Lesson 35 - Algorithmic Computations in $k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$

Last lesson we defined the coordinate ring $k[V]$ for an affine variety V :
Definition If $V \subset k^{n}$ is an affine variety, the coordinate ring $k[V]$ is the set of polynomial restrictions $\left.f\right|_{V}: V \rightarrow k$ where $f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
and we concluded that

$$
k[V] \cong k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \mathbf{I}(V)
$$

Hence elements in $k[V]$ are equivalence classes, and two polynomials f and g represent the same element in the coordinate ring iff $f-g \in \mathbf{I}(V)$.

Today we present a way to produce "nice" representatives of the equivalence classes in $k[V]$. The representatives are nice because they will simplify computations within the coordinate ring.

Theorem 1 Fix a monomial order on $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and let $I \subset k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be an ideal. Then $k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$ is isomorphic as a k-vector space to $S=\operatorname{Span}\left(x^{\alpha}: x^{\alpha} \notin\langle\operatorname{LT}(I)\rangle\right)$. (If $I=\mathbf{I}(V)$ for an affine variety V, then S is the set of "nice" representatives.)

Exercise 1 You are in the library working on your algebraic geometry homework, and you compute a Groebner basis for $I=\left\langle x y^{3}-x^{2}, x^{3} y^{2}-y\right\rangle \subseteq \mathbb{C}[x, y]$ using the grlex order with $x>y$. You get

$$
G=\left\{x^{3} y^{2}-y, x^{4}-y^{2}, x y^{3}-x^{2}, y^{4}-x y\right\} .
$$

At this point, a secret admirer approaches you and in an attempt to impress you explains that he or she (depending on your preference) can compute Groebner bases in his/her head. You ask $\mathrm{him} /$ her to compute a Groebner basis for $I=\left\langle x y^{3}-x^{2}, x^{3} y^{2}-y\right\rangle$ using the lex order with $y>x$. Within seconds, your admirer produces the "basis":

$$
\text { Admirer's } G=\left\{y-x^{7}, x^{10}-x^{2}\right\} .
$$

Is this somebody worthy of rearing your children or your dogs (whatever your preference)?

In light of Theorem 1, let's revisit an example we saw last lesson.
Exercise 2 Last lesson we saw that the coordinate ring, $k[\ell]$, of a line $\ell: y=m x+b$ is isomorphic to the infinite dimensional k-vector space $k[x]$. Use Theorem 1 to arrive at the same conclusion.

Exercise $\mathbf{3}$ What is the coordinate ring for the twisted cubic, $\mathbf{V}\left(x-z^{2}, y-z^{3}\right) \subset k[x, y, z]$?

Theorem 2 (The Finiteness Theorem) Let $V=\mathbf{V}(I) \subseteq k^{n}$, where k is algebraically closed and fix a monomial ordering in $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then the following statements are equivalent:
(i) V is a finite set.
(ii) I has a Groebner basis G where for all $1 \leq i \leq n, G$ has an element whose leading monomial is a power of x_{i}. (That is, for each $i, 1 \leq i \leq n$, there is some $m_{i} \geq 0$ such that $x_{i}^{m_{i}} \in\langle\operatorname{LT}(I)\rangle$.) (iii) Only finitely many monomials are not in $\langle\mathrm{LT}(I)\rangle$.
(iv) $k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$ is finite dimensional vector space over k.

Exercise 4 - True or False? For each of the statements to follow, assume that k is an algebraically closed field.

True False a) The variety introduced in Exercise 1, $\mathbf{V}(I)=\mathbf{V}\left(x y^{3}-x^{2}, x^{3} y^{2}-y\right)$, is a finite affine variety.

True False b) If $V=\mathbf{V}(I) \subseteq k^{n}$ is a finite affine variety, say $V=\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$, then $r \leq \operatorname{dim}_{k} k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$.

True False c) If $V=\mathbf{V}(I) \subseteq k^{n}$ is a finite affine variety, say $V=\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$, then I radical implies $r=\operatorname{dim}_{k} k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$.

