

Exercise 4 Now assume *V* is reducible. Show that *I* is not prime.

{ideals in $k[x_1, x_2, \dots, x_n]$ }	\leftrightarrow	{subsets in k^n }
U		U
{radical ideals }	\leftrightarrow	{affine varieties}
U		U
{prime ideals}	\leftrightarrow	{irreducible varieties}

Figure 2 A good diagram to keep in mind. The double arrows represent the correspondences V and I

Before going any further, let's look at some examples.

Exercise 5 Consider the ideal $I = \langle uw - v^2, u^3 - vw \rangle$. Here's a Groebner basis under the lex order with w > u > v.

> $Basis([u \cdot w - v^2, u^3 - v \cdot w], plex(w, u, v));$

$$\left[-v^{3}+u^{4},-u^{3}+vw,uw-v^{2}\right]$$

a) Show that $u(w^2 - u^2v) \in I$, but $u \notin I$, $w^2 - u^2v \notin I$. Hence I is not a prime ideal.

b) Use what you learned in part a) to write $\mathbf{V}(I)$ as a union of two proper subvarieties, $\mathbf{V}(I) = V_1 \cup V_2$.

c) We want to know that the two subvarieties are irreducible. Start with the easy one. Prove $V_1 := V \cap \mathbf{V}(u) = \mathbf{V}(uw - v^2, u^3 - vw, u)$ is irreducible.

d) Finally, prove $V_2 := V \cap \mathbf{V}(w^2 - u^2v) = \mathbf{V}(uw - v^2, u^3 - vw, w^2 - u^2v)$ is irreducible, and hence we have decomposed $\mathbf{V}(I)$ into two *irreducible* subvarieties.

The last exercise should have motivated following proposition, which comes in handy when proving varieties are irreducible.

Proposition 2 If k is an infinite field and $V \subseteq k^n$ is a variety defined parametrically

$$\begin{aligned} x_1 &= f_1(t_1, \dots, t_m), \\ x_2 &= f_2(t_1, \dots, t_m), \\ &\vdots \\ x_n &= f_n(t_1, \dots, t_m), \end{aligned}$$

where $f_1, f_2, ..., f_n$ are polynomials in $k[t_1, ..., t_m]$, then V is irreducible.

Proof. (See details in textbook; the main idea in the proof was illustrated in the previous example.)