Lesson 41 - The Complement of a Monomial Ideal

Last lesson we defined the Hilbert Function $H F_{I}(s)$ of an affine variety I :

$$
\begin{aligned}
H F_{I}(s) & \stackrel{\text { def }}{=} \operatorname{dim}\left(k\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{\leq s} / I_{\leq s}\right) \\
& =\operatorname{dim}\left(k\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{\leq s}\right)-\operatorname{dim}\left(I_{\leq s}\right)
\end{aligned}
$$

and showed that $H F_{I}(s)=H F_{\langle\mathrm{LT}(I)\rangle}(s)$. Today we will see that for large enough s the Hilbert function is given by a polynomial - the "Hilbert polynomial". We start with a quick example...

Exercise 1 Find the Hilbert function of $I=\left\langle x y^{3}, x^{2} y^{2}\right\rangle$. Then write $V=\mathbf{V}\left(x y^{3}, x^{2} y^{2}\right)$ as a decomposition of coordinate subspaces and use this decomposition to compute the dimension of V.

Definition. Given a monomial ideal $I \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, we define the "complement exponent set" $C(I)$ by

$$
C(I)=\left\{\alpha \in \mathbb{Z}_{\geq 0}^{n}: x^{\alpha} \notin I\right\}
$$

Hence $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in C(I)$ iff $x^{\alpha}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} \notin I$ (iff $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ lives "under the staircase").

Proposition 1 If $I \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a proper monomial ideal, then the set $C(I) \subseteq \mathbb{Z}_{\geq 0}^{n}$ can be written as a finite (but not necessarily disjoint) union of translates of coordinate subspaces of $\mathbb{Z}_{\geq 0}^{n}$.

The next proposition presents a correspondence between coordinate subspaces of $\mathbf{V}(I)$ with coordinate subspaces of $\mathbb{Z}_{\geq 0}^{n}$ contained in $C(I)$. This result is important because computing dimensions of subspaces of $C(I)$ is easier than computing dimensions of subspaces of $\mathbf{V}(I)$.

Proposition 2 Let $I \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a proper monomial ideal. Then coordinate subspaces of $\mathbf{V}(I)$ correspond with coordinate subspaces of $\mathbb{Z}_{\geq 0}^{n}$ contained in $C(I)$. In particular, if $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \subseteq\{1,2, \ldots, n\}$,

$$
\mathbf{V}\left(x_{i}: i \notin\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}\right) \subseteq \mathbf{V}(I) \text { iff }\left[e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{r}}\right] \subseteq C(I)
$$

Upshot: If I is a monomial ideal, then the dimension of $\mathbf{V}(I)$ is the dimension of the largest coordinate subspace of $C(I)$. Let's revisit our previous example...

Exercise 2 Given $I=\left\langle x y^{3}, x^{2} y^{2}\right\rangle$, use the decomposition

$$
C(I)=\left[e_{1}\right] \cup\left(e_{2}+\left[e_{1}\right]\right) \cup\left[e_{2}\right] \cup\{(1,2)\}
$$

to find the dimension of $\mathbf{V}(I)$.

We are now ready to prove today's main theorem:
Theorem 3 If $I \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a monomial ideal with $\operatorname{dim}(\mathbf{V}(I))=d$, then for all s sufficiently large, $H F_{I}(s)$ is a polynomial of degree d in s.

Sketch of Proof. To determine the number of points in $C(I)^{\leq s}$, we first write $C(I)$ as a finite union of translates (and assume $T_{i} \neq T_{j}$ when $i \neq j$):

$$
C(I)=T_{1} \cup T_{2} \cup \cdots \cup T_{r}
$$

where $\operatorname{dim} T_{i}$ is the same as the dimension of a corresponding coordinate subspace of $\mathbf{V}(I)$. WLOG, we may assume $\operatorname{dim} T_{1} \geq \operatorname{dim} T_{2} \geq \cdots \geq \operatorname{dim} T_{r}$, and hence $\operatorname{dim} T_{1}=d$, while $\operatorname{dim} T_{i} \leq d$ for all $2 \leq i \leq r$.

Then $C(I)^{\leq s}=T_{1}{ }^{\leq s} \cup T_{2}{ }^{\leq s} \cup \cdots \cup T_{r}{ }^{\leq s}$, and applying the Inclusion-Exclusion Principle, $H F_{I}(s)=\left|C(I)^{\leq s}\right|=\sum_{i=1}^{r}\left|T_{i}^{\leq s}\right|-\sum_{i<j}\left|T_{i}^{\leq s} \cap T_{j}^{\leq s}\right|+\sum_{i<j<k}\left|T_{i}^{\leq s} \cap T_{j}^{\leq s} \cap T_{k}^{\leq s}\right|-\cdots$
Since T_{1} is a translate of a coordinate subspace of $\mathbb{Z}_{\geq 0}^{n}$ of dimension $d, T_{1}=\alpha+\left[e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{d}}\right]$ where $\alpha=\sum_{i \notin\left\{i_{1}, i_{2}, \ldots, i_{d}\right\}} a_{i} e_{i}$. Define $|\alpha|=\sum_{i \notin\left\{i_{1}, i_{2}, \ldots, i_{d}\right\}} a_{i}$.

Exercise 3 Show that for $s>|\alpha|,\left|T_{1} \leq s\right|=\binom{d+s-|\alpha|}{s-|\alpha|}$, and deduce that $\left|T_{1}{ }^{\leq s}\right|$ is a polynomial function of s of degree d.

Exercise 4 Similar to the above computation, $\left|T_{i}^{\leq s}\right|=\binom{m+s-|\alpha|}{s-|\alpha|}$ when $s>|\alpha|$ for translates T_{i} of dimension m. Use this and the inclusion-exclusion principle (restated below) to deduce that $H F_{I}(s)$ is a polynomial of degree d in s.
$H F_{I}(s)=\left|C(I)^{\leq s}\right|=\sum_{i=1}^{r}\left|T_{i}^{\leq s}\right|-\sum_{i<j}\left|T_{i}^{\leq s} \cap T_{j}^{\leq s}\right|+\sum_{i<j<k}\left|T_{i}^{\leq s} \cap T_{j}^{\leq s} \cap T_{k}^{\leq s}\right|-\cdots$

Definition The dimension of an affine variety $V \subseteq k^{n}$, denoted $\operatorname{dim} V$, is defined to be the degree of the Hilbert polynomial corresponding to the ideal $I=\mathbf{I}(V)$. That is,

$$
\operatorname{dim} V \stackrel{\text { def }}{=} \operatorname{deg} H P_{\mathbf{I}(V)}
$$

