
Lesson 37 - The Variety of a Monomial Ideal 

 

In the final week of the semester we will examine the Hilbert function, a function that is 

constructed to compute the dimension of a variety.  The first step in this process will be to better 

understand varieties defined monomial ideals.  First we’ll need a couple definitions. 

Definition.  A vector space     defined by setting some subset of the variables        ...,     

equal to zero is called a coordinate subspace.  A vector space obtained by setting one of the 

variables equal to zero is called a coordinate hyperplane. 

Theorem 1 (Characterization of Varieties of Monomial Ideals)  If            

              is a monomial ideal (so      
 ), then the variety      is a finite union of 

coordinate subspaces of   . 

 

Proof.    

 

 

 

 

 

 

UPSHOT: If                 is a monomial ideal, then we have a decomposition: 

                 

where each    has the form                           where               is a subset of 

         .  (In other words, each    is defined by setting a subset of the variables            

equal to zero.)  Note that we may assume       for     to get a minimal decomposition. 

The Dimension of a Variety of a Monomial Ideal 

While our ultimate goal is to compute the dimension of an affine variety in general, it is very 

easy to compute the dimension of a monomial ideal.  So this will be our starting point.   

 

A Provisional Definition
1
 If a variety   is the union of a finite number of linear subspaces, then 

the dimension of  , denoted by dim  , is the largest of the dimensions of the subspaces. 

                                                           
1
 It is not too hard to see that this provisional definition coincides with our earlier definition of dimension 

(introduced in an earlier homework assignment), when the affine variety is a finite union of linear subspaces. 



 

Exercise 1  What is the dimension of         , where                             ?   

 

 

 

 

 

 

 

 

 

Could we have somehow computed the dimension above without computing a decomposition?  

The answer is yes, as the following Proposition indicates. 

Proposition 2 If                                 is a monomial ideal, define 

                      
                                                        

and consider all subsets                  Then  

                                           

(That is, the dimension of is the smallest number of “zeroed” variables required to guarantee 

each monomial is zero.)  See page 441 of your textbook for the proof. 

Exercise 2  For this exercise, assume that            
 denotes the coordinate subspace defined by 

setting                   

a) If                           is a monomial ideal, then      contains    
  as a 

subspace if ___________________________________. 

b) If                           is a monomial ideal, then      contains      
  as a 

subspace if ___________________________________. 

c) If                           is a monomial ideal, then      contains            
  

as a subspace if ___________________________________. 



Exercise 3  True or False:  If                                 is a monomial ideal, it is 

possible for          . 

 

 

 

 

 

 

 

 

Finally, for a good review for Exam III, let’s examine the radical of a monomial ideal.  We’ll 

use some notation that appeared early in the semester. 

 

Notation:  If      
    

     
                , then 

                                                                 
       

        
     

,  

where             is defined by        
            
            

 .   

In other words,         is simply the product of the variables dividing   , so we are simply 

creating “squarefree” monomials... 
 

Definition A monomial      
    

     
   is said to be squarefree if      for            A 

monomial ideal                                  is a squarefree monomial if all 

monomials     ,      , are squarefree. 

 

Theorem 3 If                                 is a monomial ideal, then    

                              . 

 

Proof.  The proof will follow quickly from the following lemma. 

 

Lemma  Any squarefree monomial ideal is a finite intersection of monomial prime ideals.   

 

Exercise 4  Assuming the lemma, prove Theorem 3. 

 

 

 

 

 

 

 



Exercise 5  Now let’s prove the lemma... 
 

a) Show that any squarefree principal monomial ideal in               is a finite intersection of 

monomial prime ideals.   
 

 

 

 

b) Now show that any squarefree monomial ideal in               is a finite intersection of 

monomial prime ideals.   
 

 

 


