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1 Introduction

1 Introduction

Category theory has been around for about half a century now, invented in the
1940’s by Eilenberg and MacLane. Eilenberg was an algebraic topologist and
MacLane was an algebraist. They realized that they were doing the same calcu-
lations in different areas of mathematics, which led them to develop category
theory. Category theory is really about building bridges between different areas
of mathematics.

1.1 Definitions and examples

This is just about setting up the terminology. There will be no theorems in this
chapter.

Definition 1.1. A category C consists of

(i) a collection ob C of objects A, B, C, . . .

(ii) a collection mor C of morphisms f , g, h . . .

(iii) two operations, called domp´q and codp´q, from morphisms to objects.

We write A
f
ÝÑ B or f : A Ñ B for f P mor C and domp f q “ A and

codp f q “ B;

(iv) an operation A ÞÑ 1A from objects to morphisms, such that A
1A
ÝÑ A;

(v) an operation ˝ : p f , gq ÞÑ f ˝ g from pairs of morphisms (so long as we
have dom f “ cod g) to morphisms, such that domp f gq “ dompgq and
codp f gq “ codp f q.

These data must satisfy:

(vi) for all f : A Ñ B, f 1A “ 1B f “ f ;

(vii) composition is associative. If f g and gh are defined, then f pghq “ p f gqh.

Remark 1.2.

(a) We don’t require that ob C and mor C are sets.

(b) If they are sets, then we call C a small category.

(c) We can get away without talking about objects, since A ÞÑ 1A is a bijection
from ob C to the collection of morphisms f satisfying f g “ g and h f “ h
whenever teh composites are defined. Essentially, we can represent objects
by their identity arrows.

Example 1.3.

(a) The category Set whose objects are sets and whose arrows are functions.
Technically, we should specify the codomain for the functions because re-
ally the definition of a function doesn’t specify a codomain. So morphisms
are pairs p f , Bq, where B is the codomain of the function f .
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1 Introduction 1.1 Definitions and examples

(b) Gp is the category of groups and group homomorphisms;

(c) Ring is the category of rings and ring homomorphisms;

(d) R-Mod is the category of R-modules and R-module homomorphisms;

(e) Top is the category of topological spaces and continuous maps;

(f) Mf is the category of smooth manifolds and smooth maps;

(g) The homotopy category of topological spaces Htpy has the same objects
as Top, but the morphisms X Ñ Y are homotopy classes of continuous
maps;

(h) for any category C, we can turn the arrows around to make the opposite
category Cop.

Example (h) leads to the duality principle, which is a kind of “two for the
price of one” deal in category theory.

Theorem 1.4 (The Duality Principle). If φ is a valid statement about categories,
so is the statement φ˚ obtained by reversing all the morphisms.

Example (g) above gives rise to the following definition.

Definition 1.5. In general, an equivalence relation „ on the collection of all
morphisms of a category is called a congruence if

(i) f „ g ùñ dom f “ dom g and cod f “ cod g;

(ii) f „ g ùñ f h „ gh and k f „ kg whenever the composites are defined.

There’s a category C{ „ with the same objects as C but „-equivalence classes as
morphisms.

Example 1.6. Continued from Example 1.3.

(i) A category C with one object ˚ must have dom f “ cod f “ ˚ for all
f P mor C. So all composites are defined, and (if mor C is a set), mor C is
just a monoid (which is a semigroup with identity).

(j) In particular, a group can be considered as a small category with one
object, in which every morphism is an isomorphism.

(k) A groupoid is a category in which all morphisms are isomorphisms. For
a topological space X, the fundamental groupoid πpXq is the “basepoint-
less fundamental group;” the objects are points of X and the morphisms
x Ñ y are homotopy classes paths from x to y. (Homotopy classes are
required so that each path has an inverse).

(l) a category whose only morphisms are identites is called discrete. A
category in which, for any two objects A, B there is at most one morphism
A Ñ B is called preorder, i.e. it’s a collection of objects with a reflexive
and transitive relation. In particular, a partial order is a preorder in which
the only isomorphisms are identities.
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1 Introduction 1.1 Definitions and examples

(m) The category Rel has the same objects as Set, but the morphisms are
relations instead of functions. Precisely, a morphism A Ñ B is a triple
pA, R, Bqwhere R Ď AˆB. The composite pB, S, CqpA, R, Bq is pA, R ˝S, Cq
where

R ˝ S “ tpa, cq | Db P B s.t. pa, bq P R and pb, cq P Su.

Note that Set is a subcategory of Rel and Rel – Relop.

Let’s continue with the examples.

Example 1.7. Continued from Example 1.3.

(n) Let K be a field. The category MatK has natural numbers as objects. A
morphism n Ñ p is a p ˆ n matrix with entries in K. Composition is
just matrix multiplication. Note that, once again, MatK – Matop

k , via
transposition of matrices.

(o) An example from logic. Suppose you have some formal theory T. The
category DetT of derivations relative to T has formulae in the language
of T as objects, and morphisms φ Ñ ψ are derivations

φ

ψ

and composition is just concatenation. The identity 1φ is the one-line
derivation φ.

Definition 1.8. Let C and D be categories. A functor F : C Ñ D consists of

(i) an operation A ÞÑ FpAq from ob C to ob D;

(ii) an operation f ÞÑ Fp f q from mor C to mor D,

satisfying

(i) dom Fp f q “ Fpdom f q, cod Fp f q “ Fpcod f q for all f ;

(ii) Fp1Aq “ 1FpAq for all A;

(iii) and Fp f gq “ Fp f qFpgqwhenever f g is defined.

Let’s see some examples again.

Example 1.9. (a) The forgetful functor Gp Ñ Sets which sends a group to
its underlying set, and any group homomorphism to itself as a function.
Similarly, there’s one Ring Ñ Set, and Ring Ñ Ab, and Top Ñ Set

(b) There are lots of constructions in algebra and topology that turn out to
be functors. For example, the free group construction. Let FA denote
the free group on a set A. It comes equipped with an inclusion map
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1 Introduction 1.1 Definitions and examples

ηA : A Ñ FA, and any f : A Ñ G, where G is a group, extends uniquely to
a homomorphism FA Ñ G.

FA G

A

ηA
f

F is a functor from Set to Gp, and given g : A Ñ B, we define Fg to be the
unique homomorphism extending the composite A

g
ÝÑ B

ηB
ÝÑ FB.

(c) The abelianization of an arbitrary group G is the quotient G{G1 of G by
it’s derived subgroup G1 “ xxyx´1y´1 | x, y P Gy. This gives the largest
quotient of G which is abelian. If φ : G Ñ H is a homomorphism, then
it maps the derived subgroup of G to the derived subgroup of H, so the
abelianization is functorial Gp Ñ Ab.

(d) The powerset functor. For any set A, let PA denote the set of all subsets of
A. P is a functor Set Ñ Set; given f : A Ñ B, we define P f pA1q “ t f pxq |
x P A1u for A1 Ď A.

But we also make P into a functor P˚ : Set Ñ Setop (or Setop Ñ Set) by
setting P˚ f pB1q “ f´1pB1q for B1 Ď B.

This last example is what we call a contravariant functor.

Definition 1.10. A contravariant functor F : C Ñ D is a functor F : C Ñ Dop

(equivalently, Cop Ñ D). The term covariant functor is used sometimes to
make it clear that a functor is not contravariant.

Example 1.11. Continued from Example 1.9

(e) The dual space of a vector space over K defines a contravariant functor
k-Mod Ñ k-Mod. If α : V Ñ W is a linear map, then α˚ : W˚ Ñ V˚ is the
operation of composing linear maps W Ñ K with α.

(f) Let Cat denote the category of small categories and functors between
them. Then C ÞÑ Cop is covariant functor Cat Ñ Cat.

(g) If M and N are monoids, regarded as one-object categories, what is a
functor between them? It’s just a monoid homomorphism from M to N: it
preserves the identity element and composition. In particular, if M, N are
groups, then the functor is a group homomorphism. Hence, we may think
of Gp is a subcategory of Cat.

(h) Similarly, if P and Q are partially ordered sets, regarded as categories, a
functor P Ñ Q is just an order-preserving map.

(i) Let G be a group, regarded as a category. A functor F : G Ñ Sets picks out
a set as the image of the one object in G, and each morphism of G is an
isomorphism so gets mapped to a bijection of this set. So this is a group
action G

œ

FpGq. If we replace Sets by k-Vect for k a field, we get linear
representations of G.

Lecture 2 6 12 October 2015



1 Introduction 1.1 Definitions and examples

(j) In algebraic topology, there are many functors. For example, the fun-
damental group π1pX, xq defines a functor from Top˚ (the category of
pointed topological spaces, i.e., those with a distinguished basepoint) to
Gp. Similarly, homology groups are functors Hn : Top Ñ Ab (or more
commonly, Htpy Ñ Ab).

There’s another layer too. There are morphisms between functors, called
natural transformations.

Definition 1.12. Let C and D be categories and F, G : C Ñ D. A natural trans-
formation α : F Ñ G is an operation A ÞÑ αA from ob C to mor D, such that
dompαAq “ FpAq, codpαAq “ GpAq for all A, and the following diagram com-
mutes.

FA FB

GA GB

F f

αA αB

G f

Again, we should mention some examples of natural transformations.

Example 1.13. (a) There’s a natural transformation α : 1k-Mod Ñ ˚˚, where
˚ is the dual space functor. This is the statement that a vector space is
canonically isomorphic to it’s double dual. αV : V Ñ V˚˚ sends r P V
to the “evaluate at r” map V˚ Ñ k. If we restrict to finite-dimensional
spaces, then α becomes a natural isomorphism, i.e. an isomorphism in
the category rk-fgMod, k-fgMods, where rC, Ds denotes the category of
all functors C Ñ D with natural transformations as arrows.

Remark 1.14. Note that if α is a natural transformation, and each αA is an
isomorphism, then the inverses βA of the αA also form a natural transformation,
because

βB ˝ G f “ βB ˝ G f ˝ αA ˝ βA “ βB ˝ αB ˝ F f ˝ βA “ F f ˝ βA.

Example 1.15. Continued from Example 1.13

(b) Let F : Sets Ñ Gp be the free group functor, and let U : Gp Ñ Set be
the forgetful functor. The inclusion of generators ηA : A Ñ UFA is the
A-component of a natural transformation 1Set Ñ UF.

(c) For any set A, the mapping a ÞÑ tau is a function t´uA : A Ñ PpAq. We
see that t´u is a natural transformation 1Set Ñ P, since for any f : A Ñ B,
we have P f ptauq “ t f paqu.

(d) Suppose given two groups G, H and two homomorphisms f , f 1 : G Ñ

H. A natural transformation f Ñ f 1 is an element h P H such that
h f pgq “ f 1pgqh for all g P G, or equivalently, h f pgqh´1 “ f 1pgq. So such a
transformation exists if and only if f and f 1 are conjugate.

Lecture 3 7 14 October 2015



1 Introduction 1.1 Definitions and examples

(e) For any space X with a base point x, there’s a natural homomorphism
hpX,xq : π1pX, xq Ñ H1pXq called the Hurewicz homomorphism. This
is the pX, xq-component of the natural transformation h from π1 to the
composite

Top˚
U
ÝÑ Top

H1
ÝÝÑ Ab I

ÝÑ Gp,

where U is the forgetful functor and I is the inclusion.

It’s not often useful to say that functors are injective or surjective on objects.
Generally, a functor might output some object which is isomorphic to a bunch
of others, but might not actually be surjective – it could be surjective up to
isomorphism. This is is similar to the idea that equality is not useful when
comparing groups, but rather isomorphism.

Definition 1.16. Let F : C Ñ D be a functor. We say F is

(1) faithful if, given f , g P mor C, the three equations domp f q “ dompgq,
codp f q “ codpgq, and F f “ Fg imply f “ g;

(2) full if, given g : FA Ñ FB in D, there exists f : A Ñ B in C with F f “ g.

We say a subcategory C1 of C is full if the inclusion functor C1 Ñ C is full.

Example 1.17.

(a) Ab is a full subcategory of Gp;

(b) The category Lat of lattices (that is, posets with top element 1, bottom
element 0, binary joint _, binary meet ^) is a non-full subcategory of
Posets.

Likewise, equality of categories is a very rigid idea. Isomorphism of cate-
gories, as well, is a little bit too rigid. We might have several objects in a category
C which are isomorphic in C and all mapped to the same object in D – in this
case, we want to consider these categories somehow the same. If we require
isomorphism of categories, we cannot insist on even the number of objects being
the same. See Example 1.20 for a concrete realization of this.

Definition 1.18. Let C and D be categories. An equivalence of categories
between C and D is a pair of functors F : C Ñ D and G : D Ñ C together with
natural isomorphisms α : 1C Ñ GF, β : FG Ñ 1D.

The notation for this is C » D.

Definition 1.19. We say that a property of categories is a categorical property
if whenever C has property P and C » D, then D has P as well.

Example 1.20.

(a) Given an object B of a category C, we write C{B for the category whose

objects are morphisms A
f
ÝÑ B with codomain B, and whose morphisms
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1 Introduction 1.1 Definitions and examples

g : pA
f
ÝÑ Bq ÝÑ pA1

f 1
ÝÑ Bq are commutative triangles

A A1

B

g

f f 1

The category Sets{B is equivalent to the category SetsB of B-indexed

families of sets. In one direction, we send pA
f
ÝÑ Bq to p f´1pbq | b P Bq,

and in the other direction we send pCb | b P Bq to
ď

bPB

Cb ˆ tbu
π2
ÝÑ B.

Composing these two functors doesn’t get us back to where we started,
but it does give us something clearly isomorphic.

(b) Let 1{Set be the category of pointed sets pA, aq, and let Part be the subcat-
egory of Rel whose morphisms are partial functions, i.e. relations R such
that pa, bq P R and pa, b1q P R implies b “ b1.

Then 1{Set » Part: in one direction we send pA, aq to Aztau and f : pA, aq Ñ
pB, bq to

tpx, yq | x P A, y P B, f pxq “ y, y ‰ bu

In the other direction we send A to pAY tAu, Aq and a partial function
f ¨ A ã B (apparently that’s the notation for partial functions) to the
function f defined by

f paq “

$

’

’

&

’

’

%

f paq a P dom f

B a P Azdom f

B a “ A

(c) The category fdModk of finite dimensional vector spaces over k is equiva-
lent to fdModop

k by the dual functors

fdModk fdModop
k ,

˚

˚

and the natural isomorphism 1fdModk
Ñ ˚˚. This is an equivalence but

not an isomorphism of categories.

(d) The category fdModk is also equivalent to Matk: in one direction send an
object of n of Matk to kn, and a morphism A to the linear map with matrix
A relative to the standard basis. In the other direction, send a vector space
V to dim V and choose a basis for each V to send a linear transformation
θ : V Ñ W to the matrix representing θ with respect to the chosen bases.

The composite Matk Ñ fdModk Ñ Matk is the identity; the other compos-
ite is isomorphic to the identity via the isomorphisms sending the chosen
bases to the standard basis of kdim V .
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1 Introduction 1.1 Definitions and examples

There’s another notion slightly weaker than surjectivity of a functor. Some
call it “surjective up to isomorphism.”

Definition 1.21. We say a functor F : C Ñ D is essentially surjective if for
every object D of D, there exists an object C of C such that D – FpCq.

The next lemma somehow uses a more powerful version of the axiom of
choice and is beyond usual set theory.

Lemma 1.22. A functor F : C Ñ D is part of an equivalence between C and D if
and only if F is full, faithful, and essentially surjective.

Proof pùñq. Suppose given G : D Ñ C, α : 1C Ñ GF and β : FG Ñ 1D as in the
definition of equivalence of categories. Then B – FGB for all B, so F is clearly
essentially surjective.

Let’s prove faithfulness. Now suppose given f , g : A Ñ B P C such that
F f “ Fg. Then GF f “ GFg. Using the naturality of α, the following diagram
commutes:

GFA GFB

A B

GF f“GFg

f

αA αB (1)

Now

f “ α´1
B pGF f qαA

“ α´1
B pGFgqαA

“ g,

the last line by the naturality of α with g along the bottom arrow of (1) instead
of f . Therefore, f is faithful.

For fullness, suppose given g : FA Ñ FB in D. Define

f “ α´1
B ˝ pGgq ˝ αA : A Ñ GFA Ñ GFB Ñ B.

Observe that Gg “ αB ˝ f ˝ α´1
A . Similarly, the following square commutes:

GFA GFB

A B

GF f

αA

f
αB

by the naturality of α. Therefore, GF f “ αB ˝ f ˝ α´1
A as well. Hence,

GF f “ αB ˝ f ˝ α´1
A “ Gg.

Applying the argument for faithfulness of F to the functor G shows that G is
faithful. Therefore, GF f “ Gg implies that F f “ g. Hence, the functor F is full.
pðùq. We have to define the functor G : D Ñ C.
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For each object D of D, there is some C P ob C such that FC – D, because F
is essentially surjective. Define GD “ C for some choice of C, and also choose
an isomorphism βD : FGD Ñ D for each D. This defines G on objects.

To define G on morphisms, suppose we are given g : X Ñ Y in D. Since
F is full and faithful, there is a unique f : GX Ñ GY such that F f “ g. We
could define G in this way, but we won’t because we want β to be a natural
isomorphism. Instead, we define Gg : GX Ñ GY to be the unique morphism in
C whose image under F is

FGX
βX X

g
Y

β´1
Y FGY.

This definition guarantees that β is a natural isomorphism.
To check that G is a functor, we can apply faithfulness of F to assert that

Gpgq ˝ Gphq “ Gpghqwhenever gh is defined, since these two morphisms of C
have the same image under F. So G is a functor, and β is a natural isomorphism
FG Ñ 1D by construction.

To define αA : A Ñ GFA, take it to be the unique map in C such that FαA “

β´1
FA . This is an isomorphism since the unique morphism mapped to βFA is a

two-sided inverse for it. We just need to check that α is a natural transformation.
Given a (not necessarily commuting) square

A B

GFA GFB

f

αA αB

GF f

(2)

apply F to it to get the square

FA FB

FGFA FGFB

F f

FαA“β´1
FA FαB“β´1

FB
FGF f

which commutes by the naturality of β. In particular, this gives us the equality

FpαB ˝ f q “ FαB ˝ F f

“ β´1
FB ˝ F f

“ FGF f ˝ β´1
FA

“ FGF f ˝ FαA “ FpGF f ˝ αAq

Faithfulness of F then implies that αB ˝ f “ GF f ˝ αA, so in particular the square
(2) commutes. Hence, α is a natural transformation.

Definition 1.23.

(a) A category C is skeletal if for any isomorphism f in C, domp f q “ codp f q;
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(b) By a skeleton of a category C, we mean a full subcategory C1 containing
exactly one object from each isomorphism class of C.

Note that by Lemma 1.22, if C1 is a skeleton of C then the inclusion functor
C1 Ñ C is part of an equivalence.

Remark 1.24. More or less any statement you make about skeletons of small
categories is equivalent to the (set-theoretic) axiom of choice, including each of
the following statements:

(a) Every small category has a skeleton;

(b) Every small category is equivalent to any of it’s skeletons;

(c) Any two skeletons of a given small category are isomorphic.

How do we discuss morphisms within a category being surjective and
injective? The correct category-theoretic generalization of these notions are
epimorphism and monomorphism.

Definition 1.25. A morphism f : A Ñ B is a category C is

(a) a monomorphism, or monic, if, given any g, h : C Ñ A with f g “ f h, we
have g “ h;

(b) an epimorphism, or epic, if given any k, ` : B Ñ D with k f “ ` f , we have
k “ `.

We write f : A B to indicate that f is monic, and f : A B to indicate
that f is epic.

A category C is called balanced if every f P mor C which is both monic and
epic is an isomorphism.

Example 1.26.

(a) In Set, f is monic if and only if injective, and f is epic if and only if
surjective. Therefore, Set is a balanced category.

(b) In Gp, monomorphisms are injective and epimorphisms are surjective
(nontrivial to show that every epimorphism is surjective). So Gp is bal-
anced.

(c) In Rings, every monomorphism is injective, but not all epimorphisms are
surjective. For example, the inclusion map Z Q is both monic and
epic, but clearly not an isomorphism.

(d) In Top, monic and epic are equivalently injective and surjective. But Top
isn’t balanced.

(e) In a poset, every morphism is both monic and epic, so the only balanced
posets are discrete ones.
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2 The Yoneda Lemma

2 The Yoneda Lemma

Remark 2.1. It may seem odd that we’re devoting a whole few lectures to just
one lemma, but Yoneda’s Lemma is really much more. It’s an entire way of
thinking about category theory! In fact, it’s both much more and much less than
a lemma.

Remark 2.2. The Yoneda Lemma should probably not be attributed to Yoneda,
because he never wrote it down! It was discovered by many category theorists
in the early work on the subject, but who first wrote it down we don’t know. It’s
called the Yoneda lemma because Saunders MacLane attributed it to Yoneda in
his book, but the paper he cited doesn’t contain the lemma! In the next edition,
MacLane instead attributed it to private correspondence, which means Yoneda
told it to him once while they were waiting for a train.

Definition 2.3. We say a category C is locally small if, for any two objects A, B,
the morphisms A Ñ B in C form (are parameterized by) a set CpA, Bq, which is
sometimes written HomCpA, Bq.

Definition 2.4. Let C be a locally small category. Given A P ob C, we have a
functor CpA,´q : C Ñ Set sending B to CpA, Bq, and a morphism g : B Ñ C to
the pullback function g˚ : CpA, Bq Ñ CpA, Cq given by g˚p f q “ g f . This is func-
torial by associativity of composition in C. This is the covariant representable
functor.

Similarly we can make A ÞÑ CpA, Bq into a functor Cp´, Bq : Cop Ñ Set,
which is called the contravariant representable functor.

Lemma 2.5 (Yoneda Lemma). Let C be a locally small category, let A be an
object of C, and let F : C Ñ Set be a functor. Then

(i) there is a bijection between natural transformations CpA,´q Ñ F and
elements of FA; and

(ii) the bijection in (i) is natural in both F and A.

Remark 2.6. Note that we haven’t assumed that C is a small category! So the
content of Lemma 2.5 transcends set theory.

Proof of Lemma 2.5.

(i) We have to construct a bijection between the set FA and natural trans-
formations CpA,´q Ñ F. To that end, given any natural transformation
α : CpA,´q Ñ F, we define Φpαq “ αAp1Aq, which is an element of FA.

Conversely, given x P FA, we define Ψpxq : CpA,´q Ñ F by

ΨpxqB : CpA, Bq FB
f F f pxq
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2 The Yoneda Lemma

To verify that Ψpxq is genuinely a natural transformation, let g : B Ñ C be
a morphism in C, and then consider the diagram:

CpA, Bq CpA, Cq

FB FC

CpA,gq

ΨpxqB ΨpXqC
Fg

(3)

Let f P CpA, Bq. Then going around the diagram (3) clockwise,

ΨpxqCpCpA, gqp f qq “ ΨpxqCpg ˝ f q “ Fpg ˝ f qpxq

and going around (3) counterclockwise,

Fpgq ˝ pΨpxqBp f qq “ Fpgq ˝ Fp f qpxq “ Fpg ˝ f qpxq.

This verifies that Ψpxq is a natural transformation, for each x P FA.

We should check that Ψ and Φ are inverses. So:

ΦΨpxq “ Ψpxqp1Aq “ Fp1Aqpxq “ 1FApxq “ x.

ΨpΦpαqqBp f q “ Fp f qpΦpαqq

“ Fp f qpαAp1Aqq

“ αBpCpA, f qp1Aqq

“ αBp f ˝ 1Aq

“ αBp f q

for all B and f : A Ñ B, so ΨpΦpαqq “ α. Therefore, Φ and Ψ are inverse.

(ii) If C is small (so that rC, Sets is locally small) then we have two functors:

Cˆ rC, Sets Set
pA, Fq FA

Cˆ rC, Sets Set
pA, Fq rC, SetspCpA,´q, Fq

where rC, SetspCpA,´q, Fq is a confusing notation for the set of natural
transformations between CpA,´q and F. The assertion of (ii) is that Φ is a
natural isomorphism among these functors.

For naturality in A, suppose given f : A1 Ñ A. We want to show that the
following square commutes:

rC, SetspCpA1,´q, Fq rC, SetspCpA1,´q, Fq

FA1 FA

Θ

ΦA1 ΦA

F f

(4)
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2 The Yoneda Lemma

where Θpαq “ α ˝Cp f ,´q.

Suppose we are given α : CpA1,´q Ñ F. We will chase the image of α

around the diagram (4) in two different ways, and show they are equal.
Going counterclockwise,

F f pΦpαqq “ F f pαA1p1A1qq “ αAp f q

and going clockwise,

ΦpΘpαqq “ Φpα ˝Cp f ,´qq “ αApCp f ,´qAp1A1qq “ αAp f q

This verifies that Φ is natural in A.

To show that Φ is natural in F, suppose given a natural transformation
η : F Ñ G. We want to show that the following diagram commutes:

rC, SetspCpA,´q, Fq rC, SetspCpA,´q, Gq

FA GA

η˝´

ΦF ΦG

ηA

(5)

Once again, let α : CpA,´q Ñ F and chase the diagram (5) around coun-
terclockwise

ηApΦFpαqq “ ηApαAp1Aqq

and clockwise

ΦGpη ˝ αq “ pη ˝ αqAp1Aq “ ηApαAp1Aqq

to see that it commutes. Hence, Φ is natural in F as well.

Corollary 2.7. The functor Y : Cop Ñ rC, Sets given by A ÞÑ CpA,´q is full and
faithful. Hence, every locally small category is equivalent to a subcategory of a
functor category rC, Sets.

Proof. Note that for f : B Ñ A, Yp f q “ Cp f ,´q.
By Lemma 2.5(i), natural transformations CpA,´q Ñ CpB,´q correspond

bijectively to elements of CpB, Aq. But it’s not clear that this bijection comes
from the map Y; if it does, then Y is full and faithful. So we want to show
that Y is the inverse of Φ : rC, SetspCpA,´q, CpB,´qq Ñ CpB, Aq, where Φ is the
natural transformation as in Lemma 2.5

To that end, let α : CpA,´q Ñ CpB,´q be a natural transformation. Then

YpΦpαqq “ YpαAp1Aqq “ CpαAp1Aq,´q

is a natural transformation. Now for any g : A Ñ C,

YpΦpαqqCpgq “ CpαAp1Aq, Cqpgq “ g ˝ αAp1Aq. (6)
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2 The Yoneda Lemma

Because α is a natural transformation, the following square commutes.

CpA, Aq CpB, Aq

CpA, Cq CpB, Cq

αA

g˝´ g˝´

αC

Chasing this diagram starting with 1A in the top-left, we see that

g ˝ αAp1Aq “ αCpg ˝ 1Aq “ αCpgq

Therefore, substituting into (6), we have

YpΦpαqqCpgq “ g ˝ αAp1Aq “ αCpgq.

This holds for any C and any g : A Ñ C, so it follows that YpΦpαqq “ α, so Y is a
left-inverse to Φ.

Since Φ is a bijection, this means that Y is a right-inverse to Φ as well, and
therefore Y is also a bijection between CpB, Aq and natural transformations
CpA,´q Ñ CpB,´q.

Definition 2.8. We call this functor Y : Cop Ñ rC, Sets the Yoneda Embedding.

This is not unlike the Cayley representation theorem in group theory, which
says that every finite group is a subgroup of a symmetric group. In fact, the
Cayley representation theorem is just a special case of the Yoneda embedding!

Definition 2.9. We say a functor C Ñ Set is representable if it’s isomorphic to
CpA,´q for some A. By a representation of F : C Ñ Set, we mean a pair pA, xq
with x P FA such that Ψpxq is a natural isomorphism CpA,´q Ñ F. We also call
x a universal element of F.

Corollary 2.10 (Representations are unique up to unique isomorphism). If pA, xq
and pB, yq are both representations of F, then there’s a unique isomorphism
f : A Ñ B such that F f pxq “ y.

Proof. The composite CpB,´q
Ψpyq
ÝÝÝÑ F

Ψpxq´1

ÝÝÝÝÑ CpA,´q is an isomorphism, so
it’s of the form Cp f ,´q for a unique isomorphism f : A Ñ B by Corollary 2.7.
So the following diagram commutes.

CpB,´q CpA,´q

F

Cp f ,´q

Ψpyq Ψpxq

In particular, plug in B to this diagram

CpB, Bq CpA, Bq

FB

Cp f ,Bq

ΨpyqB ΨpxqB
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2 The Yoneda Lemma

and chase 1B P CpB, Bq around the diagram in two ways:

pΨpxqB ˝Cp f , Bqqp1Bq “ ΨpxqBp1B ˝ f q “ ΨpxqBp f q “ F f pxq

pΨpxqB ˝Cp f , Bqqp1Bq “ ΨpyqBp1Bq “ Fp1Bqpyq “ 1FBpyq “ y

Therefore, F f pxq “ y.

Often we will abuse terminology and talk about the representation of a
functor, but this is okay by Corollary 2.10, because any two representations are
uniquely isomorphic. Representable functors appear everywhere, as the next
example shows.

Example 2.11.

(a) The forgetful functor Gp Ñ Set is representable by pZ, 1q;

(b) The forgetful functor Ring Ñ Set is representable by pZrxs, xq;

(c) The forgetful functor Top Ñ Set is representable by pt˚u, ˚q.

(d) The contravariant power-set functor P˚ : Setop Ñ Set is representable by
pt0, 1u, t1, uq since there’s a natural bijection between subsets A1 Ď A and
functions χA : A Ñ t0, 1u.

(e) The dual-vector-space functor k-Modop
Ñ k-Mod, when composed with

the forgetful functor k-Mod Ñ Set, is representable by pk, 1kq.

(f) For a group G, the unique (up to representation) representable functor
G Ñ Set is the left-regular representation of G, that is, G acts on the set
G with left-multiplication. This is the Cayley representation theorem of
group theory. Note that the endomorphisms of this object of rG, Sets are
just the right multiplications h ÞÑ hk for some fixed k P G. So they form a
group isomorphic to Gop.

Definition 2.12. Given two objects A, B of a locally small category C, we can
form the functor Cp´, AqˆCp´, Bq : Cop Ñ Set. A representation of this functor
is a (categorical) product of A and B.

What does this look like? It consists of an object AˆB and two maps π1 : Aˆ
B Ñ A, and π2 : Aˆ B Ñ B such that, given any pair p f : C Ñ A, g : C Ñ Bq,
there’s a unique x f , gy : C Ñ Aˆ B such that π1x f , gy “ f and π2x f , gy “ g.

Definition 2.13. Given a parallel pair of maps A B,
f

g
the assignment

EpCq “ th : C Ñ A | f h “ ghu. defines a subfunctor E of Cp´, Aq. A represen-
tation of E , if it exists, is called an equalizer of f and g: it consists of an object
E and a morphism e : E Ñ A such that f e “ ge such that every h : C Ñ A with
f h “ gh factors uniquely through e.

E A B

C

e f

g

h
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2 The Yoneda Lemma

Remark 2.14. If e : E Ñ A is an equalizer of the two maps f , g : A Ñ B, then
it’s necessarily monic, since any morphism h : C Ñ A factors through e in at
most one way. In particular, given a, b : C Ñ E such that ea “ eb, we have that
ea factors through e in at most one way. One such way that it does factor is as
written: e ˝ a. Another such way is e ˝ b, but the way it factors must be unique
so it must be that a “ b.

E A B

C

e

f

g

a b

Definition 2.15. We call a monomorphism f : A B

(i) regular if it occurs as an equalizer;

(ii) split if there is g : B Ñ A with g f “ 1A.

Lemma 2.16.

(i) A split monomorphism is regular monic.

(ii) A morphism which is epic and regular monic is an isomorphism.

Proof. (i) Let f be split monic with left-inverse g. Claim that f is the equalizer
of f g and 1B. If g f “ 1A then f g f “ f 1A “ 1B f . And if h : C Ñ B satisfies
f gh “ 1Bh, then h factors through f via gh. If h “ f k is another such
factorization, then f gh “ h “ f k implies that k “ gh because f is monic,
so the factorization is unique. Hence f is an equalizer.

A B B

C

f f g

1B

h
gh

(ii) Suppose e : E Ñ A is epic and an equalizer of the maps f , g : A Ñ B. Then
e f “ eg, which means that f “ g because e is epic. We know that 1A is
another map such that f 1A “ g1A, so the map 1A factors through e as
ek “ 1A for some map k : A Ñ E. Therefore, e has a right-inverse and so is
split epic.

The dual of statement (i) shows that a split epimorphism is a regular epi-
morphism, so e is both monic and regular epic. The dual of the argument
in the previous paragraph then produces a left-inverse ` : A Ñ E such
that `e “ 1E, and moreover

` “ `1A “ `ek “ 1Ek “ k

so the inverses are equal. Hence, e is an isomorphism.

Definition 2.17. Let C be a category and let G be a collection of objects in C.
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2 The Yoneda Lemma

(a) We say G is a separating family if, whenever we have that f , g : A Ñ B in
C such that f h “ gh for all h : G Ñ A with G P G, then f “ g.

(b) We say G is a detecting family if given f : A Ñ B such that every mor-
phism h : G Ñ B with G P G factors uniquely through f , then f is an
isomorphism.

(c) If G “ tGu is a singleton, we call G a separator or detector for C, depend-
ing on which case we’re in.

Remark 2.18. Here is an equivalent definition of separating and detecting
families for a locally small category C. A family G is separating if and only if the
collection of functors tCpG,´q | G P Gu are jointly faithful and G is detecting if
and only if tCpG,´q | G P Gu jointly reflect isomorphisms.

Lemma 2.19.

(i) If C has equalizers, then every detecting family for C is separating.

(ii) If C is balanced (mono + epi ùñ iso), then every separating family is
detecting.

Proof.

(i) Suppose that G is a detecting family and we have maps f , g : A Ñ B such
that if f h “ gh for all h : G Ñ A for all G P G, then f “ g. Let e : E Ñ A be
an equalizer of f and g; then every h : G Ñ A with G P G factors uniquely
through e, so e is an isomorphism and therefore f “ g.

G

E A B

h

e f

g

(ii) Suppose G is a separating family and f : A Ñ B satisfying the hypotheses
of Definition 2.17(b). If k, ` : B Ñ C satisfy k f “ ` f , then kh “ `h for all
h : G Ñ B with G P G, so k “ `. Hence, f is epic.

Similarly, if p, q : D Ñ A satisfy f p “ f q, then for any n : G Ñ D we have
f pn “ f qn, so both pn and qn are factorizations of f pn through f , and
hence equal. Because G is a separating family, this means in turn that
p “ q. Hence, f is monic.

By the assumption that C is balanced, f is therefore an isomorphism.

Example 2.20.

(a) ob C is always both separating and detecting.

(b) If C is locally small, then tCpA,´q | A P ob Cu is both separating and
detecting for rC, Sets.
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2 The Yoneda Lemma

(c) Z is a separator and a detector for Gp. The functor that it represents is
the forgetful functor Gp Ñ Set, and that functor is faithful and respects
isomorphisms.

(d) In all sensible algebraic categories, the free object on one generator is both
separator and detector.

(e) t˚u is a separator, but not a detector, for Top. In fact, Top has no detecting
family since for any cardinal κ, we can find a set X and topologies τ1 Ĺ τ2
on X that agree on any subset of X with cardinality less than κ. Also Topop

has a detector, namely X “ tx, y, zuwith topology tX,H, tx, yuu.

Definition 2.21. We say an object P is projective in C if, whenever we’re given

P

A B

f
g

e

with e epic, then there is g : P Ñ A with eg “ f . Dually, P is injective if it’s
projective on Cop.

If the condition holds not for all epimorphisms e but for some class E of epis,
we say that P is E -projective. (For example, if E is the regular epimorphisms,
then P is regular-projective).

This definition generalizes the algebraic notion of projective objects.

Lemma 2.22. Representable functors are projective as elements of the functor
category. More precisely, for any locally small C, the functors CpA,´q are all
E -projective in rC, Sets, where E is the class of pointwise-surjective natural
transformations.

We can’t prove this for E the set of all epimorphisms of rC, Sets yet, because
we don’t know what epimorphisms are in this category. But it will turn out that
they’re exactly the pointwise-surjective natural transformations, so what we
prove below suffices.

Proof of Lemma 2.22. Use the Yoneda lemma. Given the diagram

CpA,´q

F G

α

β

let y P GA correspond to α. Then there is x P FA with βApxq “ y, and the
corresponding Ψpxq : CpA,´q Ñ F satisfies β ˝Ψpxq “ α.

Making the analogy with algebra, this says that the functors CpA,´q are
kind of like the free objects of rC, Sets (insofar as free objects are projective).
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3 Adjunctions

This theory was first developed by D.M. Kan in the paper Adjoint Functors
which appeared in TAMS in 1958. The real difficulty in formalizing the idea
that had been around for a few years was finding the right level of abstraction:
maximally useful but sufficiently general. The definition we give is the one that
Kan gave in that paper.

Definition 3.1. Let C and D be categories and F : C Ñ D, G : D Ñ C be two
functors. An adjunction between F and G is a natural bijection between mor-
phism FA Ñ B in D and morphisms A Ñ GB in C, for all A P ob C and
B P ob D.

If C and D are locally small, this is a natural isomorphism between the
functors DpFp´q,´q and Cp´, Gp´qq. These are both functors Cop ˆD Ñ Set.

Notice that the definition of adjunction has a definite direction: we say that
F is left-adjoint to G or that G is right-adjoint to F, and write F % G.

Example 3.2. Examples of Adjunctions

(a) The free group functor F : Set Ñ Gp is left-adjoint to the forgetful functor
U : Gp Ñ Set. For any set A and any group G, each function A Ñ UG
extends to a unique homomorphism FA Ñ G, and this correspondence is
natural.

(b) The forgetful functor U : Top Ñ Set has a left adjoint D, where DA is A
with the discrete topology. Any function A Ñ UX becomes continuous
as a map DA Ñ X. U also has a right adjoint I, which is IA “ A with
the indiscrete topology tA,Hu. Any map into an indiscrete space is
continuous, so any map UX Ñ A is continuous as a map X Ñ IA. So we
have adjunctions D % U % I.

(c) Consider the functor ob : Cat Ñ Set. This has a left adjoint given by the
discrete category functor D : Set Ñ Cat, where DA is the discrete category
with the objects same as elements of A; any mapping A Ñ ob C defines a
unique functor DA Ñ C. In particular, D % ob.

It also has a right adjoint I, which is the indiscrete functor. IA has objects
those elements of A with one morphism a Ñ b for each pa, bq P Aˆ A.
Again, a functor C Ñ IA is determined by its effect on objects. ob % I

D has a left adjoint the connected components functor π0, where π0C “
pob Cq{ „ is the smallest equivalence relation such that U „ V whenever
there exists f : U Ñ V in C. Any functor C Ñ DA is constant on each
„-equivalence class, but any function π0C Ñ A can occur.

(d) Let Idem be the category whose objects are pairs pA, eq, for some set A
and idempotent e : A Ñ A, e2 “ e. The morphisms f : pA, eq Ñ pA1, e1q in
this category are those functions satisfying e1 f “ f e.
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Let G : Idem Ñ Set be the functor sending pA, eq to ta P A | epaq “ au and
a morphism f to its restriction f |GpA,eq. Let F : Set Ñ Idem be the functor
sending A to pA, idAq.

Now F % G since any morphism FA Ñ pB, eq takes values in GpB, eq. And

furthermore, G % F since any morphism pA, eq
f
ÝÑ FB is determined by its

effect on GpA, eq, since f paq “ f pepaqq for all a P GpA, eq.

(e) For any C, there’s a unique functor C Ñ 1 (where 1 is the category with
one object and one morphism). A left adjoint for this specifies an object I
of C such that there’s a unique morphism I Ñ A for any A, i.e. an initial
object of C. Dually, a right adjoint to C Ñ 1 specifies a terminal object.

(f) Let A and B be sets and f : A Ñ B. Then we have order-preserving maps
P f : PA Ñ PB and P˚ f : PB Ñ PA and P f % P˚ f since P f pA1q Ď B1 if
and only if @x P A1, f pxq P B1 if and only if A Ď P˚ f pB1q.

(g) Suppose given two sets A, B and a relation R Ď Aˆ B. We define order-
reversing maps

L : PB Ñ PA by LpB1q “ ta P A | @b P B1, pa, bq P Ru

R : PA Ñ PB by RpB1q “ tb P B | @a P A1, pa, bq P Ru

For any subsets A1, B1 we have A1 Ď LpB1q ô A1 ˆ B1 Ď R ô B1 Ď RpA1q.

We say a pair pF, Gq of contravariant C Ø D are adjoint on the right if
F : C Ñ Dop % G : Dop Ñ C.

(h) The contravariant power-set functor P˚ is self-adjoint on the right, since
functions A Ñ PB correspond to subsets R Ď Aˆ B, and hence to func-
tions B Ñ PA.

Given a functor G : D Ñ C, we want to know if it possibly has a left adjoint.
To that end, we define a category pA Ó Gq called the comma category (because it
was originally written pA, Gqwith a comma instead of an arrow)

Definition 3.3. The comma/arrow category pA Ó Gq has objects all pairs pB, f q
with B P ob D and f : A Ñ GB. The morphisms pB, f q Ñ pB1, f 1q are morphisms
g : B Ñ B1 in D which make the diagram below commute.

A

GB GB1

f f 1

Gg

Theorem 3.4. Specifying a left-adjoint for G is equivalent to specifying an initial
object of pA Ó Gq for each A P ob C.
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Proof. pùñq Suppose F % G. For any A, FA
1FA
ÝÝÑ FA corresponds to a morphism

ηA : A Ñ GFA. I claim that pFA, ηAq is initial in pA Ó Gq. Given an object pB, f q
in pA Ó Gq, the assertion that

A

GFA GB

ηA f

Gg

commutes is equivalent to saying that

FA

FA B

1FA f

g

commutes, where f corresponds to f under the adjunction. So the unique
morphism pFA, ηAq Ñ pB, f q is f .

Last time we were in the middle of proving Theorem 3.4. We proved one
direction last time, so let’s start by finishing the proof.

Proof of Theorem 3.4, continued. pðùq. Suppose given an initial object pBA, ηAq

in pA Ó Gq, for each A. Define FA “ BA for all objects A of C. To define F on
morphisms, let f : A Ñ A1 in C. We define F f : FA Ñ FA1 to be the unique
morphism FA Ñ FA1 making the following commute.

A GFA

A1 GFA1

ηA

f GF f
ηA1

The uniqueness of this morphism comes from the fact that pFA, ηAq is initial.
This uniqueness ensures that F is functorial: if f 1 : A1 Ñ A2, then pF f qpF f 1q and
Fp f f 1q both fit into the same naturality square for η, and so by the uniqueness
of morphisms that fit into this square, they’re equal.

Furthermore, by construction, this makes η : 1 Ñ GF a natural transforma-
tion.

Given a morphism y : A Ñ GB, we know that there is a unique map x : FA Ñ
B such that the following commutes:

A GFA

GB

ηA

y Gx

In particular, this gives a bijection between morphisms x : FA Ñ B and mor-
phisms y : A Ñ GB sending x : FA Ñ B to Φpxq “ pGhqηA. To show this
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is natural in B, suppose given g : B Ñ B1. We want to show the following
commutes.

DpFA, Bq CpA, GBq

DpFA, Bq CpA, GBq

Φ

g˝´ Gg˝´

Φ

But this follows because for any h : FA Ñ B, we have

Φpghq “ GpghqηA “ pGgqpGhqηA “ pGgqΦphq.

Naturality in A follows from the fact that η is natural. More precisely, given
f : A1 Ñ A, we want to show that the following commutes

DpFA, Bq CpA, GBq

DpFA1, Bq CpA1, GBq

Φ

´˝F f ´˝ f

Φ

But this is true because for any h : FA Ñ B, we have

Φph ˝ F f q “ Gph ˝ F f q ˝ ηA “ Gphq ˝ GFp f q ˝ ηA “ Gphq ˝ ηA ˝ f “ Φphq ˝ f .

This way of thinking about adjoints turns out to be quite useful.

Corollary 3.5. If F and F1 are both left adjoints for G, then F is naturally isomor-
phic to F1.

Proof. Let ηA be the map A Ñ GFA that corresponds to idFA : FA Ñ FA, and
likewise let η1A be the map A Ñ GF1A that corresponds to idF1A : F1A Ñ F1A.
Then pFA, ηAq and pF1A, η1Aq are both initial in pA Ó Gq, which means that
they must be isomorphic as objects in this category. hence, there is a unique
isomorphism αA : pFA, ηAq Ñ pF1A, η1Aq that is natural in A: given f : A Ñ A1,
then there two ways around the naturality square

FA F1A

FA1 F1A1

αA

F f F1 f
αA1

are both morphisms pFA, ηAq Ñ pF1A1, GpαA1q ˝ ηA1 ˝ f q in pA Ó Gq, and this
morphism is unique because pFA, ηAq is initial.

Lemma 3.6. Given functors

C D E
F

G

H

K

with F % G and H % K, we have HF % GK.
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Proof. Given A P ob C, C P ob E, we have bijections EpHFA, Cq ÐÑ DpFA, KCq
and DpFA, KCq ÐÑ CpA, GKCq. Compose these bijections to get the result.

Corollary 3.7. Suppose given a commutative square of categories and functors

C D

E F

F

H G

K

in which all the functors have left adjoints. Then the diagram of left-adjoints
commutes up to natural isomorphism.

Proof. The two ways round it are both left-adjoint to GF “ KH by Lemma 3.6,
so they’re isomorphic by Corollary 3.5.

Example 3.8. A functor with a right adjoint preserves initial objects, if they exist.
If F : C Ñ D % G : D Ñ C, then the diagram below commutes.

D C

1

G

But a left adjoint for C Ñ 1 picks out an initial object of C by Example 3.2(e). So
F maps it to an initial object of D.

Theorem 3.9. Suppose given F : C Ñ D and G : D Ñ C. Specifying an adjunc-
tion F % G is equivalent to specifying two natural transformations η : 1C Ñ GF
and ε : FG Ñ 1D such that

F FGF

F

Fη

1F
εF and

G GFG

G

ηG

1G
Gε (7)

both commute. η and ε are called the unit and counit of the adjunction, and the
two diagrams in Equation 7 are called the triangular identities.

Proof. pùñq. Given F % G, with a natural bijection ΘA,B : DpFA, Bq Ñ CpA, GBq,
define

ηA “ ΘA,FAp1FAq and εB “ Θ´1
GB,Bp1GBq

We want to show that both η and ε are natural in A and B, respectively. Note
that the definition of ε is dual to η, so it suffices to check that η is natural and
the naturality of ε will follow dually.

To check the naturality of η, suppose given f : A Ñ A1. We want to show
that

A GFA

A1 GFA1

f

ηA

GF f
ηA1
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3 Adjunctions

commutes. We can use the naturality of Θ to show this. In particular, consider
the following diagram

DpFA, FAq CpA, GFAq

DpFA, FA1q CpA, GFA1q

F f˝´

ΘA,FA

GF f˝´
ΘA,FA1

which commutes by the naturality of Θ. Chase 1FA around the diagram starting
in the upper left to see that ΘA,FA1pF f q “ GFp f q.

1FA ΘA,FAp1FAq “ ηA

F f ˝ 1FA ΘA,FA1pF f q “ GFp f q ˝ ηA

(8)

Now what is ΘA,FA1pF f q? To answer this question, consider the diagram

DpFA, FA1q CpA, GFA1q

DpFA1, FA1q CpA1, GFA1q

ΘA,FA1

´˝F f
ΘA1 ,FA1

´˝ f

which again commutes by naturality of Θ. Now chase 1FA1 around this diagram,
starting in the lower left.

1FA1 ˝ F f ΘA,FA1pF f q “ ηA1 ˝ f

1FA1 ηA1 “ ΘA1,FA1p1FA1q

(9)

Therefore, combining (8) and (9), we get that ηA is natural, because

ηA1 ˝ f “ ΘA,FA1pF f q “ GF f ˝ ηA.

Finally, it remains to check the triangular identities. We can only check one
of them; the other follows dually. Let g : B Ñ B1 in D and let f : FA Ñ B. By
commutativity the following diagram (which follows again from naturality of
Θ)

DpFA, Bq CpA, GBq

DpFA, B1q CpA, GB1q

ΘA,B

g˝´ Gg˝´
ΘA,B1

we can conclude that Θpg ˝ f q “ Gg ˝Θp f q. In particular, for B “ FGA, f “ 1FA,
g “ εA : FGA Ñ A, we conclude one of the triangular identities.

1GB “ ΘpΘ´1p1GBqq “ ΘpεBq “ ΘpεB ˝ 1FGBq “ GεB ˝Θ1FGB “ GεB ˝ ηGB
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The other one follows dually.

pðùq. Conversely, suppose given η and ε satisfying the triangular identities.
We need to establish a natural bijection between maps FA Ñ B and A Ñ GB for
A P C, B P D. Given h : FA Ñ B, define φphq “ pGhqηA : A Ñ GFA Ñ GB, and
given k : A Ñ GB, define ψpkq “ εBpFkq : FA Ñ FGB Ñ B. These are natural in
both A and B (check this!) and they’re inverse to each other by the triangular
identities:

ψφphq “ εBpFφphqq “ εBpFGhqFηA “ hεFABFηA “ h,

and similarly for φ ˝ ψpkq.

Is every equivalence of categories C D,
F

G
with maps α : 1C

„
ÝÑ FG

and β : FG „
ÝÑ 1D an adjunction? The answer to this question is yes-and-no,

assuming certain conditions.

Lemma 3.10 (Every Equivalence is an adjoint equivalence). Suppose given F, G, α, β

as above. Then there exist isomorphisms α1 : 1C
„
ÝÑ GF, β1 : FG „

ÝÑ 1D satisfying
the triangular identities. In particular, F % G and G % F.

Proof. Define α1 “ α and let β1 be the composite

β1 : FG
FGβ
ÝÝÑ

´1
FGFG

pFαGq
´1

ÝÝÝÝÝÑ FG
β
ÝÑ 1D.

Note that

FGFG FG

FG 1D

FGβ

βFG β

β

commutes by the naturality of β, and β is monic, so FGβ “ βFG. Now

β1FFα “ F Fα
ÝÑ FGF

pFGβFq
´1“β´1

FGF
ÝÝÝÝÝÝÝÝÝÝÑ FGFGF

FαGF
ÝÝÝÑ FGF

βF
ÝÑ F

We can rewrite this by

F
β´1

F
ÝÝÑ FGF FGFα

ÝÝÝÑ FGFGF
pFαGFq

´1“pFGFαq´1

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ FGF
βF
ÝÑ F,

and so everything cancels! Therefore, β1FFα “ 1F.
To see the other way, Gβ1 ˝ α1G is the composite

Gβ1α1G “ G
αG
ÝÑ GFG

pGFGβq´1

ÝÝÝÝÝÝÑ GFGFG
pGFαGq

´1

ÝÝÝÝÝÝÑ GFG
Gβ
ÝÝÑ G

“ G
pGβq´1

ÝÝÝÝÑ GFG
αGFG
ÝÝÝÑ GFGFG

pαGFGq
´1

ÝÝÝÝÝÝÑ GFG
Gβ
ÝÝÑ G

“ 1G
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Lemma 3.11. Let G : D Ñ C be a functor having a left adjoint F, with counit
ε : FG Ñ 1D. Then

(i) G is faithful ðñ ε is (pointwise) epic. (We say “(pointwise) epic” because
it will turn out that arrows in a functor category are epic iff they are
pointwise epic. But we don’t know that yet).

(ii) G is full and faithful ðñ ε is an isomorphism.

Proof. (i) Let f : B Ñ B1 be a morphism in D. The composite f εB : FGB Ñ
B Ñ B1 corresponds under the adjunction to G f : GB Ñ GB1.

So εB is an epimorphism for all B ðñ for all B, B1, composition with εB
is an injection DpB, B1q Ñ DpFGB, B1q ðñ for all B, B1, application of G
is an injection DpB, B1q Ñ CpGB, GB1q ðñ G is faithful.

(ii) Similarly, G is full and faithful ðñ for all B, composition with εB is a bi-
jection DpB, B1q Ñ DpFGB, B1q. This clearly holds if εB is an isomorphism
for all B.

Conversely, if G is full and faithful, then 1FGB “ f εB for some f : B Ñ FGB.
By (i), we know that εB is epic and this shows that εB is split monic. Hence,
εB is an isomorphism.

Definition 3.12. (a) An adjunction pF % Gq is called a reflection if G is full
and faithful.

(b) We say that a full subcategory C1 Ď C is reflective if the inclusion C1 Ñ C
has a left adjoint.

This comes with a caveat, that this terminology isn’t fully standard. Some
people don’t require that a reflective subcategory is full, but I think it makes
more sense to talk about reflective subcategories when they correspond to the
reflections.

Example 3.13.

(a) Ab is reflective in Gp: the left adjoint to the inclusion sends G to it’s
abelianization G{G1.

(b) An abelian group is torsion if all of its elements have finite order. In any
abelian group A, the elements of finite order form a subgroup called the
torsion subgroup AT , and any homomorphism B Ñ A where B is torsion
takes values in AT . So A ÞÑ AT defines a coreflection from Ab to the full
subcategory AbT of torsion groups.

Similarly, A ÞÑ A{AT defines reflection to the subcategory of Ab that
consists of torsion-free groups.

Lecture 9 28 28 October 2015



4 Limits and Colimits

(c) There many examples of this in topology, and the most important of
these is the Stone-Čech compactification. Let KHaus Ď Top be the full
subcategory of compact Hausdorff spaces. The inclusion KHaus Ñ Top
has a left adjoint β, called the Stone-Čech compactification. Interestingly,
Stone and Čech gave different constructions of the compactification that
now has their name, and essentially the only way to show that these two
constructions are equal is to show that they are both left-adjoint to the
forgetful functor.

4 Limits and Colimits

To talk about limits, we need to formally define what a diagram is. We’ve been
drawing diagrams but we don’t quite yet know what they are.

Definition 4.1. Let J be a category (usually small, and often finite). A diagram
of shape J in C is a functor D : J Ñ C.

Example 4.2.

• If J “
‚ ‚

‚ ‚

, then a diagram of shape J is a commutative square in C.

• If J “
‚ ‚

‚ ‚

, then a diagram of shape J is a square in C that need not

commute.

Definition 4.3. Given D : J Ñ C, a cone over D consists of an object C P ob C
(the apex of the cone) together with morphisms λj : C Ñ Dpjq (the legs of the
cone) for each j P ob J such that

C

Dpiq Dpjq
λi

λj

Dpαq

commutes for all α : j Ñ j1 in J.

If we write ∆C for the constant diagram of shape J sending all j P ob J
to C and all α : j Ñ j1 to 1C, then a cone over D with apex C is a natural
transformation ∆C Ñ D. Then ∆ is a functor C Ñ rJ, Cs.

Definition 4.4.

(a) The category of cones over D is the arrow/comma category p∆ Ó Dq,
defined dually to Theorem 3.4.

(b) The category of cones under D is the arrow/comma category pD Ó ∆q, as
defined in Theorem 3.4.
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4 Limits and Colimits

Definition 4.5. By a limit for D : J Ñ C, we mean a terminal object of p∆ Ó Dq.
A colimit for D is an initial object of pD Ó ∆q.

We say that C has limits (resp. colimits) of shape J if ∆ : C Ñ rJ, Cs has a
right (resp. left) adjoint.

Example 4.6. (a) Suppose J “ H. Then there’s a unique D : H Ñ C, and
p∆ Ó Dq – C. So a limit (resp. colimit) for D is a terminal (resp. initial)
object of C.

In Set, 1 “ t˚u is terminal and H is initial. Similarly in Top. In Gp, the
trivial group t1u is both initial and terminal, and in Ring Z is initial.

(b) Let J be the discrete category with two objects. A diagram of shape J is a
pair of objects pA1, A2q, a limit for this is a product

A1 ˆ A2

A1 A2

π1 π2

and a colimit for J is a coproduct

A1 A2

A1 ` A2

i1 i2

In Set, Gp, Ring, Top, . . ., the product are cartesian products (with suitable
structure).

In Set and Top, corproducts are disjoint unions A1 \ A2.

In Gp, coproducts are free products G1 ˚ G2.

In Ab, finite coproducts coincide with finite products.

Last time we were talking about limits and colimits, and giving some exam-
ples. We saw the product of two objects, but we can also define the product of
many objects.

Definition 4.7.

(i) More generally, let J be any (small) discrete category. A diagram of shape
J is a J-indexed family of objects pAj | j P Jq. A limit for it is a product
ś

jPJ Aj equipped with projections πi :
ś

jPJ Aj Ñ Ai. Dually, a coproduct
ř

jPJ Aj with νi : Ai Ñ
ř

jPJ Aj.

(ii) Let J be the category ‚ Ñ ‚. A diagram of shape J is a parallel pair A
f

Ñ
g

B;

a cone over it looks like a diagram

x C

A B

λ1 λ2

f

g
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4 Limits and Colimits

satisfying f λ1 “ λ2 “ gλ1; equivalently, it’s C λ
ÝÑ A satisfying f λ “ gλ.

So a limit over J is an equalizer of f and g; dually a colimit over J is a
coequalizer.

(iii) Let J be the category
‚

‚ ‚

. A diagram of shape J looks like

A

B D

f
g

satisfying f h “ ` “ gk. A cone over it consists of C and the arrows as in
the diagram below

C A

B D

k `

h

Equivalently, this is a way of completing this diagram to a commutative
square

C A

B D

k

h

f
g

A limit for the diagram is called a pullback of the pair f , g.

(iv) Colimits of shape Jop are called pushouts; they can similarly be con-
structed from coproducts and coequalizers.

Example 4.8.

(i) Products / coproducts in Set are cartesian products / disjoint unions.
Likewise in Top. In algebraic categories like Gp, Ab, Ring, R-Mod, etc.
products are cartesian products but coproducts vary.

(ii) In Set, the equalizer of A
f

Ñ
g

B is the arrow A1 i
ÝÑ A where A1 is the set

A1 “ ta P A | f paq “ gpaqu and i is the inclusion. The coequalizer of this
pair is B

q
ÝÑ B{ „, where „ is the smallest equivalence relation on B under

which f paq „ gpaq, and q is the quotient map.

(iii) In Set (more generally, any category with binary products and equalizers)
we may construct it by first forming the product A ˆ B and then the
equalizer P Ñ Aˆ B of f πA : Aˆ B Ñ D and gπB : Aˆ B Ñ D.

(iv) Let J “ N with it’s usual total ordering. A diagram of shape J is just a
sequence

A0 Ñ A1 Ñ A2 Ñ A3 Ñ ¨ ¨ ¨
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4 Limits and Colimits

the direct limit of this diagram is confusingly a colimit which is an object
A8 and maps An Ñ A8 for all n that commute with all of the maps
Ai Ñ Ai`1, and A8 is initial among such objects.

A0 A1 A2 A3 ¨ ¨ ¨

A8

This is where the name limit comes from, because it looks like the limit of
this sequence.

Dually, a limit of shape Nop is called an inverse limit.

Theorem 4.9 (Freyd).

(i) Suppose C has equalizers and all small products. Then C has all small
limits.

(ii) Suppose C has equalizers and all finite products. Then C has all finite
limits.

(iii) Suppose C has pullbacks and a terminal object. Then C has all small limits.

Proof. The proofs of (i) and (ii) are identical; just replace all occurances of “small”
with “finite.” So we’ll do them simultaneously.

Let J be a small (resp. finite) category and let D : J Ñ C be a diagram. Form
the products

P “
ź

jPob J

Dpjq

and
Q “

ź

αPmor J

Dpcod αq.

Let f , g : P Ñ Q be the morphisms defined by

πα f “ πcod α : P Ñ Dpcod αq

παg “ Dpαqπdom α : P Ñ Dpdom αq Ñ Dpcod αq

and finally, let e : L Ñ P be the equalizer of f and g, and set λj “ πje : L Ñ Dpjq.
We claim that the λj form a limit cone over D.

To see that the λj form a cone over D, note that

Dpαqλdom α “ Dpαqπdom αe “ παge “ πα f e “ πcod αe “ λcod α

for all α.

Now given any cone
ˆ

C
µj
ÝÑ Dpjq | j P ob J

˙

, we get a unique µ : C Ñ P

satisfying πjµ “ µj for all j. And since the µj form a cone, we have πα f µ “ παgµ
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for all α, so f µ “ gµ. And µ factors uniquely as eν. Then ν is the unique
morphism of cones

ν :
ˆ

C
µj
ÝÑ Dpjq

ˇ

ˇ

ˇ

ˇ

j P ob j
˙

Ñ

ˆ

L
λj
ÝÑ Dpjq

ˇ

ˇ

ˇ

ˇ

j P ob J
˙

Finally, to prove (iii), we want to apply (ii). This means we have to construct
finite products and equalizers from the terminal object and pullbacks.

And given a terminal object 1 and pullbacks, we can form A ˆ B as the
pullback of A Ñ 1 Ð B. Note that we can construct

śn
i“1 Ai for any n ě 3 as

the iterated product of the Ai. Hence we have all finite products.
To form the equalizer of f , g : A Ñ B, consider the diagram

A

A Aˆ B

p1A , f q
p1A ,gq

A cone over it consists of A k
ÐÝ C h

ÝÑ A satisfying 1Ah “ 1Ak and f h “ gk, or
equivalently, a map h : C Ñ A satisfying f h “ gh. So the pullback for this is an
equalizer for p f , gq. Hence, we have all equalizers.

Definition 4.10. We say a category C is complete (or dually, cocomplete) if it
has all small limits (dually, small colimits).

Example 4.11. Set, Gp, Ab, Top are all both complete and cocomplete.

Definition 4.12. Let F : C Ñ D be a functor, J a diagram shape.

(a) We say that F preserves limits of shape J if, given D : J Ñ C and a limit
cone

ˆ

L
λj
ÝÑ Dpjq

ˇ

ˇ

ˇ

ˇ

j P ob J
˙

in C, there is also a limit cone
ˆ

FL
Fλj
ÝÝÑ FDpjq

ˇ

ˇ

ˇ

ˇ

j P ob J
˙

in D.

(b) We say that F reflects limits of shape J, if given D : J Ñ C and a cone
ˆ

L
λj
ÝÑ Dpjq

˙

such that
ˆ

FL
Fλj
ÝÝÑ FDpjq

ˇ

ˇ

ˇ

ˇ

j P ob J
˙

is a limit cone in D, the

original cone is a limit in C.

(c) We say that F creates limits of shape J if, given D : J Ñ D and a limit cone
ˆ

M
µj
ÝÑ FDpjq

ˇ

ˇ

ˇ

ˇ

j P J
˙

for FD, there is a cone
ˆ

L
λj
ÝÑ Dpjq

ˇ

ˇ

ˇ

ˇ

j P J
˙

whose image under F is iso-

morphic to
ˆ

M
µj
ÝÑ FDpjq

ˇ

ˇ

ˇ

ˇ

j P J
˙

, and any such cone is a limit for D.
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Remark 4.13. If F : C Ñ D creates limits of shape J, then it preserves and reflects
them provided limits of shape J exist in D.

Moreover, in any of the three statements of Theorem 4.9, there words “C has”
can be replaced by either “C has and F : C Ñ D preserves” or by “D has and
F : C Ñ D creates.”

Example 4.14.

(a) The forgetful functor U : Gp Ñ Set creates all small limits (in the strict
sense) but it doesn’t preserve colimits (e.g. coproduct of a pair of groups
is not the disjoint union as sets).

(b) The forgetful functor Top Ñ Set preserves all small limits and colim-
its. We need only look at (co)equalizers and (co)products to see this by
Theorem 4.9. This doesn’t reflect limits, since the (co)limit in Set can be
equipped with topologies other that that which makes it a (co)limit in
Top.

(c) The inclusion functor Ab Ñ Gp reflects binary coproducts, but it doesn’t
preserve them. The coproduct of two groups A and B is the free product
of groups, which is never abelian unless A or B is the trivial group 0, and

0 Ñ B 1
ÐÝ B is a coproduct cone in both categories.

Let’s say we want to construct limits in a functor category rC, Ds. It’s enough
to have limits of this shape in D.

Lemma 4.15. The forgetful functor rC, Ds Ñ Dob C creates all limits and colimits.
In particular, D has (co)limits of shape J then so does rC, Ds.

Proof. Given a diagram D : J Ñ rC, Ds, we can consider it as a curryed functor

Cˆ J Ñ D. Suppose we’re given, for each A P ob C, a limit cone
`

LA
λA,j
ÝÝÑ

pA, jq | j P ob J
˘

over the diagram DpA,´q : J Ñ D.

For each f : A Ñ B in C, the composites LA
λA,j
ÝÝÑ DpA, jq

Dp f ,jq
ÝÝÝÝÑ DpB, jq for

j P ob J form a cone over DpB,´q, since for any α : j Ñ j1, the square

DpA, jq DpB, jq

DpA, j1q DpB, j1q

Dp f ,1jq

Dp1A ,αq Dp1B ,αq

Dp f ,1j1 q

commutes as the image of the commutative square

pA, jq pB, jq

pA, j1q pB, j1q

p f ,1jq

p1A ,αq p1B ,αq

p f ,1j1 q
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under the functor Dp´,´q, viewed as a curryed functor.
So there’s a unique L f : LA Ñ LB making

LA DpA, jq

LB DpB, jq

λA,j

L f Dp f ,1jq

λB,j

Uniqueness ensures that f ÞÑ L f is functorial, and the λ´,j form natural trans-

formations L Ñ Dp´, jq. Hence,
`

L
λ´,j
ÝÝÑ Dp´, jq | j P ob J

˘

forms a cone over D.
We want to show that L is actually the limit cone.

To that end, suppose given any cone
`

C
µ´,j
ÝÝÑ Dp´, jq

ˇ

ˇ j P ob J
˘

, each
`

CA
µA,j
ÝÝÑ DpA, jq

ˇ

ˇ j P ob J
˘

factors uniquely as
ˆ

CA
νA
ÝÑ LA

λA,j
ÝÝÑ DpA, jq

ˇ

ˇ

ˇ

ˇ

j P ob j
˙

and any square

CA LA

CB LB

νA

C f L f
νB

since the two ways around the diagram are factorizations of the same cone over
DpB,´q.

So the λ´,j are a limit cone in rC, Ds.

Now we can finally fulfil the promise I gave earlier to prove that the monos
and epis in a functor category are precisely the pointwise monos and epis. This
follows from the following remark.

Remark 4.16. In any category, a morphism f : A Ñ B is monic if and only if the
diagram

A A

A B

1A

1A f
f

is a pullback. Hence, provided D has pullbacks (resp. pushouts), a morphism
α : F Ñ G in rC, Ds is monic (resp. epic) if and only if each αA : FA Ñ GA is
monic (resp. epic). This is because functors preserve this diagram in a category.

4.1 The Adjoint Functor Theorems

Now that we’ve seen how functors interact with limits, we can see how adjunc-
tions interact with limits.

Theorem 4.17 (RAPL: Right Adjoints Preserve Limits). If G : C Ñ D has a left
adjoint F : C Ñ D, then G preserves limits.
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We’ll give two proofs: a high-power conceptual one and an elementary one.

High Power proof of Theorem 4.17. Assume limits of shape J exist in both C and D.
Then composition with F and G induce functors F̊ pDq “ FD and G˚pDq “ GD,

rJ, Cs rJ, Ds
F̊

G˚
,

and it’s easy to see that F̊ % G˚.
The diagram

C D

rJ, Cs rJ, Ds

F

∆ ∆
F̊

commutes, so

rJ, Ds rJ, Cs

D C

G˚

limJ limJ

G

commutes up to isomorphism by Corollary 3.7.

Elementary proof of Theorem 4.17. Suppose given D : J Ñ D and a limit cone
`

L
λj
ÝÑ Dpjq | j P ob J

˘

. Given a cone
`

C
µj
ÝÑ GDpjq | j P ob J

˘

over GD in
C, the naturality of the bijection µ ÞÑ µ ensures that there is a cone over D,
`

FC
µj
ÝÑ Dpjq | j P ob J

˘

.

So there’s a unique FC ν
ÝÑ L such that λjν “ µj for all j, and then C ν

ÝÑ GL is
the unique morphism such that pFλjqν “ µj for all j.

The ‘Primeval Adjoint Functor Theorem’ asserts that the converse of Theo-
rem 4.17 is morally true modulo some stupid set theory issues. If G preserves
all limits, then it should have a left adjoint.

Lemma 4.18. Suppose D has, and G : D Ñ C preserves limits of shape J. Then
for any object A of C, the arrow/comma category pA Ó Gq has limits of shape J
and the forgetful functor U : pA Ó Gq Ñ D creates them.

Proof. Suppose given D : J Ñ pA Ó Gq and a limit cone
`

L
λj
ÝÑ UDpjq | j P ob J

˘

over UD. Then
`

GL
Gλj
ÝÝÑ GUDpjq | j P ob J

˘

is a limit for GUD. But if we write
Dpjq “ pUDpjq, f jq, the f j form a cone over GUD with apex A, and therefore
induce a unique map f : A Ñ GL such that

A GL

GUDpjq

f

f j
Gλj
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commutes for all j.

Hence,
`

pL, f q
λj
ÝÑ pUDpjq, f jq | j P ob J

˘

form a cone over D in pA Ó Gq.
The proof that this is a limit cone in pA Ó Gq is just like Lemma 4.15.

Lemma 4.19. Let A be a category. Specifying an initial object of A is equivalent
to specifying a limit for the diagram 1A : A Ñ A.

Proof. pñq. Let I be initial. The unique maps ιA : I Ñ A form a cone over
1A, since for any f : A Ñ B we have that f ιA “ ιB because the map I Ñ B
is unique. Given any other cone pµA : C Ñ A | A P ob Aq, the morphism
µI : C Ñ I satisfies ιAµI “ µA for all A, so µI is a factorization of the cone
pµA | A P ob Aq through pιA | A P ob Aq. And it’s the only one, because if ν is
any such factorization, then ν “ ιiν “ µI , so pιA | A P ob Aq is a limit cone.
pðq. Suppose given a limit cone pιA : I Ñ A | A P ob Aq for 1A. We know

that I is weakly initial in that there is a map I Ñ A for every object of A, but
not that these maps are unique. If f : I Ñ A is any morphism, then the diagram
below commutes:

I

I A

ιA

ιI f

In particular, ιAιI “ ιA for all A, so ιI is a factorization of the limit cone through
itself. Hence, ιI “ 1I , and hence f “ ιA for all f : I Ñ A. So I is initial.

Now combining Lemma 4.18 and Lemma 4.19 with Theorem 3.4, we’ve
proved the Primeval Adjoint Functor Theorem. However, there’s a catch. If
D has limits over all diagrams “as big as itself,” then it must be a preorder!
(Example sheet 2, question 6). There are also examples of applications of the
Primeval Adjoint Functor Theorem to ordered sets on the example sheet.

We desire a better version of the Adjoint Functor Theorem that are applicable
to all categories. To get other versions of this, we will cut down to small limits
and locally small categories.

Theorem 4.20 (General Adjoint Functor Theorem). Suppose D is complete and
locally small. Then G : D Ñ C has a left adjoint ðñ G preserves all small
limits and satisfies the solution set condition: for any A P ob C, there is a set of
morphisms t fi : A Ñ GBi | i P Iu such that every map f : A Ñ GB factors as

A
fi
ÝÑ GBi

Ggi
ÝÝÑ GB

for some gi : Bi Ñ B.

Proof. pñq. If G has a left-adjoint, then by RAPL (Theorem 4.17) it preserves
limits, and tA

ηA
ÝÑ GFAu is a singleton solution set for A P ob C, by Theorem 3.4.

pðq. By Lemma 4.18, the fact that G preserves all small limits indicates that
the arrow categories pA Ó Gq are complete, and they inherit the local smallness
from D. So we need to show that if A is complete and locally small, and has
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a weakly initial set of objects tBj | j P Ju, then it has an initial object. Then we
have an initial object in each pA Ó Gq, which is equivalent to specifying a left
adjoint to G by Theorem 3.4.

To this end, first form P “
ś

jPJ Bj; then there are morphisms πj : P Ñ Bj for
each j, so P is weakly initial. Now form the limit i : I Ñ P of the diagram

P P

whose edge are all the endomorphisms of P. Clearly, I is weakly initial: given
f , g : I Ñ A, we can form their equalizer e : E Ñ I and find a morphism
h : P Ñ E. Now ieh and 1P are both endomorphisms of P, so iehi “ i. But i is
monic (just like an ordinary equalizer) so ehi “ 1I . Hence e is split epic, and
f “ g. Therefore, I is initial.

P

E I A

h

e

i
f

g

Example 4.21.

(a) Consider the forgetful functor U : Gp Ñ Set. Gp is complete and locally
small, and U preserves all small limits. To obtain a solution set for U at
A, observe that any f : A Ñ UG factors as A Ñ UG1 Ñ UG, where G1 is
the subgroup of G generated by t f paq | a P Au, and the cardinality of G1 is
bounded by the max of ℵ0 and the cardinality of A.

Fix a set B of this cardinality, and consider all subsets B1 Ď B and all
possible group structures on B1, and all possible functions A Ñ B1. This is
the solution set for U.

Thereby, we say that U has a left adjoint, which is the free group functor.
But to get the cardinality bound on G1, we need to say something about
words in G1! And this is entirely useless to say anything about free groups.

(b) Here’s an example where the solution set condition fails. Consider the
forgetful functor U : CLat Ñ Set, where CLat is the category of complete
lattices with all joins and meets, and the morphisms are functions that
preserve all joins and meets. Just like Gp, CLat is locally small and
complete, and U preserves (indeed creates) all small limits.

But A.W. Hales (1965) shows that the solution set can fail when A is just a
three-element set! He proved that for any cardinal κ, there is a complete
lattice Lκ with cardpLκq ě κ which is generated by a 3-element subset.
Given any solution set, there is no cardinal bound on the set of lattices
that you need, and so the solution set condition for U fails at A “ ta, b, cu.

Therefore, there is no left adjoint.
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Definition 4.22. By a subobject of an object A in a category C, we mean a
monomorphism with codomain A, A1 m A. The subobjects of A form a

preorder SubCpAqwith pA1 m Aq ď pA2 m1 Aq if m factors through m1.

Definition 4.23. We say that C is well-powered if, for every A, SubCpAq is
equivalent to a partially ordered set.

Remark 4.24. An equivalent definition of well-poweredness is as follows: C is

well-powered if there exists a set tAi
mi A | i P Iu of subobjects of A such

that for each subobjects B
f

A of A there is i P I such that f factors through
mi.

B A

Ai

f

mi

Morally, this is taking one object for each isomorphism class of subobjects.

Example 4.25. Set is well-powered, since SubCpAq » PA, the power set of
A. Set is also well-copowered, since SubSetoppAq is equivalent to the poset of
equivalence relations on A.

Lemma 4.26. Suppose given a pullback square

A B

C D

h

k f
g

with f monic. Then k is also monic.

Proof. Suppose given `, m : E Ñ A with k` “ km, then gk` “ gkm, but gk “
f h, so f h` “ f hm, Since f is monic, then h` “ hm. Therefore, ` and m are
factorizations of the cone ph`, k`q through the limit. Hence, ` “ m. Therefore, k
is monic.

We’re now ready to prove the special adjoint functor theorem.

Theorem 4.27 (Special Adjoint Functor Theorem (SAFT)). Let C be locally small
and let D be locally small, complete, and well-powered, with a coseparating set
of objects. Then G : D Ñ C has a left adjoint if and only if G preserves all small
limits.

Proof. pùñq. is just the same as in the proof of Theorem 4.17.
pðùq. The converse is the interesting part. Let A P ob C. As in Theorem 4.20,

pA Ó Gq inherits completeness and local smallness from D. It also inherits
well-poweredness: the subobjects of pB, f q are just the subobjects B1 B in
D for which f factors through GB1 GB; see Remark 4.24. (Note that the
forgetful functor pA Ó Gq Ñ D preserves and reflects monos by Remark 4.16.)

Lecture 13 39 6 November 2015



4 Limits and Colimits 4.1 The Adjoint Functor Theorems

It also inherits a coseparating set: if S is a coseparating set for D, then
tpS, f q | S P S , f P CpA, GSqu is a coseparating set for pA Ó Gq. This is because,

given a parallel pair pB, hq
k

`
pB1, h1q in pA Ó Gq with k ‰ `, we can always

find m : B1 Ñ S with mk ‰ m`. Then m is also a morphism pB1, h1q Ñ pS, pGmqh1q
in pA Ó Gq.

GB1

A GS

Gmh1

So we’ve reduced the theorem to proving that if some category A (in our
case, the category pA Ó Gq) is locally small, complete, and well-powered, and
has a coseparating set, then A has an initial object.

To that end, let tSj | j P Ju be a coseparating set, and form P “
ś

jPJ Sj. Form
now the limit of the diagram

P1k1

P1k2
P

...

P1ki

whose edges are a representative set of subobjects of P. By an easy extension
of Lemma 4.26, the legs I Ñ P1k of the limit cone are monic, so the composite
I Ñ P1k P is also monic, and also a least element of SubApPq, that is, a least
subobject of P.

We claim that I is the initial object we seek. Let’s check uniqueness and
existence of these arrows from I Ñ A in A.

For uniqueness, suppose we had I
f

g
A in A; then the equalizer E I

of f and g is a subobject of P contained in I P, so E Ñ I is an isomorphism
and thus f “ g.

We now need the existence of I Ñ A for each A P ob A. This is the hard part.
Fix A P ob A. Form the product

Q “
ź

jPJ f : AÑSj

Sj

and let h : A Ñ Q be defined by πj, f h “ f . Since the Sj form a coseparating set,
h is monic. Let g : P Ñ Q be defined by πj, f g “ πj, and form the pullback

B A

P Q

`

m h
g
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Now m is monic by Lemma 4.26, so there’s a factorization

B

I P

n

and `n : I Ñ A is the desired map. So I has a map to each other object in A, and
is thus initial.

Example 4.28 (Stone-Čech Compactification). Consider the inclusion functor

from compact Hausdorff spaces to all topological spaces, KHaus I Top.
Both categories are locally small, and KHaus has and I preserves all small
products by Tychonoff’s Theorem. Similarly, KHaus has and I preserves all

equalizers, since the equalizer in Top of X
f

g
Y with Y Hausdorff is a closed

subspace of X.
Next, KHaus is well-powered, since the subobjects of X correspond (up to

isomorphism) to closed subsets of X. Finally, r0, 1s is a coseparator for KHaus,

by Urysohn’s Lemma: given X
f

g
Y with f ‰ g, we can choose x P X with

f pxq ‰ gpxq, and then find h : Y Ñ r0, 1s with h f pxq “ 0 and hgpxq “ 1, so
h f ‰ hg.

So I satisfies the conditions of SAFT (Theorem 4.27), so I has left-adjoint β.

Remark 4.29.

(a) Čech’s original construction of β is virtually identical to this. Given X, he
forms

P “
ź

f : XÑr0,1s

r0, 1s

and the map h : X Ñ P defined by π f h “ f . Then defines βX to be the
image of h, which has the appropriate universal property. But this is
the smallest subobject of the product of members of a coseparating set
for pX Ó Iq. It seems like the proof of Theorem 4.27 is modelled on this
construction.

(b) We could have constructed β using Theorem 4.20 to obtain a solution set
for I at X, because it’s enough to consider maps f : X Ñ Y with Y compact
Hausdorff where im f is dense in Y. If X has cardinality κ, then we can
show that Y has cardinality bounded by 22κ .

5 Monads

This is the last chapter of material that forms the core of the course. Suppose

we have an adjunction C
F

G
D. How much of this structure can we recover
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from C, F, G without ever mentioning D? We know T “ GF : C C, and
we also have the unit of the adjunction, which is a natural transformation
η : 1C GF “ T. We don’t know the counit ε because it lives in D, but we
do have the natural transformation µ “ GεF : TT “ GFGF GF “ T.

Of course, these data satisfy certain identities inherited from the triangular
identities from η and ε. In particular, the following diagrams commute; the one
of the left from the triangular identities and the one on the right by naturality of
ε.

T TT T

T

ηT

1T µ
Tη

1T

TTT TT

TT T

Tµ

µT µ

µ

(10)

We could also consider the dual notion, where we know D, F, G but not C. This
motivates the following definition.

Definition 5.1. By a monad in C, we mean a triple T “ pT, η, µq where T : C Ñ
C is a functor and η : 1C Ñ T, µ : TT Ñ T are natural transformations satisfying
the three commutative diagrams in (10).

Dually, a comonad R “ pR, ε, δq has ε : R Ñ 1C and δ : R Ñ RR satisfying
the diagrams dual to (10).

Remark 5.2. The name “monad” is a long time coming. Originally, people
referred to these things as just “the standard construction,” which is really an
admission of defeat in naming conventions. Later, they were called “triples,”
but that requires that comonads had the awkward name “co-triples.” MacLane
popularized the term monad, but there are still some people who insist on
calling them triples. Mostly these people live in Montreal.

Recall the definition of Monads from (10). Let’s number the three equations
for ease of reference as

(11) µ ˝ ηT “ 1T ;

(12) µ ˝ Tη “ 1T ;

(13) µ ˝ µT “ µ ˝ Tµ.

T TT

T

ηT

1T

µ (11)

TT T

T

µ

Tη

1T

(12)
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TTT TT

TT T

Tµ

µT µ

µ

(13)

Before we continue, let’s talk a little more about examples.

Example 5.3. (a) The monad T on C induced by an adjunction C
F

G
D,

F % G, has T “ GF, η is the unit of the adjunction, and µ “ GεF.

(b) Given a monad M, we can make A ÞÑ Mˆ A into a functor Mˆ´ : Set Ñ
Set. This functor has monad structure, with ηA : A Ñ Mˆ A defined by
ηApaq “ p1, aq, and µA : MˆMˆ A Ñ Mˆ A defined by µApm, m1, aq “
pmm1, aq.

(c) In any category C with binary products, given A P ob C, we can make
Aˆ´ into a functor C Ñ C, and it has a comonad structure given by
εB “ π2 : Aˆ B Ñ B and δB “ pπ1, π1, π2q : Aˆ B Ñ Aˆ Aˆ B.

Given Example 5.3(a), we might ask “Does every monad arise from an
adjunction?” The answer is yes. Eilenberg-Moore (1965) observed that Exam-

ple 5.3(b) arises from the adjunction Set
F

U
rM, Setswhere FA “ Mˆ A with

M action on the left-factor.

Definition 5.4. Let T “ pT, η, µq be a monad on C. A T-algebra is a pair pA, αq

where A P ob C and α : TA Ñ A satisfies

A TA

A

ηA

1A
α (14)

TTA TA

TA A

Tα

µA α

α

(15)

A homomorphism of T-algebras f : pA, αq Ñ pB, βq is a morphism f : A Ñ
B making the following diagram commute.

TA TB

A B

T f

α β

f

(16)

The category of T algebras and T-algebra homomorphisms is denoted CT.
This is called the Eilenberg-Moore category.
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Lemma 5.5. The forgetful functor CT Ñ C has left adjoint FT : C Ñ CT and the
adjunction induces the monad T.

Proof. We define FT A “ pTA, µAq and FTpA
f
ÝÑ Bq “ T f , which is an algebra

by Equation 11 and Equation 13.
Clearly GTFT “ T, and we have a natural transformation η : 1C Ñ GTFT.
We define ε : FTGT Ñ 1CT by εpA,αq “ α : TA Ñ A. This is a homomorphism

by Equation 15, and natural by Equation 16.
We just need to check the triangular identities now. The composite pGTεqpηGTq

is the identity by Equation 14. And ηFT ApF
TηAq “ µATηA “ 1TA by Equa-

tion 12.
Finally, the multiplication GTεFT of the induced monad is µ.

So this was the Eilenberg-Moore approach to Monads. Kleisli instead took

a minimalist approach. If C
F

G
D induces T, we may replace D by its full

subcategory D1 on objects of the form FA. So we may as well assume that F
is surjective on objects (up to equivalence, it may as well be bijective). Also,
morphisms FA Ñ FB in D correspond bijectively to morphisms A Ñ TB in C.
Kleisli’s idea was to take this as the definition.

Definition 5.6. Let T be a monad on C. The Kleisli Category CT of T has

ob CT “ ob C. Morphisms A
f
ÝÑB in CT are morphisms A

f
ÝÑ TB in C. The

identity AÑA in CT is A
ηA
ÝÑ TA. The composite A

f
ÝÑB

g
ÝÑC is A

f
ÝÑ TB

Tg
ÝÑ

TTC
µC
ÝÑ TC.

Remark 5.7. To avoid confusion, since ob C “ ob CT, morphisms in CT are
written in blue, while morphisms in C retain this lovely black color.

We should really verify that CT is a category, so consider the diagrams

A TB TTB

TB

f TηB

1TB
µB

TA TTB TB

A TB

T f µB

ηA

f

ηTB
1TB

Given A
f
ÝÑB

g
ÝÑC h

ÝÑD, consider the diagram

A TB TTC TC

TTTD TTD

TTD TD

f Tg µC

TTh Th
µTD

TµD µD

µD

The upper way round is hpg f q, and the lower way route is phgq f .
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Lemma 5.8. There exists an adjunction C
FT

GT

CT with FT % GT, inducing T.

Proof. We define FT A “ A and FTpA
f
ÝÑ Bq “ A

f
ÝÑ B

ηB
ÝÑ TB. Clearly, FT

preserves identities, and the diagram

A B TB

C TC TTC

TC

f ηB

g Tg
ηC

1TC

TηC

µC

shows that FTpg f q “ FTg˝FT f . (The composition is in CT, which is why it’s
blue.)

Define GT A “ TA and GTpA
f
ÝÑBq “ TA

T f
ÝÑ TTB

µB
ÝÑ TB. Again, this is

functorial: GTp1Aq “ 1TA by Equation 12, and given A
f
ÝÑB

g
ÝÑC, consider the

diagram

TA TTB TB

TTTC TTC

TTC TC

T f µB

TTg Tg
µTC

TµC µC

µC

which shows that GTg˝GT f “ GTpg f q.
Once again, we have GTFT “ T, and so η of T “ pT, η, µq is a natural

transformation 1C Ñ GTFT. This will be the unit of this adjunction. The counit
map FTGT AÑA is 1TA : TA Ñ TA. The fact that the counit map is natural is
left as an exercise.

Let’s check the triangular identities to show that this is actually an adjunction.
pGTεAqpηGT Aq is the composite

TA
ηTA
ÝÝÑ TTA

µA
ÝÝÑ TA

is equal to 1FT A. On the other hand, pεFT AqpFTηAq is the composite

A
ηA
ÝÑ TA

ηTA
ÝÝÑ TTA

FTA
ÝÝÑ TTA

µA
ÝÝÑ“ ηA “ 1FT A.

Finally, GTεFT A “ GTp1TAq “ µA, so the induced monad is T.

Last time we defined the Eilenberg-Moore and Kleisli categories for an
adjunction. We’ll see shortly that they’re the two extreme categories of this sort.
First, we’ll need a few definitions.
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Definition 5.9. Given a monad T on C, let AdjpTq be the category whose objects

are adjunctions
ˆ

C
F

G
D
˙

inducing T, and whose morphisms

ˆ

C
F

G
D
˙

˜

C
F1

G1
D1

¸

are functors H : D Ñ D1 satisfying HF “ F1 and G1H “ G.

Theorem 5.10. The Kleisli adjunction FT % GT is initial in AdjpTq and the
Eilenberg-Moore adjunction FT % GT is terminal.

Proof. We’ll do the case of Eilenberg-Moore first, because as always the Eilenberg-
Moore category is easier to work with.

Given C
F

G
D with F % G, we define the (Eilenberg-Moore) comparison

functor K : D Ñ CT by KB “ pGB, GεBq and KpB
g
ÝÑ B1q “ Gg (which is a

homomorphism of T-algebras by naturality of εq, where ε is the counit of the
adjunction F % G.

Note that GεB ˝ ηGB “ 1GB is one of the triangular identities for F % G, and

GεBGFGεB “ GεBµGB “ GεBGεFGB

by naturality of ε.
Clearly GTK “ G and

KFA “ pGFA, GεFAq “ pTA, µAq “ FT A.

So GTK agrees with FTon objects, and

KFpA
f
ÝÑ A1q “ GF f “ TF “ FT f ,

so it also agrees on arrows. Therefore, K is a morphism from pF % Gq to
pFT % GTq in AdjpTq.

Now suppose H : D Ñ CT is another such morphism. We want to show that
H “ K, to demonstrate that pFT % GTq is terminal. Then HB “ pGB, βBq for
some structure map βB : GFGB Ñ GB and Hg “ Gg. Moreover, we have that
βFA “ µA “ GεFA for all A P ob C.

Now consider the square

GFGFGB GFGB

GFGB GB

GFGεB

µGB βB

GεB

this commutes becasue GεB is a T-algebra homomorphism HpFGBq Ñ HB. But
this diagram would also commute with βB replaced with GεB on the right, and
the top edge is split epic by a triangular identity.
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So βB “ GεB, so therefore H “ K. Thus, FT % GT is terminal in AdjpTq.

We should now show that the Kleisli category CT is initial. To that end, we
define L : CT Ñ D by

LA “ FA

LpA
f
ÝÑBq “ FA

F f
ÝÑ FGFB εFB

ÝÝÑ FB

Note that L f is the morphism corresponding to f under the adjunction pF % Gq,
and so is always full and faithful. Moreover, LpηAq “ εFA, and FηA “ 1FA.

Now given A
f
ÝÑB

g
ÝÑC, consider

FA FGFB FGFGFC FGFC

FB FGFC FC

F f FGFg

εFB

FµC

εFGFC εFC

Fg εFC

This proves that Lp f gq “ pL f qpLgq.
We also see LFT A “ FA and

LFTpA
f
ÝÑ Bq “

FA FB FGFB

FB

F f FηB

1FB εFB

so LFT “ F.
Additionally, GLA “ GFA “ TA “ GT A and

GLpA
f
ÝÑBq “ GFA

GF f
GFGFB

GεFB GFB “ µBT f “ GT f

so L is a morphism of AdjpTq.
Finally, suppose that H : CT Ñ D is any morphism from pFT % GTq to

pF % Gq. We want to check that H “ L, that is, that pFT % GTq is initial.

Given this H, we know that HA “ FA for all A, and HpTA
1TA
ÝÝÑAq “

FGFA
εFA
ÝÝÑ FA. But for any A

f
ÝÑB, we have that f “ A

FT f
ÝÝÑTB 1TB

ÝÝÑB, so
Hp f q “ εFApF f q “ L f . This shows that H “ L, so the Kleisli category is
initial in AdjpTq.

This is really the last time that we’ll see the Kleisi category in action, mostly
because it’s a huge pain to work with. Even if C has nice properties, it’s not
always the case that CT has these properties. However, CT inherits coproducts
from C, since FT is bijective on objects and preserves colimits. In general, though,
it has few other limits or colimits. For example, the Kleisi category on GpT,
where T comes from the free % forgetful adjunction, is the category of all free
groups and homomorphisms between them. But the product of two free groups
need not be free, so it doesn’t have even binary products!

The Eilenberg-Moore category CT is much nicer to work with.
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Theorem 5.11. Let CT be the Eilenberg-Moore category for a monad T in C.

(i) The forgetful functor CT GT

ÝÝÑ C creates all limits which exist in C.

(ii) If T : C Ñ C preserves all colimits of shape J, then GT : CT Ñ C creates
them.

[Note: from now on we’ll write G “ GT]

Proof.

(i) Suppose given D : J Ñ CT and a limit cone
`

λj : L Ñ GDpjq | j P ob J
˘

for
GD in C. Write Dpjq “ pGDpjq, δjq, where δj is the T-algebra structure
map of GDpjq. Now the composites

TL
Tλj

TGDpjq
δj

GDpjq

form a cone over GD since the edges of GD are T-algebra homomor-
phisms. Therefore, these induce a unique λ : TL Ñ L such that λjν “

δjpTλjq for all j. Moreover, λ satisfies the equations for a T-algebra struc-
ture, since for example the associativity condition asserts the equality of
any two morphisms TTL L which are both factorizations of the limit
cone over GD.

So L has a unique T-algebra structure ν making all the λj into homomor-
phisms of T-algebras.

Finally, we should check that given any cone pβ j : pA, αq Ñ Dpjq | j P ob Jq
over D in CT, this factors through the limit cone corresponding to L. But
we know that there is a unique β : A Ñ L in C such that λjβ “ β j for all j.
Once again,

TA TL

A L

Tβ

α λ

β

So pλj : pL, λq Ñ Dpjq | j P ob Jq is a limit cone in CT.

(ii) Simialrly, if D : J Ñ CTand pλj : GDpjq Ñ L | j P ob Jq is a colimit for
GD in C, then pTλj : TGDpjq Ñ TL | j P ob Jq is also a colimit because T
preserves colimits, so the composites

TGDpjq
δj

GDpjq
λj
ÝÑ L

induce a unique λ : TL Ñ L. It’s a good exercise to check that λ is an
algebra structure using the fact that TTL is also a colimit, and the λj form
a colimit cone in CT.
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5.1 Monadicity Theorems

We saw that the Eilenberg-Moore category and the adjunction coming from
a monad was particularly nice to work with. We may want to know when
arbitrary adjunctions look like this particularly nice example.

Definition 5.12. Let C
F

G
D be an adjunction inducing a monad T on C. We

say that pF % Gq is monadic if the comparison functor K : D Ñ CT is part of an

equivalence of categories. We say D G C is monadic if it has a left adjoint
and the adjunction is monadic.

Today, our goal is to prove the monadicity theorem which characterizes these
adjunctions. The “Primeval Monadicity Theorem” asserts that the Eilenberg-
Moore adjunction is characterized up to equivalence by the fact that

FGFGB
εFGB

FGεB

FGB
εB B

is a coequalizer for every object B of D.
Before we state these theorems, let’s give the key lemma. This is at the heart

of every monadicity theorem, but it’s not often stated on it’s own. However, it it
quite useful by its own merit.

Lemma 5.13. Let C
F

G
D be an adjunction F % G inducing a monad T, and

suppose that for every T-algebra pA, αq, the pair

FGFA
Fα

εFA
FA

has a coequalizer. Then K : D Ñ CT has a left adjoint.

Proof. We will find a functor L : CT Ñ D such that L % K. Define LpA, αq to be
the coequalizer of

FGFA
Fα

εFA
FA LpA, αq.

Given a homomorphism f : pA, αq Ñ pA1, α1q, we have

FGFA FA LpA, αq

FGFA1 FA1 LpA1, α1q

Fα

εFA
FGF f F f L f

Fα1

εFA1

commutes. Uniqueness implies L is functorial.
Now, given B P ob D, morphisms LpA, αq Ñ B correspond bijectively to

morphisms f : FA Ñ B satisfying f pFαq “ f εFA. But morphisms f : FA Ñ B
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correspond bijectively to morphisms f : A Ñ GB satisfying f α “ G f . But we
can also write f in terms of f as f “ εB ˝ F f , so we see that

f α “ G f “ GpεB ˝ F f q “ GεB ˝ GFp f q.

This means that f is a T-algebra homomorphism f : pA, αq Ñ KB “ pGB, GεBq

in CT.
Check for yourself that this bijection is natural in pA, αq and in B as well, so

pL % Kq.

Definition 5.14.

(a) We say a parallel pair A
f

g
B is reflexive if there is some r : B Ñ A such

that f r “ gr “ 1B.

(b) By a split coequalizer diagram in C, we mean a diagram

A B C
f

g

t

h

s

satisfying h f “ hg, hs “ 1C, gt “ 1B and f t “ sh.

Note that the pair pFα, εFAq in the statement of Lemma 5.13 is reflexive, with
common splitting FηA. Note also that reflexive coequalizers (i.e. coequalizers
of reflexive pairs) are colimits of shape J, where

J “ • •
d

e

f

g

r

satisfying f r “ gr “ 1, r f “ d, rg “ e.

Noe that the equations of a split coequalizer imply that A
f

g
B h
ÝÑ C is

a coequalizer: given k : B Ñ D with k f “ kg, then k “ kgt “ k f t “ ksh, so k
factors through h and the factorization is unique since h is split epic.

Note also that any functor preserves split coequalizers – this is the property
of an absolute colimit.

Definition 5.15. Given G : D Ñ C, we say that a pair A
f

g
B in D is G-split

if there is a split coequalizer diagram

GA GB C
G f

Gg

t

h

s
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Note that the pair in the statement of Lemma 5.13 is G-split, since

GFGFA GFA A
GFα

GεFA

ηGFA

α

ηA

is a split coequalizer diagram.
Now we’re ready to give the Monadicity Theorems and prove them.

Theorem 5.16 (Precise Monadicity Theorem / Beck’s Theorem). A functor
G : D Ñ C is monadic if and only if

(i) G has a left adjoint;

(ii) G creates coequalizers of G-split pairs.

Proof. pùñq. Assume that G is monadic. Then by definition, G has a left adjoint
F, so it remains to show that G creates coequalizers of G-split pairs. Let T be
the monad induced by the adjunction F % G. To do this, it suffices to show
that GT creates coequalizers of GT-split pairs, since CT » D. So assume that
pA, αq pB, βq is a G-split pair, with a split coequalizer

A B C
f

g

t

h

s

in C. Then this split coequalizer is certainly preserved by T, since split co-
equalizers are preserved by any functor. Then by Theorem 5.11, GT creates the
coequalizer of this GT-split pair.
pðùq. Assume that G has a left adjoint F and G creates coequalizers of

G-split pairs. Let T be the monad induced by F % G. We want to show that
D » CT, that is, we have to construct a weak inverse L to the comparison
functor K.

To define the functor L, first note that for any T-algebra pA, αq, the parallel
pair

FGFA
Fα

εFA
FA

is G-split, because

GFGFA GFA A
GFα

GεFA

ηGFA

α

ηA

(17)

is a split coequalizer. Hence, Lemma 5.13 applies and there is a functor L : CT Ñ

D left adjoint to K.
To show that L and K form an equivalence of categories, we need to show

that KL „
ÝÑ 1CT and LK „

ÝÑ 1D.
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To see that KL „
ÝÑ 1CT , let pA, αq be any T-algebra. Then KLpA, αq “

pGLpA, αq, GεLpA,αqq, where LpA, αq is the coequalizer

FGFA
Fα

εFA
FA θ LpA, αq. (18)

Note that

GFGFA GFA GLpA, αq
GFα

GεFA

ηGFA

Gθ

is a coequalizer because G creates (and therefore preserves) limits. But (17) is
also a coequalizer, and therefore Gθ “ α and A – GLpA, αq. It remains to show
that α “ GεLpA,αq. To show this, it suffices to show that θ “ εLpA,αq, since Gθ “ α.
But we have that

θ ˝ Fα “ θ ˝ εFA by (18)

“ εLpA,αq ˝ FGθ naturality of ε

“ εLpA,αq ˝ Fpαq because α “ Gθ

Then composing both sides on the right with FηA, and using the fact that
α ˝ ηA “ 1A, we obtain that θ “ eLpA,αq. So KL „

ÝÑ 1CT .
To see that LK „

ÝÑ 1D, let B be an object of D. Then LKpBq “ LpGB, GεBq. We
know that

FGFGB
FGεB

εFGB
FGB LpGB, GεBq

is a coequalizer diagram. But there is another coequalizer, namely

FGFGB
FGεB

εFGB
FGB

εB B.

This is a coequalizer because FGεB, εFGB is a G-split pair by (17). Since both are
coequalizers, then B – LpGB, GεBq. So LK „

ÝÑ 1D.

Theorem 5.17 (Crude Monadicity Theorem). A functor G : D Ñ C is monadic if

(i) G has a left adjoint;

(ii) D has, and G preserves, reflexive coequalizers;

(iii) G reflects isomorphisms.

Proof. Assume (i), (ii), and (iii). This proof is very very similar to the pðùq
direction for Theorem 5.16. To show that G is monadic, we have to show that G
has a left adjoint F and moreover that CT » D, where T is the monad induced
by the adjunction F % G.
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First, we want to find a functor L : CT Ñ D that is a weak inverse to the
Eilenberg-Moore comparison functor K. By Lemma 5.13, it is enough to show
that each parallel pair

FGFA
Fα

εFA
FA (19)

has a coequalizer. This is true because the above pair is reflexive with splitting
FηA, and so there is a coequalizer by assumption (ii).

Hence, there is L : CT Ñ D such that LpA, αq is the coequalizer of (19). Now
we want to show that L is a weak inverse to K, meaning that KL – 1CT and
LK – 1D.

Let’s first show that KL – 1CT . For any T-algebra pA, αq, we have that
KLpA, αq “ pGLpA, αq, GεLpA,αqq. We want to show that GLpA, αq – A and
moreover that GεLpA,αq “ α. We know that both

GFGFA
GFα

GεFA

GFA α A

and

GFGFA
GFα

GεFA

GFA Gθ GLpA, αq

are coequalizer diagrams, the latter since G preserves the coequalizer LpA, αq of
the reflexive pair (19). Hence, Gθ “ α and GLpA, αq – A. So it remains to show
that GεLpA,αq “ α. It suffices to show that θ “ εLpA,αq. To that end,

θ ˝ Fα “ θ ˝ εFA θ is coequalizer map of (19)

“ εLpA,αq ˝ FGθ naturality of ε

“ εLpA,αq ˝ Fpαq because α “ Gθ

Then compose both sides on the right by FηA to get θ “ εLpA,αq.
Now let’s show that LK – 1D. For any object B of D, we have LKB “

LpGB, GεBq. This is the coequalizer of the parallel pair

FGFGB
GFεB

εFGB
FGB LpGB, GεBq.

We want to show that this is isomorphic to B. But the following is a (split)
coequalizer diagram

GFGFGB GFGB GB
GFGεB

GεFGB

ηGFGB

GεB

ηGB

and therefore (because G preserves reflexive coequzlizers) we have that GLpGB, GεBq –

GB. And G reflects isomorphisms, so LpGB, GεBq – B.
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Last time we proved the monadicity theorems in two versions, so let’s looks
at some examples so that we understand what monadic functors look like.

Example 5.18.

(a) The forgetful functors Gp Ñ Set, Ring Ñ Set, R-Mod Ñ Set, Lat Ñ Set
are all monadic. We can prove this using Lemma 5.19.

Note that if we allow infinitary algebraic structures (that is, given by maps
AI Ñ A for some infinite set I) the left adjoint needn’t exist (c.f. Exam-
ple 4.21(b)). Nevertheless, we can prove some things about monadicity
using the precise version of the theorem. If it does, then the forgetful
functor needn’t preserve reflexive coequalizers, but it can be shown to be
monadic using the precise version of the theorem.

Lemma 5.19. If A1 B1 C1
g1

f1

r1
h1 and A2 B2 C2

g2

f2

r2
h2 are re-

flexive coequalizer diagrams in Set, so is

A1 ˆ A2 B1 ˆ B2 C1 ˆ C2

g1ˆg2

f1ˆ f2

r1ˆr2

h1ˆh2 .

Proof. Let Si “ tp fipaq, gipaqq | a P Aiu Ď Bi ˆ Bi, and let Ri be the equivalence
relation generated by Si. This equivalence relations Ri is reflexive because the
coequalizers are reflexive. We need to show that R1 ˆ R2 is the equivalence
relation generated by S1ˆ S2. Note that pbi, b1iq P Ri if and only if there is a chain
pbi “ x1, x2, . . . , xn “ b1iqwith each pxj, xj`1q P Si Y Sop

i . Given two such chains
pb1 “ x1, . . . , xn “ b1iq and pb2 “ y1, . . . , ym “ b12q, we can link pb1, b2q to pb11, b12q
by the chain

pb1 “ x1, b2q, px2, b2q, . . . , pxn “ b11, b2 “ y1q, pb11, y2q, . . . , pb11, ym “ b12q

where each adjacent pair is in pS1 ˆ S2q Y pS
op
1 ˆ Sop

2 q.

Example 5.20 (Continued from Example 5.18).

(b) So given a reflexive coequalizer A
f

g
B h
ÝÑ C, where A, B have some

finitary algebraic structure and f , g are homomorphisms, then for any
n-ary operation α, we have

An Bn Cn

A B C

f n

gn
αA

hn

αB αC
f

g
h
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So C acquires a unique algebraic structure (e.g. group, ring, module, etc.)
making h into a homomorphism, and a coequalizer in the category of
these algebraic structures (e.g. Gp, Ring, R-Mod, etc.).

(c) Any reflection is monadic. This can be proved directly as in question 2 in
example sheet 3. But it can also be proved using Theorem 5.16. Suppose

D ãÑ C is a reflective (full) subcategory and let A
f

g
B be a parallel pair

in D with a split coequalizer

A B C
g

f

t

h

s

Then t is in D, and hence so is the idempotent f t “ sh : B Ñ B.

Now s is an equalizer of sh and 1B, so it (and hence also C and h) lives in
D (at least up to isomorphism).

(d) Consider the composite adjunction Set
F

U
Ab

L

I
tfAb, where tfAB

is the category of torsion-free abelian groups. This is not monadic, since
UILF – UF because the free abelian group is already torsion frree, and
the monad structure induced by LF % UI is the same as that induced by
F % U.

(e) Consider the forgetful functor U : Top Ñ Set. This has a left adjoint
given by the discrete space functor D that endows a set with the discrete
topology. (U also preserves all coequalizers, since it also has a right
adjoint). But UD “ 1Set, and the corresponding category of algebras is
Set.

(f) Consider the forgetful functor KHaus U
ÝÑ Set. This has a left-adjoint βD,

where β is the Stone-Čech compactification functor and D is as in the
previous example. This is monadic; first proved by E. Manes directly but
we’ll prove it using Theorem 5.16.

Suppose given X
f

g
Y in KHaus and a split coequalizer X Y Z

g

f
t

h

s

in Set. The quotient topology on Z (which makes h a coequalizer in Top is
compact, and it’s the only topology on Z that could possibly be Hausdorff
and make h continuous.

So we need to show that the quotient topology on Z is Hausdorff. Using
the result that if Y is compact Hausdorff, and R is an equivalence relation
on Y, then Y{R is Hausdorff ðñ R is closed in Y ˆ Y, we reduce the
problem to showing that the equivalence relation generated by p f , gq is
closed. Suppose py, y1q P R, then hpyq “ hpy1q so

f tpYq “ shpyq “ shpy1q “ f tpy1q.
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So py, y1q P R ùñ D px, x1q P X with f pxq “ f px1q and gpxq “ y, and
gpx1q “ y1. But because this is a split coequalizer, then the reverse is also
true.

Now S “ tpx, x1q P X ˆ X | f pxq “ f px1qu is closed in X ˆ X and hence
compact, and R is the image of S under gˆ g, and hence closed in YˆY.

Thus we have shown that the adjunction βD % U satisfies the conditions
of Theorem 5.16, so it is monadic.

(g) The contravariant powerset functor P˚ : Setop Ñ Set is monadic. This
can be proved using Theorem 5.17 (due to R. Paré). It has a left adjoint
P˚ : Set Ñ Setop (see Example 3.2(h)). It reflects isos, since if f : A Ñ B
is such that f´1 : PB Ñ PA is bijective, then f´1pim f q “ f´1pBq “ A
implies f is surjective, and there is B1 with f´1pB1q “ tau for all a P A,
which implies f is injective.

To see that this preserves split coequalizers in sets, we need another
lemma.

Lemma 5.21. Suppose

D A

B C

h

k f
g

is a pullback in Set. Then

PB PC

PD PA

Pg

P˚k P˚ f

Ph

commutes.

Exercise 5.22. Prove this lemma.

Example 5.23 (Continued from Example 5.18).

(h) So, given a coreflexive equalizer diagram C B Ah

g

f

r in Set,

we note that
C B

B A

h

h f
g

is a pullback since f k “ g` implies k “ r f k “ rg` “ `. Therefore,

PA PB PC
P˚ f

P˚g

Pg

P˚h

Ph
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satisfies P˚h ˝ Ph “ 1PC and P˚g ˝ Pg “ 1PB, since g and h are monic,
and Ph ˝ P˚h “ P˚ f ˝ Pg from the lemma. In particular, the left-to-right
morphisms are a coequalizer.

Definition 5.24. Suppose given an adjunction C
F

G
D where D has reflexive

coequalizers. We can form the monadic tower

pCTqS

D CT

C

L1

G

K

K1

L

F

where T is the monad induced by F % G, K is the comparison functor (see
Theorem 5.10) and L % K (see Lemma 5.13). S is the monad induced by L % K.

We say that F % G has monadic length n if we arrive at an equivalence of
categories after n steps.

Example 5.25. The adjunction Example 5.18(c) has monadic length 2, but the
adjunction Example 5.18(d) has monadic length8.

6 Filtered Colimits

Definition 6.1. We say a category J is filtered if every finite diagram in J has
a cocone (sometimes called a cone under the diagram). A filtered poset is
commonly called directed.

Lemma 6.2. J is filtered if and only if

(i) J is nonempty;

(ii) Given j, j1 P ob J, there is a diagram j Ñ j2 Ð j1;

(iii) Given j
α

β
j1 in J, there exists j1

γ
ÝÑ j2 with γα “ γβ.

Proof. pùñq. Each of the three conditions is a special case of having a cocone
under finite diagrams in J.
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pðùq. Given D : I Ñ J with I finite (assume I ‰ H), by repeated use of piiq
we can find j P ob J with morphisms Dpiq

αi
ÝÑ j for all i P ob I. The triangles

Dpiq j

Dpi1q

Dpγq

αi

α1i

don’t necessarily commute, but by repeated use of piiiq, we can find j
β
ÝÑ j1 such

that the arrows Dpiq
βαi
ÝÝÑ j1 form a cone under D.

Lemma 6.3. Suppose C has finite colimits and (small) filtered colimits. Then C
is cocomplete.

Proof. Since C has coequalizers, we need only construct coproducts
ř

iPI Ai. Let
Pf I be the poset of finite subsets of I, ordered by set-theoretic inclusion. This
is clearly directed. For I1 P Pf I, let AI1 be the coproduct

ř

iPI1 Ai; when I1 Ď I2,

we have that AI1
f
ÝÑ AI2 defined by f νi “ νi for all i P I1, and a colimit for

this diagram of shape Pf I given by the maps f : AI1 Ñ AI2 has the universal
property of

ř

iPI Ai.

Suppose now given a diagram D : I ˆ J Ñ C, where C has limits of shape
I and colimits of shape J. For each j P ob J, there is a diagram Dp´, jq : I Ñ C,
and so we can form limI Dp´, jq. Now we can use the fact that D is natural in
both i and j to form maps limI Dp´, jq Ñ limI Dp´, j1q:

limI Dp´, jq Dpi, jq Dpi1, jq

limI Dp´, j1q Dpi, j1q Dpi1, j1q

The limits themselves therefore form a diagram of shape J, so we can form
colimJ limI D,

limI Dp´, jq Dpi, jq Dpi1, jq

limI Dp´, j1q Dpi, j1q Dpi1, j1q

colimJ limI D limI colimJ D colimJ Dpi,´q colimJ Dpi1,´q

similarly, we can form limI colimJ D.
For all i the object colimJ Dpi,´q is the apex of a cocone under the diagram

consisting of the limI Dp´, jq. Therefore there is a morphism colimJ limI D Ñ
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colimJ Dpi,´q for each i, making colimJ limI D into a cone over the diagram of
the colimJ Dpi,´q. Hence, we get a canonical morphism

colimJ limI D Ñ limI colimJ D. (20)

We say that limits of shape I commute with colimits of shape J in C if this
morphism is always an isomorphism. Equivalently, if

colimJ : rJ, Cs Ñ C

preserves limits of shape I, or dually

lim
I

: rI, Cs Ñ C

preserves limits of shape J.
Note that in Example 5.18(a) we showed that reflexive coequalizers commute

with finite product in Set.

Theorem 6.4. Let J be a small category. Then colimJ commutes with all finite
limits in Set if and only if J is filtered.

Proof. pðùq. Let’s get the hard part of the theorem out of the way first. Given a
diagram D : J Ñ Set, its colimit is the quotient of

š

jPob J Dpjq by the smallest
equivalence relation identifying x P Dpjq with Dpαqpxq P Dpj1q for any α : j Ñ j1

in J. If J is filtered, then

(a) x P Dpjq is identified with x1 P Dpj1q if and only if there are maps α, β,

j α
ÝÑ j2

β
ÐÝ j1 such that Dpαqpxq “ Dpβqpx1q.

(b) Moreover if j “ j1, then we can take α “ β.

Now we will prove that the comparison map in (20) is surjective. Suppose given
x P limI colimJ D. Its images xi P colimJpDpi,´qq must come from elements
xij P Dpi, jq for some j, and using Lemma 6.2(ii), we may assume j is independent
of i. Now for α : i Ñ i1 in I, Dpα, jqpxijq and xi1 j needn’t be equal, but they have
the same image in colimJ Dpi1,´q, so they have the same image under Dpi1, βq

for some β : j Ñ j1 in J by condition (b), above. Doing this for each morphism
of I, we arrive at j Ñ j2 such that the images xi,j2 of xij under Dpi Ñ j2q
and Dpj Ñ j2q define an element xj2 P limI Dp´, j2q. The image of xj2 in
colimJ limI D maps to x P limI colimJ D, so the canonical map is surjective.

Now we need to show that the map in (20) is injective. Let y, z P colimJ limI D
have the same image in limI colimJ D. We therefore have elements yj, zj P

limI Dp´, jq for some j, mapping to y, z. Their images yi,j, zi,j in Dpi, jq needn’t
be equal, but they have the same image in colimJ Dpi,´q. So there are maps
j Ñ j1 mapping them to the same element of Dpi, j1q. Doing this for each i, we
obtain j Ñ j2 such that yij2 “ zij2 for all i. Hence, yj2 “ zj2 in limI Dp´, j2q. So
y “ z in colimJ limI D.

pùñq. Given D : I Ñ J, consider the functor E : Iop ˆ J Ñ Set defined by
Epi, jq “ JpDpiq, jq. We have colimJ Epi,´q “ 1 for all i, so limI colimJ E “ 1.
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Commutativity of limits with colimits says that colimJ limI E “ 1, so limI Ep´, jq
nonempty for some j. But an element of this limit is a cone under D with apex j.
Therefore, J is filtered.

Remark 6.5. Last time we proved the theorem about conditions under which
colimits and limits commute in Set. Here are a few remarks about that theorem.

(a) Limits always commute with limits: given D : I ˆ J Ñ C where C has lim-
its of shapes I and J, both limI limJ D and limJ limI D have the universal
property of limIˆJ D.

(b) Filtered colimits don’t commute with finite limits in Setop: consider the
following diagram of shape Nop ˆ 2:

¨ ¨ ¨ N N N

¨ ¨ ¨ 1 1 1

s s

where spnq “ n` 1. Applying limNop , we get a map H Ñ 1, so limNop

doesn’t preserve epimorphisms, and hence it doesn’t preserve pushouts.

(c) There is an infinitary version of Theorem 6.4, which we’ll state but not
prove. Given an infinite regular cardinal κ (cannot be written as the sum
of fewer than κ cardinals), we say a category I is κ-small if the cardinality
of mor I is less than κ. We say that J is κ-filtered if every κ-small diagram
in J has a cone under it. Then the methods of Theorem 6.4 can be used to
show that J is κ filtered if and only if colimits of shape J commute with all
κ-small limits in Set.

We can, however, extend Theorem 6.4 to finitary algebraic catgories (e.g.
groups, sets, rings, modules, lattices, etc.) more-or-less without difficulty.

Definition 6.6. A is a a finitary algebraic category if the ojects of A are sets
equipped with certain finitary operations on their elements that satisfy equa-
tions like associative laws or commutative laws, and the morphisms are homo-
morphisms commuting with these operations.

Corollary 6.7. Let A be a finitary algebraic category. Then

(i) The forgetful functor A Ñ Set creates filtered colimits.

(ii) Filtered colimits commute with finite limits in A.

Proof.

(i) Since filtered colimits commute with finite products in Set, (in particular
for the functor A ÞÑ An from Set Ñ Set), this follows as in Example 5.18(a),
where we showed that these functors create reflexive coequalizers.

(ii) The forgetful functor A Ñ Set preserves filtered colimits and finite limits,
and reflects isomorphisms. So this follows from Theorem 6.4.1

1also “ridiculously easy”
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Definition 6.8.

(a) We say a functor F : C Ñ D is finitary if it preserves filtered colimits.

(b) If C is locally small and has filtered colimits, an object A of C is called
finitely presentable if CpA,´q : C Ñ Sets is finitary.

Example 6.9. These examples justify the choice of the names “finitary” and
“finitely presentable.”

(a) A finitary functor F : Set Ñ D is determined by its restriction to the full
subcategory Setfin of finite sets, since we can write the set A as a directed
colimit (union) of its finite subsets, where the colimit is over the diagram
given by its finite subsets and inclusions between them.

More generally, if I : Setfin Ñ Set is the inclusion functor, then for any A
the arrow category pI Ó Aq has finite colimits since Set f has them and I

preserves them, and A is the colimit of pI Ó Aq U
ÝÑ Set f

I
ÝÑ Set.

So given any F : Setfin Ñ D where D has filtered colimits, we can extend
it to a functor rF : Set Ñ D by setting

rFpAq “ colim
´

pI Ó Aq U
ÝÑ Setfin

F
ÝÑ D

¯

,

that is, the colimit over the diagram FU. Of course, we should check that
this is actually a functor but that’s easy. Note that this does extend F, since
if A is finite then pI Ó Aq has a terminal object pA, 1Aq.

In fact, rF is the left Kan extension of F along the inclusion I (as in question
9 on example sheet 2), and F ÞÑ rF is itself a functor rSetfin, Ds Ñ rSet, Ds,
left adjoint to the restriction G ÞÑ G|Setfin .

In fact, one can show that the image of the functor F ÞÑ rF consists exactly
of the finitary functors Set Ñ D.

(b) Let A be a finitary algebraic category. We say an object A of A is finitely
presented (not the same as finitely-presentable) if if it’s a quotient of a
finitely generated free algebra Fn (where n “ t1, 2, . . . , nu) by a finite
number of relations s “ t where s and t are elements of Fn. For example,
group presentations.

Claim 6.10. A is finitely-presented if and only if it’s finitely presentable:

Proof. pùñq. Let A “ xG; Ry be finitely presented, and suppose given f : A Ñ
colimJ D, where J is filtered and D : J Ñ A. For each of the generators g1, . . . , gn,
f pgiq is the image of Dpjq Ñ colimJ D for some j. Since there are only finitely
many of these, we can choose some j such that all f pgiq are in the image of
Dpjq Ñ colimJ D. For each relation si “ ti, the elements which are the images
of si and ti in Dpjq become equal in the colimit colimJ D, and so are equal
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in Dpj1q for some map j Ñ j1. Doing this for each relation in R, we arrive
at j2 such that f factors through Dpj2q Ñ colimJ D. So the canonical map
colimJ ApA, Dp´qq Ñ ApA, colimJ Dq is surjective.

Now let’s prove injectivity. Given two homomorphisms f : A Ñ Dpjq and
g : A Ñ Dpj1q which become equal in the colimit, we can reduce to a pair

A
f 1

g1
Dpj2q, and by working with the generators in turn, we get j2 Ñ j3 such

that the two arrows A
f 1

g1
Dpj2q Ñ Dpj3q are equal. Hence, f , g represent the

same element of the colimit, and hence the canonical map is injective.
pðùq. Suppose A is finitely presentable. WE can find a presentation xG; Ry

for A, and consider the set of pairs pG1, R1qwhere G1 Ď G is finite, and R1 Ď R
is finite and all relations in R1 involve only elements of G1. Ordering these
by inclusion in each factor, we get a directed poset P and a functor P Ñ A
sending pG1, R1q to xG1; R1y, whose colimit is xG, Ry – A. So 1A : A Ñ A factors
through one of these finite presentations xG1, R1y, and A is retract of this finite
presentation. But any retract of a finitely presented algebra is finitely presented,
having a finite presentation

xG1; R1 Y tg “ epgq | g P G1uy,

where e is the idempotent endomorphism of xG1; R1y obtained from factoring
1A through xG1, R1y. So this means that A is finitely presented.

Last time we introduced finitary functors and finitary presentable objects.
The last thing we want to talk about in this chapter is finitary monads on
the category of sets, for which the categories of algebras are finitary algebraic
categories.

Lemma 6.11. Let T “ pT, η, µq be a monad on Set. Then the elements of Tn
correspond bijectively to natural transformations Gn Ñ G, where G : SetT Ñ

Set is the forgetful functor.

Proof. We can think of ω P Tn as a map 1 Ñ Tn, so it corresponds to a map
F1 Ñ Fn in SetT, where F1 represents G : SetT Ñ Set, and Fn represents Gn.
So the result follows from Yoneda.

Explicitly, ω corresponds to the natural transformation defined by

ωpA,αqpa1, . . . , anq “ αpTapωqq (21)

where a : n Ñ A is the map i ÞÑ ai.

Definition 6.12. A monad T “ pT, η, µq is finitary if T is finitary, that is, pre-
serves filtered colimits.

Theorem 6.13. Finitary algebraic categories are, up to equivalence, exactly the
categories of finitary monads on Set.
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We won’t go through the full proof of this theorem because it’s very very
boring, so instead we’ll just sketch.

Proof Sketch. If A is a finitary algebraic category, we saw in Example 5.18(a) that
G : A Ñ Set is monadic. Also, we saw in Corollary 6.7(i) that G is finitary; hence
so is T “ GF since F preserves all colimits.

Conversely, let T “ pT, η, µq be a finitary monad. We know that for any A,
we have TA “

Ť

tTA1 | A1 P Pf Au, where Pf A is the poset of finite subsets
of A. Essentially, knowing what T does on finite sets is enough to know it
everywhere.

We define a presentation for T-algebras by operations and equations by tak-
ing an n-ary operation ω for each ω P Tn, where n is the finite set corresponding
to some integer n ě 0. Satisfying the two equations

ωApa1, . . . , anq “ ai if ω “ ηnpiq P Tn

ωA “ An pψp1qA ,...,ψpmqAq
ÝÝÝÝÝÝÝÝÝÝÝÑ Am χA

ÝÝÑ A if ω “ µnpxqwhere x P TTn

satisfies x “ Tψpχq, where

χ P Tm and ψ : m Ñ Tn

We can show (although it’s very tedious to do so and we will avoid it)

(a) if the ωA are obtained as in Lemma 6.11 from a T-algebra structure
α : TA Ñ A, then they satisfy these equations;

(b) if A is equipped with operations satisfying these equations, then using
(21) to define α yields a T-algebra structure;

(c) a function : A Ñ B between underlying sets of algebras commutes with
the T-algebra structures if and only if it commutes with all the ω’s.

In particular, we know that T-algebras satisfying these equations are the
same as algebras in (objects of) A.

7 Abelian and Additive Categories

Abelian and Additive categories are those categories whose hom-sets are not
only sets, but also abelian groups. This is a special case of enriched categories.

Definition 7.1. Let E be a category equipped with a “forgetful” functor U : E Ñ
Set. We say a locally small category C is enriched over E if the functor

Cp´,´q : Cop ˆC Set
pA, Bq CpA, Bq

factors through U.
We’re interested in three particular cases: we say C is

(a) a pointed category if it’s enriched over the category Set˚ of pointed sets;
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(b) semi-additive if it’s enriched over the category CMon of commutative
monoids;

(c) additive if it’s enriched over the category Ab of abelian groups.

Thus, in a pointed category C, we have a distinguished element 0 P CpA, Bq
satisfying f ˝ 0 “ 0 “ 0 ˝ g whenever the composites are defined. In a semi-
additive category, we also have a binary operation ` on CpA, Bq which is
associative and commutative, has 0 as a unit element, and satisfies f pg` hq “
f g ` f h and gph ` kq “ gh ` gk whenever the composites f g, f h, f h, gk are
defined. In an additive category, this binary operation has inverses ´ f such
that f `´ f “ 0.

Remark 7.2 (Warning!). This is not totally standard terminology. Some au-
thors use “semi-additive” for what we’ve called additive, and “additive” for a
category enriched over abelian groups with all finite products.

There may a priori be many ways to factor the functors Cp´,´q through U,
so in principle many different enriched structures on a category C. But actually,
they will all coincide, and we’ll prove that. The first step is this lemma.

Lemma 7.3.

(i) In a pointed category, the following are equivalent:

(a) A is initial;

(b) A is terminal;

(c) 1A “ 0 : A Ñ A.

(ii) Given three objects A, B, C in a semi-additive category, the following are
equivalent:

(a) there are π1 : C Ñ A, π2 : C Ñ B making C a product of A and B;

(b) there are ν1 : A Ñ C, ν2 : A Ñ C making C into a coproduct of A and
B;

(c) there are π1, π2, ν1, ν2 satisfying π1ν1 “ 1A, π2ν2 “ 1B, π1ν2 “ 0BA,
π2ν1 “ 0AB, and ν1π1 ` ν2π2 “ 1C.

Proof.

(i) It’s enough to prove paq ðñ pcq, since pbq ðñ pcq is dual.

To that end, if paq holds, there’s only one morphism A Ñ A which must
be both 1A and 0AA. Conversely, if pcq holds, then any f : A Ñ B satisfies
f “ f 1A “ f 0AB “ 0AB. So there is a unique map A Ñ B, namely 0AB.

(ii) It’s enough to prove paq ðñ pcq, since pbq ðñ pcq is dual.

To that end, if paq holds, then given π1 and π2, we define ν1 and ν2 by the
first four equations in pcq. Now

π1pν1π1 ` ν2π2q “ π1ν1π1 ` π1ν2π2 “ 1Aπ1 ` 0BAπ2 “ π1 ` 0 “ π11C
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and similarly π2pν1π1` ν2π2q “ π21C, so ν1π1` ν2π2 “ 1C by uniqueness
of factorizations through the product.

Conversely, assume pcq. Then given D h
ÝÑ A and D k

ÝÑ B, consider the map
ν1h` ν2k : D Ñ C. We have that

π1pν1h` ν2kq “ 1Ah` 0k “ h

and also π2pν1h` ν2kq “ k. But if ` : D Ñ C satisfies π1` “ h, π2` “ k,
then

` “ 1C` “ pν1π1`` ν2π2`q “ ν1h` ν2k.

So the factorization is unique.

Definition 7.4. An object which is both initial and terminal is called a zero ob-
ject and denoted 0. An object which is simultaneously a product and coproduct
of A and B is called a biproduct and denoted A‘ B.

The previous lemma Lemma 7.3 has a partial converse in the following. We
want to say that if we products and coproducts coincide, then our category is
semi-additive.

Lemma 7.5.

(i) A category with a zero object is pointed.

(ii) In a pointed category C with finite products and coproducts, suppose that
the canonical map c : A` B Ñ Aˆ B defined by

πicνj “ δij “

#

1Ai if i “ j

0Ai Aj otherwise

where A1 “ A, A2 “ B, is an isomorphism. Then C has a unique semi-
additive structure.

Proof.

(i) We define the zero map A Ñ B to be the unique composite from A Ñ

0 Ñ B. Note that any pointed structure on a category is unique, because if
there are two zero maps 0a and 0b, then 0b “ 0a0b “ 0a.

(ii) By convention, a morphism f :
řm

j“1 Aj Ñ
śn

i“1 Bi is represented by a
matrix p fijq where fij “ πi f νj. For example, c is represented by the matrix

ˆ

1A 0
0 1B

˙

.

So given A
f

g
B, we define f `` g to be the compoiste

A
p

1A
1A
q

Aˆ A c´1
A` A

p f ,gq
B
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7 Abelian and Additive Categories

and f `r g to be the composite

A
p

f
gq

Bˆ B c´1
B` B

p1B ,1BqB.

We will show that these two notions of addition are the same.

It’s immediate that hp f `` gq “ h f `` hg and p f `r gqk “ f k`r gk when
the composites are defined.

To show that f `` 0 “ f , consider the diagram

Aˆ A A` A

A A B

c´1

π1 p1,0q
p f ,0qp

1
1q

1A f

Similarly, 0`` f “ f and dually f `r 0 “ f “ 0`r f .

Given f , g, h, k : A Ñ B, I claim that p f `` gq`r ph`` kq “ p f `r hq`` pg`r
kq, since both are the composite

A
p

1
1q Aˆ A c´1

A` A

´

f g
h k

¯

Bˆ B c´1
B` B

p1,1q
B.

Now apply the Eckmann-Hilton argument:

- putting g “ h “ 0, we get f `r k “ f `` k;

- putting f “ k “ 0, we get g` h “ h` g;

- putting h “ 0, we get p f ` gq ` k “ f ` pg` kq.

For the uniqueness, suppose`a is a semi-additive structure. The argument
of Lemma 7.3(ii) shows that c´1 must be ν1π1 `a ν2π2 : Aˆ B Ñ A` B,
so the definitions of f `r g and f `` g both reduce to f `a g. Hence, this
structure is unique.

Corollary 7.6. Let C and D be categories with finite biproducts (and therefore
semi-additive). Then a functor F : C Ñ D is semi-additive (satisfies F0 “ 0 and
Fp f ` gq “ F f ` Fg) if and only if it preserves finite biproducts.

Proof. pùñq is immediate from Lemma 7.3, and pðùq comes from Lemma 7.5.

Remark 7.7. Note that a composite

A‘ B

˜

f g

h k

¸

C‘D

˜

t u

r w

¸

E‘ F

is given by the matrix product
ˆ

t u
r w

˙ˆ

f g
h k

˙

“

ˆ

t f ` uh tg` uk
v f `wh vg`wk

˙
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Definition 7.8. Let C be a pointed category, A
f
ÝÑ B a morphism of C. By

a kernel of f , we mean an equalizer of A
f

0
B. Equivalently, it’s a map

k : K Ñ A such that f k “ 0k “ 0, and is universal among such maps.
We say a mono in C is normal if it occurs as a kernel. Note that in an additive

category, every regular mono is normal, since an equalizer of A
f

g
B has the

same universal property as the kernel of f ´ g.

We say that A
f
ÝÑ B is pseudo-monic if its kernel is a zero map, i.e. f g “ 0

implies g “ 0. Again, in an additive category, pseudo-monic ðñ monic since
f g “ f h ðñ f pg´ hq “ 0.

Example 7.9.

(a) Consider Gp: in this category, all injective homomorphisms are regu-
lar monic, but not all subgroup inclusions are normal. For example,
Z{2Z S3 is a non-normal monomorphism.

But any surjective homomorphism G
f
ÝÑ H is normal epic, since it’s the

cokernel of ker f G.

(b) In Set˚, any injection pA1, ˚q pA, ˚q is a normal mono: it’s the kernel
of the map pA, ˚q Ñ ppAzA1q Y t˚u, ˚q given by sending everything in A1

to ˚ and everything outside of A1 to itself.

But not all (regular) epimorphisms are normal, since a normal epimor-
phism is bijective on elements not sent to the basepoint.

Also, not all pseudo-monos are monic: f is pseudo-monic if and only if
f´1p˚q “ t˚u.

Lemma 7.10. If C is a pointed category with kernels and cokernels, then A
f
ÝÑ B

is normal monic if and only if it’s the kernel of its own cokernel.

Proof. pðùq. This is trivial, because if f is the kernel of its own cokernel, then f
is the kernel of something and hence normal monic.
pùñq. Suppose f is the kernel of B

g
ÝÑ C. From the diagram

K C

B

A Q

k g

qf

where q “ coker f and k “ ker q. Then there is a map h : Q Ñ C since g f “ 0
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and ` : A Ñ K since q f “ 0.

K C

B

A Q

k g

q
`

f
h

We get a map m : K Ñ A since gk “ hqk “ 0, so k factors through f “ ker g.

K C

B

A Q

m

k g

q
`

f
h

Now m, ` are inverse isos, since f and k are monic. Hence, A – K and f is the
kernel of its own cokernel.

Remark 7.11 (First Isomorphism Theorem). Note that under the hypotheses
of Lemma 7.10, there’s a bijection between isomorphism classes of normal
subobjects and normal quotients of any object.

Definition 7.12. By an image of f : A Ñ B in any category C we mean a
factorization A

g
ÝÑ I m B of f , where m is the least among subobjects of

B through which f factors.

Remark 7.13 (“A fact so obvious that I won’t bother to number it.”). If C is
pointed with kernels and cokernels, and all monos in C are normal, then every
f has an image, namely the kernel of the cokernel of f . We have a factorization

A B

I

f

ker coker f

Proof. Let A B1 m B be another factorization of f . Since m is monic,
then m is the kernel of some g : B Ñ C because all monos are normal. We
have that gm “ 0, and therefore g factors through the cokernel q of f , say via
h : Q Ñ C satisfying hq “ g. Then gk “ hqk “ 0, hence k factors through
ker g “ m.

A B C

I Q

B1

f g

q
k h

m
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Given a morphism A
f
ÝÑ B in a pointed category C with kernels and coker-

nels, we can form the diagram

A B

Q K
coker ker f

`

f

i

ker coker f

where I is the image of f , and Q is the coimage of f . If C is nice enough, the
coimage and image coincide.

Lemma 7.14.

(a) if all monos in C are normal, then i is pseudo-epic;

(b) if all epis in C are normal, then i is pseudo-monic;

Proof. We will prove only (a), because (b) is dual. The map ` exists because
pcoker f q f “ 0 implies that f factors through ker coker f . Then

pker coker f q ˝ ` ˝ pker f q “ f ˝ pker f q “ 0,

which implies that ` ˝ pker f q “ 0 since pker coker f q is monic. This means that
` factors through coker ker f , and thus constructs the map i.

Now take the image factorization of i, i “ pker coker iq ˝ s. Since ker coker i
is monic, then so too is ker coker i ˝ ker coker f as the composition of monos.
Hence, ker coker i ˝ ker coker f is the kernel of some g : B Ñ C. Then we know
that

g f “ g ˝ pker coker f q ˝ `

“ g ˝ pker coker f q ˝ i ˝ coker ker f

“ g ˝ pker coker f q ˝ pker coker iq ˝ s ˝ pcoker ker f q

“ 0

because ker coker f ˝ ker coker i is the kernel of g. Hence, g factors through
coker f , via some t, g “ t ˝ coker f . Thus,

g ˝ pker coker f q “ t ˝ pcoker f q ˝ pker coker f q “ 0.

Therefore, pker coker f q factors through ker g “ pker coker f q ˝ pker coker iq.
Thus, we get some v such that

pker coker f q “ pker coker f q ˝ pker coker iq ˝ v.

But pker coker f q is monic, so this means that pker coker iq ˝ v “ 1K. Therefore,
ker coker i is split epic as well as monic, and therefore an isomorphism. So the
kernel of the cokernel of i is an isomorphism, and therefore coker i “ 0. Hence,
i is pseudo-epic.
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Note that either hypothesis in Lemma 7.14 implies that C is balanced, since
epi & normal mono implies iso, and dually mono & normal epi implies iso.

Hence if both hypotheses (a) and (b) hold, and C is additive, then i an
isomorphism. That is, the image and coimage factorizations of f exist and
coincide.

Definition 7.15. We say a category A is abelian if

(a) A is additive;

(b) A has all finite limits and colimits (equivalently, it suffices to have finite
biproducts, kernels, and cokernels);

(c) Every mono and every epi in A is normal (= regular, but we use different
terminology because it’s slightly different).

Example 7.16. (a) Ab is abelian.

(b) For any ring R, ModR is abelian (R need not be commutative).

(c) For any small category C and abelian category A, then rC, As is abelian
with everything defined pointwise.

(d) If C is a small additive category and A is abelian, then the full subcategory
AddpC, Aq Ď rC, As of additive functors is abelian.

(e) An additive category on one object is a ring R, and therefore example (d)
contains example (b), in the case that C is an abelian category with one
object. Notice that ModR – AddpR, Abq.

Recall from Remark 4.16 that pullbacks of monos are monic, and dually
pushouts of epimorphisms are epic. In an abelian category, we also have that
pullbacks of epis are epic. To prove this, we need the lemma

Lemma 7.17. Suppose given a (not necessarily commutative) square

A B

C D

f

g h

k

in an additive category with finite biproducts. Then

(i) the square commutes if and only if the composite A
p

f
gq
ÝÝÑ B‘ C

ph,´kq
ÝÝÝÝÑ D

is zero (We call this the flattening of this square).

(ii) The square is a pullback if and only if
` f

g
˘

“ kerph,´kq.

(iii) The square is a pushout if and only if ph,´kq “ coker
` f

g
˘

. (Notice that this
isn’t quite dual to (ii) because of the minus sign!)

Proof.
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(i) The composite ph,´kq
` f

g
˘

“ h f ´ kg, so this is zero if and only if h f “ kg.

(ii) This holds since kerph,´kq has teh universal property of a pullback of
ph, kq.

(iii) Similar to piiq.

Corollary 7.18. Let

A B

C D

f

g h

k

be a pullback square in an abelian category, with h epic. Then

(i) The square is also a pushout.

(ii) g is epic.

Proof.

(i) By Lemma 7.17(i), we have
` f

g
˘

“ kerph,´kq. But h is an epimorphism, so
ph,´kq is epic as well. Since we’re in an abelian category, ph,´kq is normal
epic, so ph,´kq “ coker

` f
g
˘

by Lemma 7.10. Then by Lemma 7.17(iii), it’s
a pushout.

(ii) To show that g is epic, it’s enough to show that g is pseudo-epic, since
we’re in an abelian category (which is in particular additive). So suppose

given C x
ÝÑ E with xg “ 0. Then x together with B 0

ÝÑ E forms a cone
under p f , gq. Therefore, x factors through the pushout, say by D

y
ÝÑ E.

Now yh “ 0 and h is epic, so y “ 0. Hence, x “ yk “ 0. So g is epic.

Corollary 7.19. In an abelian category, image factorizations are stable under
pullback.

7.1 Homology

Definition 7.20. Given a sequence of objects and morphisms

¨ ¨ ¨ An´1 An An`1 ¨ ¨ ¨
fn´1 fn

in an abelian category, we say the sequence is exact at An if ker fn “ im fn´1, or
equivalently, coker fn´1 “ coimage fn.

We say that the sequence is exact if it is exact at every vertex (except possibly
the end vertices, if it does end).

We say that a functor F : A Ñ B is exact if it preserves exact sequences.

Remark 7.21. (a) Note that 0 Ñ A
f
ÝÑ B is exact if and only if f is monic.

(b) Dually, A
f
ÝÑ B Ñ 0 is exact if and only if f is epic.
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(c) 0 Ñ A
f
ÝÑ B

g
ÝÑ C is exact if and only if f “ ker g.

(d) A
f
ÝÑ B 1B

ÝÑ B is exact if and only if f “ 0. So an exact functor F preserves
zero morphisms, and hence the zero object. Hence it also preserves kernels
and cokernels; F also preserves finite biproducts since

0 A
p

1
0q A‘ B

p0,1q
B 0

is exact, and A‘ B is characterized by the existence of such a sequence
with

`1
0

˘

split monic and p0, 1q split epic.

(e) If F is additive and preserves kernels and cokernels, then it preserves
images and coimages, so preserves all exact sequences.

Definition 7.22. We say F is left-exact if it’s additive and preserves kernels
(equivalently, preserves finite limits). Note that F is left-exact if and only if F
preserves exact sequences of the form 0 Ñ A Ñ B Ñ C.

F is right-exact if it’s additive and preserves cokernels (equivalently, pre-
serves finite colimits), or equivalently preserves exact sequences of the form
A Ñ B Ñ C Ñ 0.

Lemma 7.23 (The Five Lemma). Suppose given a commutative diagram

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

a1

f1

a2

f2

a3

f3

a4

f4 f5

b1 b2 b3 b4

whose rows are exact. Then

(i) f1 epic and f2, f4 monic ùñ f3 monic.

(ii) f2 and f4 epic, f5 monic ùñ f3 epic.

Proof. This is not too different from chasing elements around a diagram. Notice
that piq and piiq are dual, so we need only prove piq.

So suppose given C x
ÝÑ A3 with f3x “ 0. Then

f4a3x “ b3 f3x “ 0.

Therefore a3x “ 0 since f4 is monic. So x factors through ker a3 “ im a2. So if
we form the pullback

D C

A2 A3

z

y x
a2

with z epic because it’s a pullback of coimage a2. Now

b2 f2y “ f3a2y “ f3xz “ 0
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since f3x “ 0, so f2y factors through ker b2 “ im b1. Since f1 is epic, we also
know that im b1 “ impb1 f1q. Form another pullback

E D

A1 B2

v

u f2y
b1 f1

and note that v is epic. Now

f2a1u “ b1 f1u “ f2yv,

but f2 is monic so a1u “ yv. So

xzv “ a2yv “ a2a1u “ 0

because a2a1 “ 0. However, z, v are both epic, so from this we conclude that
x “ 0. This establishes that f3 is monic, since f3x “ 0 ùñ x “ 0.

Lemma 7.24 (Snake Lemma). Suppose given the diagram

0 0 0

A1 A2 A3

B1 B2 B3 0

0 C1 C2 C3

D1 D2 D3

0 0 0

f1

u1

f2

u2
u3

s

g1

v1

g2

v2 v3

w1 w1 w1

k1 k2

in an abelian category A with exact rows and columns (the diagram in black).
Then there are exact morphisms f1, f2, s, k1, k2 (in blue) forming an exact se-
quence. In addition, if 0 Ñ B1 Ñ B2 (resp. C2 Ñ C3 Ñ 0) is exact, then so is
0 Ñ A1 Ñ A2 (resp. D2 Ñ D3 Ñ 0).

Proof. (NON-EXAMINABLE). See handout. For the last assertion, observe that
g1 monic ùñ g1u1 “ u2 f1 monic ùñ f1 monic and dually.

Definition 7.25. By a (chain) complex in an abelian category A, we mean a
sequence

¨ ¨ ¨ An`1
fn`1 An

fn An´1 ¨ ¨ ¨

satisfying fn fn`1 “ 0 for all n.
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Complexes in A form a category, which is a full subcategory of the functor
category rZop, As. (In fact, it’s AddpZ, Aq, where Z is a small additive category
whose objects are integers). So the category of complexes in A is abelian, with
all structure defined pointwise.

Exercise 7.26. Figure out what the category Z is.

If we have a complex, we might wonder when it’s exact. The homology of a
complex measures it’s failure to be exact.

Definition 7.27. Given a complex A‚ “ p¨ ¨ ¨ Ñ An`1 Ñ An Ñ An´1 Ñ ¨ ¨ ¨ q,
we define it’s n-th homology object HnpA‚q as follows:

An`1 An An´1

Zn Qn

In Hn In´1

fn`1 fn

form Zn An “ ker fn and pIn Anq “ im fn`1. Then

pZn Hnq “ cokerpIn Znq

and Hn is the n-th homology object.

Remark 7.28. If we do the dual thing, it’s symmetric and gives the same def-
inition. We could define Hn symmetrically as the image of Zn Ñ An Ñ Qn,
then

Zn Hn “ coker kerpZn Ñ Qnq “ cokerpIn Ñ Znq,

and
Hn Qn “ ker cokerpZn Ñ Qnq “ kerpQn Ñ In´1q.

Remark 7.29. Clearly, a morphism of complexes A‚ Ñ B‚ induces morphisms
ZnpA‚q Ñ ZnpB‚q, QnpA‚q Ñ QnpB‚q, InpA‚q Ñ InpB‚q and HnpA‚q Ñ HnpB‚q
for all n.

So we can regard Hn as a functor AddpZ, Aq Ñ A.

Theorem 7.30 (Meyer-Vietoris). Suppose given an exact sequence

0 Ñ A‚ Ñ B‚ Ñ C‚ Ñ 0

of chain complexes. Then there exists an exact sequence

¨ ¨ ¨ Ñ HnpA‚q Ñ HnpB‚q Ñ HnpC‚q Ñ Hn´1pA‚q Ñ Hn´1pB‚q Ñ Hn´1pC‚q Ñ ¨ ¨ ¨
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Proof. This follows from the Snake Lemma (Lemma 7.24). We have a diagram
in black with exact rows and columns, so we get a blu exact sequence.

0 0 0

0 ZnpA‚q ZnpB‚q ZnpC‚q

An Bn Cn 0

0 An´1 Bn´1 Cn´1

QnpA‚q QnpB‚q QnpC‚q 0

0 0 0

Now that we have this exact sequence, consider the new diagram below in black
with exact rows an columns. By the Snake Lemma (Lemma 7.24), we again get
an exact sequence in blue as indicated.

0 0 0

HnpA‚q HnpB‚q HnpC‚q

QnpA‚q QnpB‚q QnpC‚q 0

0 Zn´1pA‚q Zn´1pB‚q Zn´1pC‚q

Hn´1pA‚q Hn´1pB‚q Hn´1pC‚q

0 0 0

Moreover, the maps HnpA‚q Ñ HnpB‚q Ñ HnpC‚q are exactly HnpA‚ Ñ B‚q
and HnpB‚ Ñ C‚q, so these sequences fit together.

Definition 7.31. Let A‚ and B‚ be complexes and A‚
f‚

g‚
B‚ be two mor-

phisms of complexes. By a homotopy from f‚ to g‚, we mean a sequence of
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morphisms hn : An Ñ Bn`1

An An´1

Bn`1 Bn

an

hn fn gn
hn´1

bn`1

satisfying fn ´ gn “ bn`1hn ` hn´1an : An Ñ Bn for all n.

Remark 7.32. Homotopy is an equivalence relation f » f by the zero homotopy;
if h : f » g then ´h : g » f ; if h : f » g and k : g » `, then h` k : f » `.

And moreover, it’s compatible with composition, so it’s a congruence on
AddpZ, Abq.

Lemma 7.33. Homotopic maps of chain complexes induce the same morphisms
on homology.

Proof. Suppose h : f » g. The composite

ZnpA‚q Ñ An
f´g
ÝÝÑ Bn

is equal to

ZnpA‚q Ñ An
hn
ÝÑ Bn`1

bn
ÝÑ Bn,

since ZnpA‚q Ñ An Ñ An´1 “ 0.
And moreover, the composite ZnpA‚q Ñ An Ñ Bn`1 Ñ HnpB‚q is zero,

since pBn`1 Ñ HnpB‚qq “ 0. So Hnp f‚q “ Hnpg‚q.

ZnpA‚q An Bn`1 Bn

InpB‚q ZnpB‚q

HnpB‚q

hn bn

Definition 7.34 (Recall from Definition 2.21). An object A P ob C is called
projective if the functor CpA,´q : C Ñ Set preserves epis.

Remark 7.35. A functor of the form CpA,´q preserves any limits which exist in
C because limits are computed on the domain. If C is abelian, then CpA,´q is a
left-exact functor C Ñ Ab. So A projective ðñ CpA,´q is exact.

Definition 7.36. We say that C has enough projectives if, for every A P ob C,
there exists P A with P projective.
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Example 7.37. The category ModR has enough projectives, since free modules
are projective and every module is a quotient of a free module. The functor p´qX

is represented by the free-module FX on the set X, and this functor preserves
epis.

ModR also has enough injectives, but identifying injective modules is harder.

Definition 7.38. By a projective resolution of an object A in an abelian category
A, we mean an exact sequence

¨ ¨ ¨ P2 P1 P0 A 0

with all Pn projective.

Remark 7.39. Equivalently, we can think of a projective resolution as defining
a complex with P´n “ 0 for all n; it will no longer be exact at zero, but the
homology of this complex at P0 will be A. More precisely, we can also define a
projective resolution as a complex P‚ satisfying

(a) Pn is projective for all n;

(b) Pn “ 0 for all n ă 0;

(c) H0pP‚qA, HnpP‚q “ 0 for n ‰ 0.

Remark 7.40. If A has enough projectives, then any object has a projective
resolution: given A, chose P0 A with P0 projective and kernel K0 P0,
say, then chose P1 K0 with P1 projective, and so forth.

Lemma 7.41. Suppose given projective resolutions P‚, Q‚ of objects A, B. Then
any map a : A Ñ B induces a map of complexes f‚ : P‚ Ñ Q‚ with H0p f‚q “ a.
Moreover, any such map is unique up to homotopy.

Proof. We have the following diagram a priori

¨ ¨ ¨ P1 P0 A

¨ ¨ ¨ Q1 Q0 B

p2 p1 d

a

q2 q1 e

Because P0 is projective, there is f0 with e f0 “ ad:

¨ ¨ ¨ P1 P0 A

¨ ¨ ¨ Q1 Q0 B

p2 p1

f0

d

a

q2 q1 e

Now e f0 p1 “ adp1 “ 0, so f0 factors through ker e “ im q1, and there must be a
map f1 : P1 Ñ Q1 with q1 f1 “ f0 p1.

¨ ¨ ¨ P1 P0 A

¨ ¨ ¨ Q1 Q0 B

p2 p1

f1 f0

d

a

q2 q1 e
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and so on. This settles existence.
To see uniqueness up to homotopy, suppose we had another such g‚ : P‚ Ñ

Q‚.

P0 A

Q0 B

d

g0f0 a

e

Then ep f0 ´ g0q “ ad´ ad “ 0, so f0 ´ g0 factors through ker e “ im q1. So there
is some h0 : P0 Ñ Q1 with q1h0 “ f0 ´ g0 by the projectivity of P0

P0 A

Q1 Q0 B

h0

d

g0f0 a

q1 e

Now

q1p f1 ´ g1 ´ h0 p1q “ q1 f1 ´ q1g1 ´ q1h0 p1

“ f0 p1 ´ g0 p1 ´ q1h0 p

“ p f0 ´ g0 ´ q1h0qp1 “ 0,

so there is h1 : P1 Ñ Q2 with q2h1 “ f1 ´ g1 ´ h0 p1 by the projectivity of P1.

P1 P0 A

Q2 Q1 Q0 B

h1 g1f1

p1

h0

d

g0f0 a

q2 q1 e

Continuing in this manner we obtain the desired homotopy maps.

Remark 7.42. Lemma 7.41 says that any two projective resolutions of a given
object A are homotopy equivalent. So we can regard a choice of projective
resolutions as a functor A Ñ AddpZ, Aq{ ».

Definition 7.43. Let F : A Ñ B be an additive functor between abelian cate-
gories, and suppose that A has enough projectives. The left derived functors
LnF for pn ě 0q are defined by LnFpAq “ HnpFpP‚qq, where P‚ is any projective
resolution of A.

Note that this is well-defined, by Lemma 7.41 and Lemma 7.33; and LnF is a
functor A Ñ B.

Remark 7.44. Note also that FP1 Ñ FP0 Ñ L0FA Ñ 0 is exact, so there’s a
canonical natural transformation L0F Ñ F, which is an isomorphism if F is right
exact.

Lemma 7.45. Suppose given an exact sequence 0 Ñ A a
ÝÑ B b

ÝÑ C Ñ 0 and
projective resolutions P‚, R‚ of A and C. Then there is a projective resolution
Q‚ of B such that Qn “ Pn ‘ Rn and

Pn
p

1
0q Pn ‘ Rn

p0,1q
Rn
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are maps of complexes.

Remark 7.46 (Warning!). In general, Q‚ fl P‚ ‘ R‚, and qn : Qn Ñ Qn´1 has
the form

”

pn sn
0 rn

ı

with sn ‰ 0 in general.

Proof of Lemma 7.45. Again, we construct the first few maps and induct up-
wards.

P0 A

P0 ‘ R0 B D

R0 C

d

p
1
0q

a

pad,e1q

p0,1q b

x

e1

e

x1

The map e1 exists by the projectivity of Rq. The two right-hand squares commute,
and pad, e1q is epic: suppose that xpad, e1q “ 0. Then xad “ 0 so xa “ 0. So x
factors as x1b. Now 0 “ xe1 “ x1be1 “ x1e. So x1 “ 0, which means x “ 0.

Now form the kernels K0, L0, M0; 0 Ñ K0 Ñ L0 Ñ M0 Ñ 0 is exact by
Lemma 7.24. Now proceed as before to get an epi P1 ‘ R1 L0, and so on.

0

P1 K0 P0 A

P1 ‘ R1 L0 P0 ‘ R0 B D

R1 M0 R0 C

0

d

p
1
0q

a

pad,e1q

p0,1q b

x

e1

e

x1

Theorem 7.47. Let F : A Ñ B be an additive functor between abelian categories,

where A has enough projectives. Let 0 Ñ A a
ÝÑ B b

ÝÑ C Ñ 0 be an exact sequence
in A. Then there exists an exact sequence

¨ ¨ ¨ L2FC Ñ L1FA L1Fa
ÝÝÝÑ L1FB L1Fb

ÝÝÝÑ L1FC Ñ L0FA L0Fa
ÝÝÝÑ L0FB L0Fb

ÝÝÝÑ L0FC Ñ 0

Proof. Choose projective resolutions P‚, R‚ of A and C, respectively, and define
Q‚ as in Lemma 7.45. F preserves the exactness of the sequences

0 Pn
p

1
0q Qn

p0,1q
Rn 0
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So we can apply the Meyer Vietoris Theorem (Theorem 7.30), which constructs
this sequence for us.

Remark 7.48. In particular, if F is right exact, then then the seqeunce of Theo-
rem 7.47 extends the sequence FA Ñ FB Ñ FC Ñ 0. If F is exact, then LnF “ 0
for all n ą 0.
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