LIE ALGEBRAS AND THEIR ROOT SYSTEMS

DAVID MEHRLE

In the previous lecture, we classified all possible root systems by transforming them into Dynkin
diagrams, and found that there are four infinite families with exactly five exceptions. In this
lecture, we will see how Dynkin diagrams correspond bijectively with finite-dimensional simple
complex Lie algebras, and therefore the classification of Dynkin diagrams is actually a classification
of all such Lie algebras. As for why we should want to classify all such Lie algebras, there are
plenty of applications of Lie algebras to other fields of math and even to physics that make them
very interesting objects of study. A few reasons why Lie algebras are useful and interesting are
listed below.

e There are many physics applications, especially in quantum physics. For example, the
standard model of particle physics is encapsulated in the representations of the Lie group
SU(3) x SU(2) x U(1), and we can study these representations by studying representations
of the associated Lie algebras su(3), su(2), and u(1). For more about physics applications,
see [Ram10].

e The group of an elliptic curve E over C is isomorphic to a torus, C/A, which is a complex
Lie group. The Lie algebra associated to this Lie group is related to the differentials of the
curve, which are in turn useful in the study of E.

e A Lie group G has a Lie algebra g associated to it, which is defined as the tangent space
to G at the identity. By studying the Lie algebra, we are able to work with all the tools of
linear algebra to study the group.

It should be mentioned that Lie algebras and Lie groups, although closely related to geometry,
are not considered part of geometric group theory, which has a more discrete flavor to it. but it
is a nice application of root systems and Dynkin diagrams, which are closely related to geometric
group theory.

So what is a Lie algebra?

Definition 1. A Lie algebra £ is a vector space with a skew-symmetric bilinear map, called the
Lie bracket or commutator and written as |-, -]: £ x £ — £, which satisfies the Jacobi identity:

[:L’, [y7 Z” + [yv [va“ + [27 [Sli,y” =0 Vr,y,z € L.

Note that the Lie bracket of a Lie algebra need not be associative, and in fact, it will likely not
be. In this case, we call the algebra abelian.

Example 2. Some examples of Lie algebras:

2L1. Any vector space V is a Lie algebra, with bracket [u,v] = 0 for all u,v € V. This type of
algebra is called abelian.

2L2. For a field k of characteristic zero, we have the classical matriz algebras gl, (k) of n x n
matrices over k, sl (k) the subalgebra of gl,,(k) of those n x n matrices with determinant
one. There are also the algebras s0,(R) of n xn orthogonal real matrices, or su,(C) of nxn
unitary complex matrices. For each of these, the commutator is given by [X,Y] = XY -Y X.

2L3. For any Lie group G, the tangent space at the identity is a Lie algebra, usually denoted g.
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2l4. For any associative algebra A, we may define a Lie algebra £(A) over A by defining the Lie
bracket as [x,y] = xy — yz.

There are a few more definitions needed for this lecture.

Definition 3. An ideal I of a Lie algebra £ is a vector subspace of £ such that [i,x] € I for all
1€l andx € £. This is a two sided ideal by the skew-symmetric nature of the commutator. If a
Lie algebra has no nontrivial ideals, it is called simple.

FINDING THE ROOT SYSTEM OF A LIE ALGEBRA

We focus on finding a root system for a Lie algebra, since we understand the correspondence
between root systems and Dynkin diagrams, which was described in the previous lecture.

Let £ be a complex simple Lie algebra with vector-space basis {x1,...,2z,}. To know the Lie
algebra structure for £ given the basis, we need to know the structure constants: numbers f;;;, such
that

n
i ] = fijne -
k=1

The information of these structure constants is actually encoded entirely in the root system of the
Lie algebra, as we will see shortly. This will be much easier if as many of the structure constants as
possible are zero, so we will find a new basis for £. In this basis, we want [z;, ;] = 0 for as many
1,7 as possible, so we look for a Cartan subalgebra.

Definition 4. A Cartan subalgebra by for a Lie algebra £ is an abelian, diagonalizable subalgebra
which is maximal under set inclusion. The dimension of b is the rank of £.

It won’t matter which Cartan subalgebra we choose, because they will all be conjugate under
automorphisms of the Lie algebra, and so they have the same dimension. Thus, the rank is inde-
pendent of the choice of h, and so an invariant of £. Furthermore such an algebra will always exist,
at least for finite dimensional Lie algebras over C.

So let’s pick a Cartan subalgebra b for our Lie algebra £, and define a basis {H1, ..., H,} for h.
Because 0y is abelian, [H;, H;] = 0 for all 4,j. We will extend this basis for § to a basis of £, and
thereby obtain a basis which has much simpler and more convenient commutator relations. We
can analyze the commutator relations by looking at the linear operators [H;, -]. These are called
the adjoint operators of the H;, denoted adjy,. The adjoint operators form a representation of £
called the adjoint representation.

Fact 5. Pairwise commuting, diagonalizable linear operators share a common set of eigenvectors.

Fact 6. If Hy, Hy € b, then the linear operators adjy, and adjy, also commute, and are diagonal-
izable. So they share a common set of eigenvectors.

Proof. We only show that they commute. Using the Jacobi identity,
[Hh [HQvXH = _[H27 [X7 HlH - [Xa [H17H2H = _[HQv [Xv Hl]] - [Xv 0] = [HQ’ [HlﬂXH +0 U

By this fact, these operators adjy, have a set of common eigenvectors, and moreover, by the
spectral theorem we have a decomposition of £ into shared eigenspaces g, of the adjoint operators,

as
£=0h @ Ja

acd
where the labels o € ® C R" are the eigenvalues of adjy, on the eigenspace gq, in particular, a; is
the eigenvalue for adjy, on g. So for each E € g, [H;, E] = oy E. These « are called, suggestively,
the roots of £. It is also often helpful to think of the root « as belonging to the dual space h*, with
adjy, X = a(H;)X.
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Theorem 7. The set of roots ® forms a root system in R". Furthermore, each eigenspace go for
a € ¢ is one-dimensional.

Suppose that g, is the span of E,, for each o € ®. Then we may extend the basis { H1, ..., H,} for
h into a basis {Hy, ..., H,}JU{E,: o € ®} for £, that satisfies the commutator relations [H;, H;] = 0
and [H;, Eo] = a; E,. So it remains to figure out what [E,, Ej] is for o, f € ®. Let’s first consider
the case where 8 = —q. First, observe that for any H;,

[Hi? [Ea7E—a]] = _[ECH [E—av Hl“ - [E + —a, [Hi7EaH
= [Eom _aiE—a] - [_EOH aiEOé]
= —;[Ey, E_o]+ ai[Eq, E_o] =0

So [Eq, E_,] commutes with each of the H;, and therefore must be in h by maximality of the Cartan
subalgebra. Hence, we can conclude that [E,, E_o] = Y ;_, B;H; for some j;. By considering what
is called the Killing form of £, which essentially defines an inner product on the adjoint operators,
we may show the fact below, but we will not prove it here.

Fact 8. The coefficients of [Eq, E_o| as an element of b are given by the root vector a. In particular,

[Eo, B_q Zaz

So the only structure constants we don’t know are those for [E,, Eg| for f # —a. Once again,
we can heuristically determine what it may look like by considering the action of the adjoint
representation on it:

[Hiv [EOM Eﬁ“ = _[E57 [Hia Ea” - [Ea, [E,37 Hl]] = _[Eﬁ7 aiEoz] - [Eou _ﬂiEﬁ] = (ai + Bi)[Eav EB]

This shows that [E,, Eg] is an eigenvector of adjy , and so it should be proportional to Eqg, if
a+ [ is a root. The exact constant can be found explicitly again with the Killing form, but again,
we will only state it.

Fact 9. For the basis {H1,...,H,} U{Ey: o € ®} of £, the structure constants are

[H;, Hj] =0 Aaf) p

B, B-a Zaz o (B = { Pl Pars a+OED
[H’i7Ea] = Oél'Ea 0 a+ﬁ ¢ .

RECOVERING A LIE ALGEBRA FROM ITS ROOT SYSTEM

So how do we recover the Lie algebra given a root system ®? We use the commutator relations
from fact [J] Let A be the set of simple roots for ®. For each i € {1,...,|A|}, we have a basis
element H; for our Cartan subalgebra, and these satisfy [H;, H;| = 0. For each other o € ®, we
have E, such that [H;, Eq| = o;E, for all 4, and [Eq, E_o] = >.;_; a;H;, and finally, we demand
that [E,, Eg| satisfies the relation in fact |§| for all o, B € ®. This defines a basis for the Lie algebra,
and gives us the structure constants as well, so we can determine all of the commutator relations
between any elements. This shows how to retrieve a Lie algebra from its root system.
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