Lesson 42 - The FINAL Lesson!

Recall the main theorem from last class...
Theorem If $I \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a monomial ideal with $\operatorname{dim}(\mathbf{V}(I))=d$, then for all s sufficiently large, $H F_{I}(s)$ is a polynomial of degree d in s.

Furthermore, we showed that the Hilbert function of any ol' ideal I satisfies $H F_{I}(s)=$ $H F_{\langle\mathrm{LT}(I)\rangle}(s)$, and therefore, $H P_{I}(s)=H P_{\langle\mathrm{LT}(I)\rangle}(s)$. This allows us to make the following definition:

Definition The dimension of an affine variety $V \subseteq k^{n}$, denoted $\operatorname{dim} V$, is defined to be the degree of the Hilbert polynomial corresponding to the ideal $I=\mathbf{I}(V)$. That is,

$$
\operatorname{dim} V \stackrel{\text { def }}{=} \operatorname{deg} H P_{\mathbf{I}(V)}
$$

Exercise 1 True or False: If $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal, then $\operatorname{dim} \mathbf{V}(I)=\operatorname{deg} H P_{I}$. (That is, can we compute the dimension of a variety V using any ideal defining V ?)

Exercise 2 True or False: If $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal and k is algebraically closed, then $\operatorname{dim} \mathbf{V}(I)=\operatorname{deg} H P_{I}$.

Proposition 1 If $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal, then the affine Hilbert polynomials of I and \sqrt{I} have the same degree. That is, $\operatorname{deg} H P_{I}=\operatorname{deg} H P_{\sqrt{I}}$.

Exercise 3 Prove the Proposition in the case where I is a monomial ideal.

Exercise 4 Use the following fact (which you proved in your homework!) to show deg $H P_{I}=$ $\operatorname{deg} H P_{\sqrt{I}}$ for any ideal I.

Fact from HW: If I_{1} and I_{2} are two ideals and $I_{1} \subseteq I_{2}$, then $\operatorname{deg} H P_{I_{2}} \leq \operatorname{deg} H P_{I_{1}}$

UPSHOT: If k is algebraically closed, then we can compute the dimension of an affine variety using any defining ideal by finding the dimension of the largest coordinate subspace of $\mathbf{V}(\langle\mathrm{LT}(I)\rangle)$ (and this can be accomplished by computing the dimension of the largest coordinate subspace of $C(\langle\operatorname{LT}(I)\rangle)$.)

Exercise 5 Compute the dimension of the affine variety defined by the ideal $I=\langle x z, x y-1\rangle \subseteq$ $\mathbb{C}[x, y, z]$ using the approach described above.

