Lesson 31 - Reducible and Irreducible Varieties

In this lesson we establish a structure theorem for affine varieties which is an analog of unique factorization for polynomials. Recall that a polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is reducible if we may factor f nontrivially, that is, if $f=g h$ with neither g nor h a constant polynomial. Otherwise f is irreducible. Any polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ may be factored

$$
f=g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}} \cdots g_{m}^{\alpha_{m}}
$$

where the exponents α_{i} are positive integers, each polynomial g_{i} is irreducible and nonconstant, and when $i \neq j$ the polynomials g_{i} and g_{j} are not proportional. This factorization is essentially unique as any other such factorization is obtained from this one by permuting the factors and possibly multiplying each polynomial g_{i} by a constant. The polynomials g_{i} are irreducible factors of f.

Exercise 1 Recall that a hypersurface $V \subseteq k^{n}$ is an affine variety defined by a single polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$, i.e., $V=\mathbf{V}(f)$. Assume f has unique factorization $f=g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}} \cdots g_{m}^{\alpha_{m}}$, what does this factorization say about the hypersurface $\mathbf{V}(f)$?

This decomposition property is shared by general affine varieties.
Definition An affine variety $V \subseteq k^{n}$ is reducible if it is the union $V=V_{1} \cup V_{2}$ of proper subvarieties $V_{1}, V_{2} \subsetneq V$. Otherwise, V is irreducible. That is, an affine variety $V \subseteq k^{n}$ is irreducible if whenever V is written in the form $V=V_{1} \cup V_{2}$, where V_{1} and V_{2} are affine varieties, then either $V_{1}=V$ or $V_{2}=V$.

Figure 1 A reducible variety with 3 components; one is a surface and the other two are curves.

Exercise 2 Show that the variety $V=\mathbf{V}\left(x y+z, x^{2}-x+y^{2}+y z\right)$ is reducible.

The geometric notion of an irreducible variety corresponds to the algebraic notion of a prime ideal. Recall that an ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is prime if whenever $f g \in I$ with $f \notin I$, then we have $g \in I$. Equivalently, if whenever $f, g \notin I$ then $f g \notin I$.

Proposition 1 An affine variety $V \subseteq k^{n}$ is irreducible if and only if $\mathbf{I}(V)$ is a prime ideal.
Proof. If V is an affine variety, set $I:=\mathbf{I}(V)$.
Exercise 3 Proving the forward direction, assume V is irreducible and let $f, g \notin I$. Show that $f g \notin I$ and hence I is a prime ideal.

Exercise 4 Now assume V is reducible. Show that I is not prime.
$\left\{\right.$ ideals in $\left.k\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\} \quad \leftrightarrow \quad\left\{\right.$ subsets in $\left.k^{n}\right\}$

U		U
\{radical ideals \}	\leftrightarrow	\{affine varieties\}
U		U
\{prime ideals\}	\leftrightarrow	\{irreducible varieties\}

Figure 2 A good diagram to keep in mind. The double arrows represent the correspondences \mathbf{V} and \mathbf{I}

Before going any further, let's look at some examples.
Exercise 5 Consider the ideal $I=\left\langle u w-v^{2}, u^{3}-v w\right\rangle$. Here's a Groebner basis under the lex order with $w>u>v$.
$>\operatorname{Basis}\left(\left[u \cdot w-v^{2}, u^{3}-v \cdot w\right]\right.$, plex $\left.(w, u, \mathrm{v})\right)$;

$$
\left[-v^{3}+u^{4},-u^{3}+v w, u w-v^{2}\right]
$$

a) Show that $u\left(w^{2}-u^{2} v\right) \in I$, but $u \notin I, w^{2}-u^{2} v \notin I$. Hence I is not a prime ideal.
b) Use what you learned in part a) to write $\mathbf{V}(I)$ as a union of two proper subvarieties, $\mathbf{V}(I)=$ $V_{1} \cup V_{2}$.
c) We want to know that the two subvarieties are irreducible. Start with the easy one. Prove $V_{1}:=V \cap \mathbf{V}(u)=\mathbf{V}\left(u w-v^{2}, u^{3}-v w, u\right)$ is irreducible.
d) Finally, prove $V_{2}:=V \cap \mathbf{V}\left(w^{2}-u^{2} v\right)=\mathbf{V}\left(u w-v^{2}, u^{3}-v w, w^{2}-u^{2} v\right)$ is irreducible, and hence we have decomposed $\mathbf{V}(I)$ into two irreducible subvarieties.

The last exercise should have motivated following proposition, which comes in handy when proving varieties are irreducible.

Proposition 2 If k is an infinite field and $V \subseteq k^{n}$ is a variety defined parametrically

$$
\begin{gathered}
x_{1}=f_{1}\left(t_{1}, \ldots, t_{m}\right) \\
x_{2}=f_{2}\left(t_{1}, \ldots, t_{m}\right) \\
\vdots \\
x_{n}=f_{n}\left(t_{1}, \ldots, t_{m}\right)
\end{gathered}
$$

where $f_{1}, f_{2}, \ldots, f_{n}$ are polynomials in $k\left[t_{1}, \ldots, t_{m}\right]$, then V is irreducible.
Proof. (See details in textbook; the main idea in the proof was illustrated in the previous example.)

