
Lesson 40 – Introducing the Hilbert Function 

 

Today we introduce the Hilbert Function of an ideal  , a function designed to compute the 

dimension of a variety by counting the monomials in the complement of the ideal.  We start with a 

couple of definitions. 
  

Definition  If   is an ideal in               , then we define                 to be the set of 

polynomials in                of total degree    and     is the set of polynomials in   of total 

degree      That is,  

                                                                              

                                                                                                     

Both                  and     are vector spaces over   and, clearly,     is a vector subspace of 

                .  We are ready to define the Hilbert function. 

 

Definition. Let   be an ideal in               , and let     be the space of elements of   of degree 

at most  .  The (affine) Hilbert function        of   is defined to be the dimension of 

                     as a vector space over  .  That is, 

                                                                                        .   

 

Exercise 1  In fact,         =                                .   Why? 

  

Exercise 2  Compute the Hilbert function of the zero ideal in               . 

 

 

 

 

 

 

 

 



What is the general form of the Hilbert function?  Before tackling this question, we’ll focus on 

monomial ideals first (a common theme in this course!).  Monomial ideals are easier to understand.   

I. The Hilbert Function of a Monomial Ideal 

 

Exercise 3  Compute the Hilbert function of the ideal              in       . 

 

 

 

 

 

 

 

 

 

Exercise 4  Compute the Hilbert function of the ideal                in       . 

 

 

 

 

 

 

The above example illustrated how to compute the Hilbert function for a monomial ideal.  We will 

examine such computations more systematically next lesson.  Such efforts will pay off because of 

the next theorem, which is due to MacCaulay (the thesis advisor of J. E. Littlewood). 
 

Theorem (MaCaulay)  Let               be an ideal and let > be a graded order
1
 on 

          .  Then the monomial ideal          has the same affine Hilbert function as  . 

The proof of this theorem will follow quickly from a lemma.  If              is an ideal, then 

we define the set of leading monomials of total degree    by  

                                               2 

                                                           
1
 A graded order on            is a monomial order satisfying       whenever        . 

2
 The set is clearly finite, because there are only finitely many monomials in            of total degree   . 



II. The Proof of MaCaulay’s Theorem 

Lemma  If              is an ideal and < is a graded order on           , then     has the 

same dimension as          . 

The next two exercises will prove this lemma. 

Exercise 5  Assume              is an ideal  and assume 

                                  

where                       .  Show that                is a basis for     as a 

vector space over  . 

 

 

 

 

 

 

 

 

Exercise 6  Assume              is an ideal and                                   

where                       .  Show that                             is a 

basis for          . 

Proof.   

 

 

 

 

 

 



We are now ready to prove MaCaulay’s theorem: 
 

Theorem  Let               be an ideal and let > be a graded order on           .  Then the 

monomial ideal          has the same affine Hilbert function as  . 

 

Proof.    

 

 

 

 

 

Next lesson we will see that for every monomial ideal  , there exists a non-negative integer   and a 

univariate polynomial           such that   

               for every     and                   . 

The polynomial     is known as the “Hilbert Polynomial”. 

Furthermore, since                       we will be able to compute the dimension,            

for an arbitrary ideal   (i.e., not necessarily monomial) by counting the monomials in the 

complement of        .  We’ll end with two examples to illustrate. 

Exercise 7   

a) Compute the dimension of the affine variety defined by the ideal                  

              

 

 

 

 

 

b) Compute the dimension of the affine variety defined by the ideal                       

 


