Lesson 42 – The FINAL Lesson!

Recall the main theorem from last class...

Theorem If $I \subseteq k[x_1, x_2, ..., x_n]$ is a monomial ideal with dim(**V**(*I*)) = *d*, then for all *s* sufficiently large, $HF_I(s)$ is a polynomial of degree *d* in *s*.

Furthermore, we showed that the Hilbert function of any ol' ideal *I* satisfies $HF_I(s) = HF_{(LT(I))}(s)$, and therefore, $HP_I(s) = HP_{(LT(I))}(s)$. This allows us to make the following definition:

Definition The **dimension** of an affine variety $V \subseteq k^n$, denoted dim *V*, is defined to be the degree of the Hilbert polynomial corresponding to the ideal I = I(V). That is,

 $\dim V \stackrel{\text{\tiny def}}{=} \deg HP_{\mathbf{I}(V)}$

Exercise 1 True or False: If $I \subseteq k[x_1, ..., x_n]$ is an ideal, then dim $V(I) = \deg HP_I$. (That is, can we compute the dimension of a variety *V* using any ideal defining *V*?)

Exercise 2 True or False: If $I \subseteq k[x_1, ..., x_n]$ is an ideal and k is algebraically closed, then dim $\mathbf{V}(I) = \deg HP_I$.

Proposition 1 If $I \subseteq k[x_1, ..., x_n]$ is an ideal, then the affine Hilbert polynomials of I and \sqrt{I} have the same degree. That is, deg $HP_I = \deg HP_{\sqrt{I}}$.

Exercise 3 Prove the Proposition in the case where *I* is a monomial ideal.

Exercise 4 Use the following fact (which you proved in your homework!) to show deg HP_I = deg $HP_{\sqrt{I}}$ for *any* ideal *I*.

Fact from HW: If I_1 and I_2 are two ideals and $I_1 \subseteq I_2$, then deg $HP_{I_2} \leq \deg HP_{I_1}$

UPSHOT: If *k* is algebraically closed, then we can compute the dimension of an affine variety using *any* defining ideal by finding the dimension of the largest coordinate subspace of V((LT(I))) (and this can be accomplished by computing the dimension of the largest coordinate subspace of C((LT(I))).)

Exercise 5 Compute the dimension of the affine variety defined by the ideal $I = \langle xz, xy - 1 \rangle \subseteq \mathbb{C}[x, y, z]$ using the approach described above.