Lesson 32 - Unique Factorization for Varieties

In previous lessons we have seen examples of varieties with one, two, and three irreducible components. Taking products of distinct irreducible polynomials (or dually, unions of distinct hypersurfaces), gives varieties having any finite number of irreducible components. As we see next, this is all that can occur...

Theorem 1 (Existence of Decomposition) Any affine variety $V \subseteq k^{n}$ can be written as a finite union

$$
V=V_{1} \cup V_{2} \cup \cdots \cup V_{m},
$$

where each V_{i} is an irreducible subvariety.

So Proposition 1 says any affine variety V has a decomposition

$$
V=V_{1} \cup V_{2} \cup \cdots \cup V_{m},
$$

where each subvariety V_{i} is irreducible. Note that we may assume that this decomposition is irredundant in that if $i \neq j$ then V_{i} is not a subvariety of V_{j}. If we did have $i \neq j$ with $V_{i} \subseteq V_{j}$, then we may remove V_{i} from the decomposition as a finite union of irreducible subvarieties. Next we tackle uniqueness...

Theorem 2 (Unique Decomposition of Varieties) An affine variety V has a unique irredundant decomposition as a finite union of irreducible subvarieties

$$
V=V_{1} \cup V_{2} \cup \cdots \cup V_{m} .
$$

We call the subvarieties V_{i} the irreducible components of V.
Remark. The decomposition must be finite in order to get uniqueness. Indeed any variety is the union of all of its points.

Proof.

Exercise 1 Translate Theorem 1 into the language of ideals using the Algebra-Geometry dictionary.

As the next theorem indicates, ideal quotients can be used to describe the prime ideals appearing in the minimal decomposition of a radical ideal. This is Theorem 6 in section 4.6 of your text.

Theorem 3 If k is algebraically closed and I is a proper radical ideal such that

$$
I=P_{1} \cap P_{2} \cap \cdots \cap P_{r}
$$

is its minimal decomposition as an intersection of prime ideals, then the P_{i} 's are precisely the proper prime ideals that occur in the set $\left\{I: f \mid f \in k\left[x_{1}, \ldots, x_{n}\right]\right\}$.

Exercise 2 What is the geometric interpretation of Theorem 2?

