Lesson 41 — The Complement of a Monomial Ideal

Last lesson we defined the Hilbert Function HF;(s) of an affine variety I:

HF;(s) ¥ dim (k[xq, x5, ..., Xp]<s/I<s)
= dim(k[xq, X5, ..., Xn]<s) — dim(l<y)

and showed that HF;(s) = HF 1 (s). Today we will see that for large enough s the Hilbert
function is given by a polynomial — the “Hilbert polynomial”. We start with a quick example...

Exercise 1 Find the Hilbert function of I = (xy3,x2y?). Thenwrite V = V(xy3,x%y?) asa
decomposition of coordinate subspaces and use this decomposition to compute the dimension of V.

Definition. Given a monomial ideal I € k[x;, x5, ..., X,,], we define the “complement exponent
set” C(I) by

C) ={a €eZly:x* ¢ I}

Hence a = (ay,ay, ..., a,) € C(I) iff x* = x[x)? - xp™ & I (iff (ay, ay, ..., ay) lives “under

the staircase™).



Proposition 1 If I € k[x4, x5, ..., X,] iS @ proper monomial ideal, then the set C(I) < Z%, can be
written as a finite (but not necessarily disjoint) union of translates of coordinate subspaces of

n
L.

The next proposition presents a correspondence between coordinate subspaces of V(1) with
coordinate subspaces of ZZ, contained in C(I). This result is important because computing
dimensions of subspaces of C(I) is easier than computing dimensions of subspaces of V().

Proposition 2 Let I € k[xq, x5, ..., x,] be a proper monomial ideal. Then coordinate subspaces
of V(I) correspond with coordinate subspaces of ZZ, contained in C(I). In particular, if
{is, iz .., iy} €{1,2,..,1n},

V(xi:i & {iy, i3, ..., 0:}) € V() iff[e;,e;,,...,e; ] € CU)

Upshot: If I is a monomial ideal, then the dimension of V(1) is the dimension of the largest
coordinate subspace of C(I). Let’s revisit our previous example...

Exercise 2 Given I = (xy3,x?y?), use the decomposition
C(I) =[e1] U (ex + [e1]) U [ex] U {(1,2)}
to find the dimension of V(I).




We are now ready to prove today’s main theorem:

Theorem 3 If I € k[x4, x5, ..., x,,] 1S @ monomial ideal with dim(V(I)) = d, then forall s
sufficiently large, HF;(s) is a polynomial of degree d in s.

Sketch of Proof. To determine the number of points in C(I1)=%, we first write C(I) as a finite
union of translates (and assume T; # T; when i # j):

CH)=T,UT,U--UT,
where dim T; is the same as the dimension of a corresponding coordinate subspace of V(I).
WLOG, we may assume dimT; = dim T, = --- = dim T, and hence dim 7; = d, while
dimT; <dforall2<i<r.

Then C(1)=$ = T,** U T,*° U --- U T,.**, and applying the Inclusion-Exclusion Principle,

T
HFI(S) — |C(I)SS| — 2|Ti55| _ ZlTiSS N Tj55| + 2 |TiSS N TJ-SS N Tkssl .

i=1 i<j i<j<k
Since Ty is a translate of a coordinate subspace of ZZ, of dimensiond, Ty = a + [e;,, e;,, ..., €]
where a = Zie{ipiz ,,,,, ig} i €i- Define |(l| = ZiE{il,iz,....id} a;.

d+s—|af

Exercise 3 Show that for s > |a|, |[T,*| = ( s—laf

), and deduce that |T,*°| is a

polynomial function of s of degree d.



m+s—|af
s — |a

s > |a| for translates T; of dimension m. Use this and the inclusion-exclusion principle

(restated below) to deduce that HF;(s) is a polynomial of degree d in s.

Exercise 4 Similar to the above computation, |T;*°| = ( ) when

T
HE () = [CD%] = Y [T=] = Y IT= 0T+ ) [T 0T= 01| - -
i=1

i<j i<j<k

Definition The dimension of an affine variety V € k™ , denoted dim V, is defined to be the
degree of the Hilbert polynomial corresponding to the ideal I = I(V). That is,

dimV = deg HPyy,




