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Goal

The aim of this series of questions is to introduce an extrinsic, category-
theoretic definition of a group. We will give some examples and explore
the idea of group objects in various categories.

Some category theory

This section is hopefully at least a little bit familiar, but essential to everything
that follows. The two things that we need to know about are terminal objects
and products.

Definition 1. Given a category C, a terminal object is an object 1 of C such
that, for any other object A of C, there is a unique arrow A — 1.

Question 1:

(a) Given a set X and any one-element set {+}, how many functions are there from X
to {*}?

(b) What is a terminal object in the category of sets and functions?

(c) What is a terminal object in the category of topological spaces and continuous
maps?
(d) What is a terminal object in the category of groups and group homomorphisms?

(e) What is a terminal object in the category of rings and ring homomorphisms? (Rings
have identity and ring homomorphisms preserve identity).

(f) Let X be a topological space with topology 7. Take the open sets of T as the objects
of a category, with an arrow U — V if and only if U < V. What is the terminal object
in this category?

In category theory, the basic objects are the objects and arrows, while in set
theory, the basic objects are the sets and their elements. Terminal objects give us


mailto:dfm223@cornell.edu

a bridge between these notions. In Sets, an arrow 1 — X picks out an element
of the set X. So in a general category C, the generalization of “elements” of an
object A are arrows 1 — A. Granted, this doesn’t always make sense (see part
(f) above), but it’s often useful nonetheless.

Question 2:Show that any two terminal objects are isomorphic. Specifically, if 1 and
1’ are both terminal objects, show that there are arrows f: 1 — 1" and g: 1" — 1 such
that go f = idy and fog = idy. This is what it means for two objects to be isomorphic
in a category.

Now that we have terminal objects under our belts, let’s move on to product
objects. This definition simultaneously generalizes the idea of the Cartesian
product of sets, the product of groups, and the intersection of open sets in a
topological space.

Definition 2. Given a category C, and two objects A and B, the product of A
and B is an object P, together with maps 74: P - Aand ng: P — B,

A= pP -5 B,

such that for any other object X with maps p4: X — Aand pp: X — B,
A X 2B

we get the following two things:

(a) existence: there is an arrow u: X — P such that py = 74 cuand pp =
TBoU;

(b) uniqueness: this arrow u: X — P is unique.

This is a very wordy definition that takes some getting used to. Let’s step
through it carefully in the category of sets. We hope that, in Sets, the categorical
product is the same as the Cartesian product.

Question 3:Let A and B be sets. We will prove that A x B = {(a,b) | a € A,b x B}
is the product of A and B in Sets.

(a) According to the definition of product, we also need functions 74: A x B — A
and tg: A x B — B. What are these functions? (Hint: the notation is suggestive.)



(b) To show that this is a product, we need to demonstrate that it satisfies the definition.
Given a set X with functions pa: X — Aand pp: X — B, we must find a map
u: X — A x Bsuchthat py = maouand pp = mp o u. Can you define u?

(c) We must also show that w is unique. Given that T4 ou = ps and tgou = pp,
conclude that the definition of u from part (b) is the only possible one.

Hopefully now that you have some idea of how products work, you shouldn’t
have any trouble finding products in similar categories.

Question 4:
(a) What is a product object in the category of groups and group homomorphisms?

(b) Let X be a topological space with topology 7. Take the open sets of T as the objects
of a category, with an arrow U — V if and only if U < V. What are product objects
in this category?

Here’s one more fun exercise to get used to terminal objects and products.

Question 5:Let C be a category with terminal object 1. Let X be an object of C. We
will prove that X x 1 is isomorphic to X.

(a) Because X x 1is the product of X and 1, it comes with two arrows. Describe them
by stating their domain and codomains.

(b) There is another object with arrows to both X and 1. What is it? What are the
arrows?

(c) Use the existence property of products to find a right-inverse u for the arrow
Tx: X x1— X.

(d) Now we want to show that v is a left-inverse to wx as well. To that end, name
one arrow f: X x 1 — X x 1so that the following diagram commutes, meaning that
mx o f =mx.
X x1
V I \
X — X x1——1
X

(e) There is another arrow X x 1 — X x 1 so that the above diagram commutes. What
is it? (Hint: it’s a composition of two other arrows)

(f) Use the uniqueness property of products to conclude that the two arrows from parts
(d) and (e) must be equal.



(g) Conclude that the arrow u from part (c) is a left-inverse to x: X x1 — X as
well as a right inverse.

(h) Conclude that w is an isomorphism, and X = X x 1.

What is a group?

You probably know what a group is. It's a set G with a binary operation -,
identity e, and inverses that satisfy some laws.

a-e =a =-¢€-a (Identity)
a-al=e=a't-a (Inverse)
(a-b)-c=a-(b-c) (Associativity)

However, everything is a lot more fun with category theory! We can write
the definition of a group in any category C, so long as there is a terminal object
1 and a product for every pair of objects.

Definition 3. A group is an object G in C together with three maps:

e:1—->G
i:G -G
m: G x G — QG.

Of these maps, e is supposed to be the identity, ¢ is supposed to be inverse,
and m multiplication. In order for our object to be a group, we also need
identity, inverse, and associativity laws. In category-land, these laws are in-
terpreted as requiring some diagrams to commute (what else?). The identity
and inverse laws appear on the next page; you will draw the diagram for the
associativity law in question 9]

Question 6:Let G be a group. This means that G is a group object in the category of
sets. Define the arrows e: 1 — G, m: G x G — G,and i: G — G.

Here’s the identity law in commutative-diagram form.

G—>1XG%GXG

|

idg

Gx1 m
idc;Xel
G xG i G




Question 7:

(a) Some of the arrows in the diagram for the identity law are unlabelled. What are
they?

(b) What does the label “idq x e” on the arrow G x 1 — G x G mean?

(c) If G is a group object in the category Sets, let g € G. What is the image of g under
the three paths around the diagram? Is this the same as the usual identity law?

This diagram shows the inverse law.

GxG+2 G -25ax%xG

|

idg xi 1 ixidg

|e

GxG—"5 G+ GxG

Question 8:
(@) What is the arrow labelled A?
(b) What does the label “idg x i” on the map G x G — G x G mean?

(c) If G is a group object in the category Sets, let g € G. What is the image of g under
the three paths around the diagram? (Start in the top middle). Is this the same as the
usual inverse law?

Question 9:

(@) Draw the diagram for the group associativity law. (Hint: G x (G x G) is isomorphic
to (G x G) x@G.)

(b) If G is a group object in Sets, what is the image of (g, h, k) € G x G x G under
the two paths around the diagram?




Some examples

I already revealed that a group object in Sets is an ordinary group, but what
are group objects in the category of groups? Or maybe the category of rings
or vector spaces? We could also talk about group objects in more abstract cat-
egories, such as the category of all small categories! (But let’s not get carried
away here.)

Question 10:Let Top be the category of topological spaces and continuous maps be-
tween them. What is an example of a group object in Top? Compared to group objects
in Sets, what extra condition is imposed on the multiplication and inversion maps?

Let Rings be the category whose objects are rings with identity and ar-
rows are ring homomorphisms preserving both the additive and multiplicative
identities.

Question 11:
(a) What is the terminal object 1 in this category?
(b) Given a ring R that is a group object, describe the arrows e, i and m.

(c) Describe all group objects in Rings. (Hint: notice that e: 1 — R must preserve
both 0 and 1. How are 0 and 1 related in the terminal object of Rings?)

Now for something a little weird: what is a group object in the category of
groups? We’ll work this out in the next question.

Question 12: In the category of groups, Groups, the objects are groups and the ar-
rows are group homomorphisms. This means that m: G x G — G is a homomorphism.

(a) What exactly does it mean for m to be a homomorphism? Given g = (g1, g2) and
h = (h1, ha) elements of G x G, compute m(gh).

(b) Show that the image of the identity map e: {1} — G is equal the identity of the
group G.

(c) Using parts (a) and (b), show that m(g,h) = g - h forall g,h € G. Here, - is the
group operation in G.

(d) Finally, show that m(g,h) = m(h,g)and g-h = h- g forall g,h € G.

(e) What are all the group objects in the category of groups?

We just showed that the group objects in the category of groups are abelian
groups! This is called the Eckmann-Hilton argument.



Group Homomorphisms

The first thing that you learn in abstract algebra after the definition of a group
is the definition of a group homomorphism. We can define these categorically
too!

Typically, a group homomorphism is a map ¢: G — H between groups
such that

?(9192) = ¢(91)P(92)-

From this, you can conclude that ¢(e¢) = ey and ¢(g7 ') = ¢(g) . But sadly,
to define an abstract group homomorphism between group objects, we need to
include these properties in our definition.

Definition 4. Given two group objects G and H in C, a group homomorphism

isanarrow ¢: G — H in C that preserves identity, inverses, and multiplication.

Of course, the meaning of “preserves” here is that some diagram commutes!
Saying that ¢ preserves inverses means that this diagram commutes:

G- H
o o
G— H

Question 13:Let G be a group object in the category of sets and let g € G. What is the
image of g under the two paths around the diagram (start in the top left). Is this the
usual statement that homomorphisms preserve inverses?

Saying that ¢ preserves identity means that this diagram commutes:

G — H

eGI /

¢
en

Question 14:Recall that the trivial object in the category of sets is any one-object set
{}. What is the image of = under the two paths around the diagram? Is this the same
as saying that a group homomorphism preserves identity?




Question 15:
(a) What diagram guarantees that ¢ preserves multiplication? Draw it!

(b) If G is a group object in the category of sets, let (g1,g2) € G x G. What is the
image of (g1, g2) under the two paths around the diagram?

Now that we have a mathematical structure of group objects and a notion
of arrows between them, we have a category!

Question 16:Given a category C, show that the collection of group objects in C, to-
gether with the group homomorphisms ¢: G — H between group objects, forms a cat-
egory. That is, show that composition of group homomorphisms is a homomorphism,
composition is associative, and there are identity homomorphisms.

Question 17:Let C be the category of group objects in the category of sets. We will
show that C is equivalent to the category Groups.

(a) Given an object in C, describe the corresponding object in Groups.
(b) Given an object in Groups, describe the corresponding object in C.

(c) Conclude that there is a bijection F': C — Groups between objects in C and objects
in Groups.

(d) Given two objects G, H in Groups and an arrow ¢: G — H in Groups, interpret
¢ as an abstract group homomorphism.

(e) Given two objects G, H in C and an arrow ¢: G — H in C, show that ¢ is just an
ordinary group homomorphism.

() Conclude that there is a bijection between Homc (G, H ) and Homgroups (F(G), F'(H)),

where Homp (A, B) is the set of arrows A — B in the category D. We also call this
bijection F. For any ¢: G — H in C, we have F(¢): F(G) — F(H) in Groups.

(g) Show that F respects composition. That is, if G, H, K € Cand ¢: G — H and
: H — K are arrows, show that F (i o ¢) = F (1) o F(¢).

(h) Conclude that C and Groups are equivalent categories.




