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Remark 1 (Prerequisites).

(1) Differential Geometry: Manifolds, differential forms, de Rahm cohomol-
ogy, metrics, vector bundles.

(2) Complex analysis in one variable, and a willingness to accept that these
statements generalize to several variables.

(3) Some elementary algebraic geometry, sheaf theory.
With that out of the way, let’s move on to some mathematics.

Definition 2. A complex manifold of dimension 7 is a Hausdorff topological
space M equipped with an open cover {U; | i € I} and maps ¢;: U; — C" which
give a homeomorphism of U; with an open subset of C", and the transition
maps

¢i O<Pf11 ¢j(U; 0 Uj) —— ¢i(U; n Uj)

are holomorphic.

This looks a lot like the definition of a real manifold, but the key point here
is that we insist that the transition maps are not just differentiable, but instead
holomorphic (sometimes called complex analytic). Let’s see some examples.

Example3. (1) M =C".

(2) If you like compact spaces (which most people do), let A < C" be a rank
2n lattice, i.e. A is an additive subgroup of C" isomorphic to Z?" that
spans C" as a R-vector space. (The reason for the spanning condition is
to disallow such silliness as Z + Z+/2 < C). Then take M = C"/A. This
is called a complex torus. This seems pretty average but it’s a huge field
of math. When n = 1 this is elliptic curves.

(38) n-dimensional projective space CIP” (which we often write as IP").
P":= (CM\{0}) /C*

where A € C* acts by A - (xp,...,xs) = (Axq,...,Axy). So far we've
defined a topological space, but we need charts and transition maps for
this to be a complex manifold. There’s a nice natural open cover: let
U < P" be the open subset

U; := {(xo,.--,xn) | x; #0}.
A point p € U; can be written uniquely as
p=(x0,...,1,...,%xn)
with x; = 1. This gives a map
¢;: U; —
(x0,. .., Xn) +—— (XO/xl,---,Z{;/--wx”/xi)
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(4)

©)

(6)

Then ¢; o 4>]._1 is the map

N 4)/'71 ¢i <
e Wi, — (yg,...,1,..., — P
(Yo, -+ Yjr s Yn) (Yo t Yn) R
) 1 1
]

and therefore is holomorphic. Note that IP" is compact.

For a special case, P! = U; U {(1,0)}. We can write U; = {(x,1) | x € C},
so U; ~ C, and write the extra point (1,0) as co. This is the Riemann
sphere Co, with a map P! — Cy, given by (x,y) — ¥,

Let f1,...,fm € C[zo,...,zn] be homogeneous polynomials, i.e. each
monomial in f; is of the same degree. Hence, f;(Az, ..., Azy) = Al fi(zo, -
where d = deg f;. Define

Z(Fiy e f) = {(z0, - 2n) €P" | filzo, ..., 2n) = 0 Vi}

Suppose M = Z(f1, ..., fm) is of pure dimension d (ruling out such silly
examples as the union of a plane and a line), and furthermore the rank of
the Jacobian matrix is at least n — d,

5f1/620 - afl/(?zn
rank : >n—d

Ofm/azo . 6fm o2,

at every point of M, then M is a complex manifold. (This is a version of
the implicit function theorem).

Proof of claim. Let p € M, say p € Uy without loss of generality, so we can
set zg = 1. After reordering the zgs and the f]-’ s, we can assume that the
upper left-hand (n — d) x (n — d) submatrix in the corner has rank n — d.
We can then construct a map

(f1rrfu=d)

Up =C" .

Then the implicit function theorem implies that the equations

fi(z1, - zn) = .= fu_a(z1,...,20) =0

can be solved for zy,...,z,_4 in terms of z,,_4,1,...,z, locally near p in
a holomorphic manner. This gives a parametrization of an open neigh-
borhood of p by z,_441,...,2zs. Such a solution gives also a solution to
fi = ... = fm = 0, as otherwise the dimension would be less than d, but
we assumed that M is of pure dimension d. O

For a concrete example of the previous construction, consider the zero set
of f = 22zg — (23 + zp23). Write E = Z(f) < P2. The matrix

[8f/aZ()’ af/é’zlr af/@zz] = [Z% - ZZOZZ/ 22021/ 32% + Z%]

poz‘lyn)

. /Zl’l)/



has rank 1 if it’s nonzero. If all derivatives of f are zero, then either zy = 0
or z; = 0 because 0 = 5f/azl = 2z9z1. If z5 = 0, it must be that z, = z; = 0,
which doesn’t happen. If z; = 0, zpz2 = 050 z9 = zp = 0 which doesn’t
happen. E is a 1-dimensional complex submanifold, isomorphic to C/A
for some lattice A = C.

You may be thinking that I'm using this as a trick to just do algebraic ge-
ometry, but it’s really an illustration of the following important theorem. We
won't prove this theorem in the course, but it’s useful to know.

Theorem 4 (Chow’s Theorem). A compact complex submanifold of P” is the
of this form: Z(f1, ..., fm)-

So in some sense, complex geometry is really closely related to algebraic ge-
ometry. But on the other hand, there are some complex manifolds that cannot
be embedded in projective space, so studying complex manifolds is worth-
while on it’s own too.

Example 5. This is an example of a complex manifold that cannot be embedded
in projective space. The Hopf surface is

M = (C"\{0})/ ~
where (zg,...,zn) ~ (221, ...,224). M is homeomorphic to Sl x g2n—1 by

M —— S'xS§" 1= (R/Z)x 8" 1cC"
7 — (10g2 Iz| mod Z, Z/qu)

This cannot be embedded in projective space for n > 1.
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Definition 6. If M is a complex manifold, U < M open, then a function f: U —
C is holomorphic if, for each coordinate chart ¢;: U; — C", fo 4)171: $i(U
U;) — C" is holomorphic.

A continuous map f: M — N between two complex manifolds is holomor-
phic if for every open set U € N and g: U — C holomorphic, go f: f~1(U) —
C is also holomorphic.

We should think of this definition by saying that the interesting data on
a complex manifold are the functions, and that this structure is preserved by
maps between manifolds.

Locally, if U < C", V < C™ are open, a holomorphic map f: U — V is
givenby f = (f1,..., fm) with f;: U — C holomorphic.

A recurring theme in this course will be that complex geometry is more
rigid than differential geometry, as in the following example.



Example 7. Let f: C"/A; — C"/A; be a holomorphic map between complex
tori. Assume f(0) = 0.

L en

| l

Cn/A1 L Cn/Az

The map f is a lift of f with ]? (0) = 0. So maps between tori are the same
as maps C" — C", with some restrictions. So long as the map f: C" — C"
satisfies, for all Ay € A1,

~ ~

f(Z + /\1) = f(Z) + Ay (1)

for some A € Aj. By continuity of f, Az is independent of z, and taking z = 0
we see that f|5, : A — A is well-defined.
If we differentiate (1), we get

~ ~

ofz+M) _ 0f(2)

821' (?zi

so af/azi is periodic, holomorphic, and hence bounded and therefore by Liou-

ville’s theorem, ai?/azi is constant.
Thus, fis linear. So a holomorphic map f: C"/A; — C"/A; is induced by
a linear map f: C" — C" with f(A1) = Ayp.

Example 8. If n = 1, then a lattice is given by C/{7y, 7») with 7y, » € C lin-
early independent over IR. Alternatively, dividing by Ty, a lattice is of the form
C/,t) for T = 2/;;. Note that (1,7) = (1,—7), so we may assume T has
positive imaginary part. We express this by saying that T lies in the upper
half-plane H.

Definition 9. The upper half plane # is defined by H = {z € C | imz > 0}

Exercise 10. Show if 7, 7’ € H, there is an isomorphism f: C/{1,t) — C/{1,7’)
if and only if there is a matrix (* Z) € SL(Z) such that T/ = gis
Thus the space H/SLy(Z) is the “moduli space” of 1-dimensional complex

tori, i.e. each point represents an isomorphism class.

Remark 11. M, N are isomorphic as complex manifolds if there are holomor-
phic maps f: M — N and g: N - M with fog = idy, go f = idpy. This
is sometimes called a biholomorphic map, but we will probably not use that
term.

Linear algebra of complex structures

Definition 12. Let V be an R-vector space. A complex structure on V is an
endomorphism J: V — V with ]2 = —I. This turns V into a C-vector space via
i-v=](v)forallve V.



Note that the minimal polynomial of ] is x> + 1, so in particular | has eigen-
values £i, and J: V®r C — V ®g C is diagonalizable. Hence V ®r C =
V4 ® V_, where V4 is the J-eigenspace of +i.

Note there is a complex conjugation map

VRIrRC —— VERC
1Rz — vz

If v € V4, then Ju = iv, so Ju = —i0. But J is a real operator, so ] = | and
we therefore have that [v = —iv. Hence, complex conjugation induces a map
V4 — V_ thatis an isomorphism of R-vector spaces. In particular,

dim¢ V4 = dim¢g Vo = dim¢ V.
Remark 13. Giving ] is the same as giving the splitting
VOrC=V, ®V_,
withVy =V_and V_ = V,.
Remark 14. We also get a complex structure JT: V* — V*, giving a splitting
V*®r C = Homg(V,C) = Vi@ V*

as before. An element of V7 is a form of type (1,0). An element of V* is a form
of type (0,1).

Remark 15. The point of all of this is that the tangent and cotangent spaces of
a complex manifold acquire this structure.

Example 16. Let z1,...,z, be coordinates on C". Write zj = Xj+ iyj. The
X1,...,%, and yq,...,Yy, are real coordinates on C". For p € C", the tan-
gent space T,C" has a basis a/axl, ey 5/,3xn, a/ayl, ey a/ayn and T;C" has a basis
dxi,...,dxy, dys, ..., dy,.

Define |: T,C" — T,,C" by

0 0 0 0
Iog ) =5 7 =

Then JT(dxj) = —dy;j and J7(dy;) = dxj. A basis for the +i eigenspace for JT is
dzi,...,dz, where dzj = dx]- + idy]-. So

]T(dx]- +idy;) = —dy; +idx; = i(dx; + idy;)

A basis for the —i eigenspace for |7 is dz; = dx; — idy;.
The dual basis to dzy, . ..,dz,,dzy, . . .,dz, of T;,"C” ®Cis a/azl, el a/azn, ‘9/551,

where
o _1fao .d o _1fe ;2
82]' 2 ax] ay] ! 82] 2 (3x] a]/] )

e Yz,



Remark 17 (Recall). If f: C — C is a real differentiable function, then the
Cauchy-Riemann equations say that f = u + iv is holomorphic if and only if

ou _ou g 9 __0v
ox oy My T T ox

Let’s apply this to Example 16.

g_l i-ﬁ-li (u_i'_')—} ix_i +1 i _A'_ix
oz 2\ox oy e \\at @) T @Y T et )

So the Cauchy-Riemann equations hold if and only if %/, = 0. In general,
f: €Cén — C is holomorphic if and only if %/5;, = 0 for all i.
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Last time, when M = C", with coordinates z1,...,z, with zj = Xj+ iy]-, we
found a basis for T,C". This basis is given by

E N
0z1" " 0zy 0Z1" T 02y

o _1{e 0\ o _1(e .2

aZ] 2 ax] ay] ! 8Z] 2 8x] ay]

The Cauchy-Riemann equations say that f is holomorphic if and only if %/ /ﬁj =
0 for all i.

Proposition 18. An important consequence of the above. If M is a complex
manifold, then there is a well-defined endomorphism of vector bundles |: TM —
TM with J? = —I. That is, there is a complex structure on the tangent bundle.

Proof. Given a coordinate chart ¢: U — C", TU = TM]|y inherits the endo-
morphism | from TC" that we defined before. We need to show that this is
well-defined irrespective of charts.

Note that specifying J: V — V with ]2 = —I is equivalent to specifying a
decomposition of Ve = V ®R C into V1 @ V_. Indeed, we define J¢: Ve — V¢
to be the linear transformation

Je(vy,v-) = (ivy, —iv_)

for (vy,v—) € VL @ V_. So this defines a map on V¢, but we want an endo-
morphism of the real vector space V. Note that V < V¢ is the subset invariant
under conjugation, that is, consists of elements of the form (v,v) with v € V.
Then Jc(v,7) = (iv, —iv) = (iv,iv) € V. So we can define | = Jc|y. Therefore,
specifying | is the same as specifying a splitting of V.

So we just need to check that the definition is invariant under change of
coordinates. We write Tyy ®r C = Ty 4+ @ Ty —, and it’s enough to show that
the subbundles Ty; 4 and T; — are preserved under change of coordinates.



In particular, if f: U — C" is given by
flz1,. o zn) = (fiz, - ovzn), oo ful(Z1, -0 2Zn),

then!

0 of; o of; o

But a?f/azi = aﬁ/@fi = 0 since f; is holomorphic. Therefore, the pushforward of
a holomorphic vector field is just

0 of; o0
f*(?izl ;62, 0z;

So f«(Tu+) < Tcn,+, and similarly f«(Tyy,—) < Ten—. This shows that the
splittings are well-defined. O

Remark 19. Maybe it’s easier to use the cotangent bundle conceptually, be-
cause of of
f*dz) = df; = Z ldz]+25’dz],

and the second term cancels because f is holomorphic and obeys the Cauchy-
Riemann equations.

Definition 20. Given a real manifold M, an almost complex structure on M is
an endomorphism J: Tyy — Tp with J?> = —I. An almost complex structure is
integrable if it arises from a complex (manifold) structure on M.

What we just showed is that every complex manifold has an almost com-
plex structure, which is good, because it has a complex structure and we don’t
want to abuse language.

Remark 21. Integrability of an almost complex structure can be tested by the
vanishing of the Nijenhuis tensor, by the Newlander-Nirenberg Theorem.

Example 22. S° carries an almost complex structure, but it is not known whether
or not it carries a complex structure.

Definition 23. If M is an almost complex manifold, we have a splitting of the
cotangent bundle as Ty; ®r C = Q}\}P ® Q?\;} into ti-eigenspaces. Sections of
Q}\;P and Q?\;} are called (differential) forms of type (1,0) and (0, 1), respec-
tively.

Recall that the vector bundle of n-forms on M is N'Tj;. Then

Nirsione= @ (Noki)e (o)

P*‘I n

1Nobody seems to know, it’s just the chain rule. Write it out in terms of the xj and y;.



Definition 24.
o = (Nolg) s ()
A section of this vector bundle is called a form of type (p,q).

What does such an object look like in coordinates? If M = C" with the
standard complex structure, (p, q) forms are given by

Zfl]dzl ®dzj,
L]

where I, ] < {1,...,n} with#I = p, #] = g, and

dz; = /\dZ,‘, df] = /\dZ]

i€l j€J

and fi;: C" — C is C*. We will often write

Zf]]dZ] ®d2] = andzl A df].
L] Lj

So far we’ve been talking about smooth vector bundles, but now that we're
working with complex manifolds instead of real manifolds we should think
about holomorphic vector bundles. Recall that a C* vector bundle over a C*
manifold M is a smooth manifold E along with a C* map 7t: E — M such
that there is an open cover {U;} of M and diffeomorphisms ¢;: U; — U; x R"
satisfying

)*>U><]R”

nC
l lprojection
U;

—

with ¢; o cpj_l D (Ui nUj) x R" — (U; n Uj) x R” restricts fiberwise to elements
of GL,(R).
We can change everything to say holomorphic instead.

Definition 25. A rank n holomorphic vector bundle on a complex manifold M
is a complex manifold E with a holomorphic map 7: E — M and biholomor-
phic maps ¢;: 7~ 1(U;) — U; x C" such that

) s u < e

J{ J{projection
U;

i >Ui

commutes and ¢; o ¢ 1 acts fiberwise by elements of GL,(C).



Lecture 4 21 January 2016

Definition 26. A C* section of a real vector bundle 7: E — M is a C* map
0: M — E with mo ¢ = id. Locally, on U;, the composition

olu; ; _ rojection
U, ) < R PO,

is a C* R"-valued function.

Definition 27. A holomorphic section of a holomorphic bundle is a holomor-
phic map 0: M — E with 7t o0 = id. Similarly, the composition

u; - 7 4(U;) - U; x C" - C"
is holomorphic.
Example 28.

(1) M a complex manifold. M x C is a rank 1 holomorphic bundle, with
sections corresponding to holomorphic functions on M.

(2) The holomorphic tangent bundle. We have that T); ®r C = TAJZI &) T]\}
is a splitting into J-eigenspaces. Locally, T+ has a C-basis a/azl, ey a/azﬂ,
and a holomorphic change of coordinates gives a holomorphic change of
basis. So Ty carries the structure of a holomorphic vector bundle, which
we call the holomorphic tangent bundle.

Note that the same is not true of T, ;: a holomorphic change of coordinates
gives an antiholomorphic change of coordinates in this case.

Remark 29. The map

Tos Tos ®r C projection T AJZ
v — v®1
Given locally by
A T B |
ox; B dz;  0zZ; 0z;
o _ (42 , 0
oy; B dz; 0zZ; 0zZ;

identifies T)s and TAJ;I as real vector bundles. With the structure of complex
bundle on Ty given by ], this map is C-linear. However, the holomorphic
structure is more naturally described on Tj;.

de Rahm cohomology

Let M be a C® manifold, and let
Al=T (M, /\ZTI’\“A>

10



be the space of all C* sections of /\1T1’\"/I This is just the differential i-forms on
M. We get a complex

A0_d a1 d a2 d . d . dimM

Write this complex as A°®.
Definition 30. The de Rahm cohomology of M is
i i g0y ker(Al 5 AIFT

Hig(M,R) = Hi(4*) = Ker hen i1 4

Definition 31. We can also define de Rahm cohomology over C. If we set
AL =T (M, \Ti @R C)) = A'®R C,
then the complex de Rahm cohomology of M is
Hig(M, €) = H'(AZ) = Hig(M,R) @g C.

We can also define the Dolbeauxlt cohomology of a complex manifold M.

Recall .
/\(TE\F/I ®rC)= @ O
ptq=n

o - (K)o (Ko

Let AP1 =T (M, Q). Let w € AP4,

w = Zf]]dZ[ A dZ]
L]

We can take the exterior derivative.

ofr _ ofrr _
dw:Z affdzi/\dzl/\dZ]JrZ%de/\dZI/\dZ] 2)

iny % iy %%

We write this as
dw = dw + dw

for the two terms on the right hand side of (2). This gives maps
0: APA — APTLA - d. APA , APAT]
withd = 0+ 0. Since d? = 0,
(O+02 =P +00+00+9 =0
with
0% AP — APT2A
00: AP — APFLAFL

S APA . APAT2
Thus, @2 = 3° = 30 = 00 = 0. In particular, we have a complex AP/*

APO 9 AP 2 AP2 2

11



Definition 32. We define the Dolbeauxlt cohomology of M to be the cohomol-
ogy of this complex:

PA — HPA _ 17q/ apey _ ker <AWI iAPrer)
Hg(M)fH (M) = H1(AP®*) = /1m(

APa—1_20_, AM)

Example 33.

HY' (M) = ker(AP0 —2—s APY)

E <Zf[d2]> = Z afldz AN dZ] =0
I

if and only if, for all I, j,
0 f i
0z; =0

Thus the f; are holomorphic. A (p,0) form w with dw = 0 is called a holomor-
phic p-form and Hg’O(M ) is the space of global holomorphic p-forms.

Remark 34 (Goal). Most of this course will be trying to relate de Rahm co-
homology to Dolbeauxlt cohomology. Our goal is to prove (modulo several
weeks of hard analysis, which we will skip) the Hodge decomposition theo-
rem:
Hix(M,C)= @ HMM
ptg=n

Some Sheaf Theory

Definition 35. Let X be a topological space. A presheaf F of abelian groups
on X is the following data:

e for every open U < X, there is an abelian group F(U);

e whenever V < U, we have a restriction map py: F(U) — F(V) a
group homomorphism

such that
o F(J) =
e oy = id, and
e whenever Uz < Uy < Uy, oy, u; = Uy U; © OULU, -

Equivalently, F is a contravariant functor from the category of open sets on U
to the category of abelian groups.

Definition 36. A sheaf F is a presheaf such that, given U < X open and an
open cover {U;} of U and

(1) if s € F(U) such that py715,~1(s) = 0 for all i, then s = 0;
(2) if we have s; € F(U;) for each i such that ouU; AU (si) = pu].,uiﬁuj(s]-),

then there exists a section s € 7 (U) with py,15,(s) = s; for all i.

12



Lecture 5 21 January 2016

Example 37. Let’s see some examples of sheaves.

(1) If M is a smooth manifold, define 7(U) = {f: U — R smooth}.

(2) If E 5 M is a smooth vector bundle on M, define a sheaf £(U) :=
{o: U — E | o a smooth section of 7t}.

(3) If M is a complex manifold, define a sheaf Oy, called the structure sheaf.
This is given by Op(U) = {f: U — C holomorphic}.

(4) Similarly, we can define a sheaf £ of holomorphic sections of a vector
bundle E 5 M.

G) O = N(Ti)* = N Q}\;IO is a holomorphic vector bundle with sections
being holomorphic differential forms, which form the associated sheaf.

(6) Anon-example. Let M = C, and let B(U) be the set of bounded holomor-
phic functions on U. The first sheaf axiom holds, but the gluing axiom
fails: given an open cover of C by the balls B(0, 1) for n € IN, the function
f(z) = zis locally bounded but not globally.

(7) Another non-example. Let X be a topological space. Let G be an abelian
group. Define
G U#yg

grre(U) = {o U o

with restriction maps identity or zero as appropriate. This is not a sheaf,
because the sheaf gluing axiom fails in the case that U = Uj u Uy. If GP™
was a sheaf, then for any g1, g» € G, there should be some g € GP™ with
glu, = g1 and gly, = 2. But this cannot happen, because U; n Uy = &
and GP* () = 0.

We want a definition that kind of looks like the last example, but is actually
a sheaf. This is the following definition.

Definition 38. The constant sheaf G can be defined by putting the discrete
topology on G and defining G(U) = {f: U — G continuous}. These maps are
locally constant, i.e. constant on connected components.

This might seem like a relatively stupid sheaf, but it'll be quite important
for us.

Definition 39. Let F be a sheaf on a space X. The stalk of F at p is
Fp:={(U,s) |U>popen,sec F(U)}/ ~

where (U, s) ~ (V,t) if there is some W < U n V such that s|y = t|y. Elements
(U, s) of the stalk F, are called germs of the function s at p.

Example 40. Let M be a complex manifold. Then Oy, = C{zy,...,2zx} is the
ring of convergent power series in a neighborhood of 0 in C”.

13



Definition 41. A morphism f: 7 — G of sheaves on X is a collection of group
homomorphisms f(U): F(U) — G(U) with some compatibility conditions
with respect to restriction. Namely, given V < U, the following commutes:

Fany XY g

puyv J{Pu,v
v
Fvy 22 gy
Remark 42. A sheaf morphism f: 7 — G induces a map of stalks

K g

(Uys) —— (U, f(U)(s))

Definition 43. A sequence of sheaves and morphisms

Fi1 Fi Fi1

is exact if the corresponding sequence

= (Fic)x (Fi)x (Fitt)y —— -

is exact for all x € X.

Remark 44 (Warning!). Definition 43 is not the same as the sequence

e —— Fi(U) Fi(U) Fip(U) — -

being exact.

Example 45. Hopefully this will be your favorite example by the time we’re
done with the course. Let M be a complex manifold, Z the constant sheaf given
by G = Z, O the structure sheaf, O}, the sheaf of invertible holomorphic
functions on M. Then

0——Z 15 0y—50%5——0

Here, i is just the inclusion map, and e is the map f — exp(27if). This is called
the exponential exact sequence.

Let’s check that this is exact. The injectivity of the inclusion map i is clear.

To see exactness in the middle, suppose (U, f) € Op,. Then the germs
(U, exp(2mif)) and (U, 1) are equivalent if and only if f is constant in a neigh-
borhood of p if and only if f is in the image of the inclusion map i.

Exactness on the right is slightly more interesting. Let (U, f) be a germ of an
invertible function. We can shrink U and assume that U is simply connected.

Then a branch of ﬁ log f can be chosen. This gives a germ (U, ﬁ log f)
mapping to (U, f). So e is surjective.
Remark 46. Surjectivity has to be tested on stalks; the map Op(U) — Op(U)*

need not be surjective. For example, take M = C\{0}, and f(z) = z. So ﬁ log f
cannot be defined globally on M.

14



Proposition 47. The sequence

f

0——F—5¢

is exact if and only if the sequence

u
0—— Fu) Y g
is exact for all U < X open.

Proof. (=). Assume F IR G is injective, which means that 7, — Gy is in-
jective for all x € X. Lets € F(U) with f(U)(s) = 0. Then (U,s) € F, maps
to (U,0) in G,. So by injectivity, (U,s) = 0 in F. So there is a neighborhood
U, < U with x € Uy and 5|y, = 0. This holds for each x € U, so we have an
open cover {Uy | x € U} of U and therefore s = 0 by the first sheaf axiom.
(). It F(U) — G(U) is injective for all U < X, let (U,s) € F, with
(U, f(U)(s)) = 01in Gy. So there is some V < U withx € V, f(U)(s)|y = 0. But

fW)(s)lv = f(V)(s|y), sosly = 0. Hence, (U,s) ~ (V,s]y) = 0in Fy. O
Proposition 48. If
0— ARt
is exact, so is
0— AW L2 B S F)

forall U < X.

Proof. Injectivity on the left is Proposition 47.

im(f(U)) < ker(g(U)) is equivalent to g(U) o f(U) = 0. But (U, (g(U) o
f(U))(s)) € (Fa)x is zero, if s € F1(U) by exactness at the stalk level, for all
x € U. So we can use the same trick as before to see that (g(U) o f(U))(s) = 0.

Conversely, to show that ker(g(U)) < im(f(U)), let s € Fp(U) such that
g(U)(s) = 0. For each x € U, there is Uy 3 x open and a germ (U, tx) € (F1)x
such that (Uy, f(Ux)(t1)) = (U,s) € (F2)x. By shrinking U, if necessary, we
may assume thats|y;, = f(Uy)(tx). So now we have an open cover {Uy | x € U}
of U and sections over U,. Let’s see what they do on the overlaps:

f(Uzxn Uy)(tx - t]/)‘Uxmuy =(s— S)|UmUy =0

But we have already shown that f(Ux n Uy) is injective, so (tx — ty)|u,~u, =
hence, the sections ¢ glue to give some t € F1(U) with f(U)(t) = s.

Lecture 6 23 January 2016

Last time we talked about injectivity and surjectivity of sheaf maps. Injectiv-
ity is easy, because injectivity on stalks holds if and only if injectivity on every
open set holds, but the same is not true for surjectivity. This makes sheaf ker-
nels natural but sheaf cokernels are kind of gross.
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Definition 49. Let f: 7 — G be a morphism of sheaves on X. Then we define
the sheaf kernel, which is a sheaf denoted by ker f, to be

(ker f)(U) = ker({(U): F(U) — G(U)).
Exercise 50. Check that this is a valid sheaf.

If we want to do the same thing for the cokernel, we run into trouble.

Definition 51. The sheaf cokernel of f: F — § is defined by

for all i,j, Si|UiﬁUj - Sj|lll-mll]- € 1mf(Ul N U])

(coker f)(U) = {{(Uifsi)}

{U;} is an open cover of U, s; € G(U;), s.t. } /

where ~ is the equivalence relation {(Uj,s;)} ~ {(U],s)} if forall x € U, x €
u; n LI]{, thereis V < U; n LI]’- with x € V such that s;|y = s;-|v €im f(V).

Exercise 52. Show that coker f is a sheaf, and show that

0—— ker f F g coker f ——0

is exact.

Remark 53. This definition makes the set of sheaves of abelian groups over a
given topological space into an abelian category.

Remark 54. If we have a long exact sequence

di 1 i
Fiog—— Fi—

Fi1

splits up into a collection of short exact sequences

0 0 0 0
ker d; kerd; o
PR
Fi1 ot Fi 4 Fit1 / o Figg — -+
\ /
kerd; 1
/ \
0 0

with all diagonal sequences exact.

Definition 55 (Notation). We often write I'(U, F) for F(U). Note that T'(U, -)
is a functor.

16



Cohomology of Sheaves

Given a short exact sequence

0 Fi F2 F3 0
we have a short exact sequence
0——TI(X, F1) — (X, F) —— (X, F3) ——0.

Definition 56. A sheaf F is flabby (flasque) if whenever V < U, pyyy: F(U) —
F (V) is surjective.

Theorem 57 (Sheaf Cohomology). There are contravariant functors H'(X, —)
from the category of sheafs of abelian groups on X to the category of abelian
groups such that

(1) whenever therg is a short exact sequence 0 — F1 — Fp — F3 — 0, there
are maps 8: H' (X, F3) — H'*1(X, F1) such that

0 — HY(X, F1) — HO(XIW
o

1)

is exact, with unlabelled arrows the functorial maps.

(2) HY(X,F) =T(X, F).

(3) If
0 F1 P F3 0
|
0 g1 G 93 0

is a commutative diagram with exact rows, then

H (X, F3) —— H(X, Fy)

| |

H'(X,G3) —— H*(X,G)

commutes as well, where the vertical maps are the functorial maps.
(4) If F is flabby, then H'(X, F) = 0 for alli > 0.
Furthermore, H' is uniquely determined by these properties.

Definition 58. A sheaf F is acyclic if H (X, F) = 0 for all i > 0.

17



Proposition 59. Let
0->F>F > FlsF2 e

be exact with all 7/ acyclic. This is called an acyclic resolution of F, written as
0 — F — F*. Then

 ker (I(X, F') - T(X, F'*1))
~im (T(X, Fi-1) - I(X, F7))

H'(X,F) = H((X, F*))

Proof. We sill use properties (1)-(3) of Theorem 57 as well as acyclicity. Let
Z! = ker (F'™1 — F*2). We have

O\Zl/o
N

fo\zo/f
o/ \o

which gives exact sequences

0 F—F° 7z’ 0

0 Zi fi-‘rl Zi+1 0

foralli > 0. Forj > 0,
0=HI(X, F)) > HI(X,Z') & HT (X, 271 > HHY(X, F) = 0

so 4 is an isomorphism. Similarly, we get that H/(X, Z%) =~ H/*1(X,F). We
also have that the following commutes,

0

|

0 — HYX,z 1) —— HYX, Fi) —— HY(X, Z)

\ l

HO ( X, ]:i +1 )
with the bottom exact. So

HO(X, Zi_l) = ker(HO(X, fl) — HO(X, f’i—i-l))

18



and similarly,
HY(X, F) = ker(H*(X, F%) — HY(X, F1))

and we also have that
H(X, F')—— H°(X,Z') —— H (X, 2" ") —— H'(X, F') = 0
is exact. Thus,

ker(H(X, F'*1 — HO(X, F'*2))

HY(X,Z'71) = coker(H*(X, F') - H(X, Z")) = i (HO(X, ) = HO(X, 7171))

But
HY(X,Z Y~ H*(X,Z"7?) ~ ... ~ H(X,Z2°) ~ H*(X, F)

Combining the previous two lines gives the desired result. O

Example 60. Given a sheaf F, define C’(F) to be the sheaf

CFWU) ={f: U~ ][ Fp| flp) € Fp}.

pel
This sheaf is flabby. There is an inclusion

0 —— F — CO(F)
se F(U) —— (Uspe (U,s(p)eF)

Then

\Zl/
N

0— F —C(F) —— "2 —— %z —— -

N,
0/ \0

gives a flabby resolution of F. As far as I know, nobody has ever used this to
do a computation.

Lecture 7 26 January 2016

Last time we talked about the cohomology of sheaves. You should take it as a
black box and just use the theorems for computations.

19
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Cech cohomology

Definition 61. Let F be a sheaf on X, and let &/ = {U; | i € I} be an open
covering on an ordered set [. Define

= H]:(ut)
iel

Hfll nUj)

ig<iy
ij,i1€l

= [ Fuyn...0u)

10< <lp
i0,-ewsip€l

the group of Cech p-cochains.
Define boundary maps 6: CP (U, F) — CP+1(U, F) by

+
clpt1 T Z 1p+1‘u N0l p+1

fora € CP(U, F).
One can check that 6% = 0. Hence, get a complex C*(i, F) defined by

w, F) S clw,F) S Au,F) -
The cohomology of this complex is Cech cohomology:

. ker (7 & cr+1)
P (U, F) = HP(C*(U, F)) =

im (cpfl XN CP) '

FOU, F) = ker (co(u, F) - i, J-"))

(Ui i€ 1o { (U 0 Uy silunn; = silunu) 1 < )
- HY(X, F) by sheaf axioms
= F(X/]:)

Definition 62. For shorthand, write U; =U; n...n Ui,,-

0/--~/ip : 0

Remark 63. We have a problem here, namely that H(U, F) depends on the
open cover, for example, if i/ = {X} then there would be no cohomology higher
than . So this theory would be useless.

Definition 64. Let U, U’ be open covers with a increasing map ¢: I’ — I be-
tween index sets, with U/ < Uy (i) In this case we write U " < U. This defines a
map

pg: CP(U,F) — CP(U', F)
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(09p&)ig,....1, = Xpig),..p00p) LI

lo/m,ip
for iy, ...,i, € I'. This gives o py = pgy © 6, and hence we get a map on coho-
mology
pp: H (U, F) — HP (U, F).
Definition 65.
HP (X, F) := im H (U, F),
u

where the limit is taken over all open covers under the relation <.

Definition 66 (Recall). Given a partially ordered set I, and a system of abelian
groups G; for alli € I with maps p;;: G; — G; for i < j with p;; 0 pjx = pj, then
the direct limit of the groups G; over i is

lim G; := @ Gl/N

icl
iel e

where N is the subgroup of the direct sum generated by elements (a; | i € I) of
the form

—pki(gj) i=k
a; = g] i =j .
0 else

The moral of this story is that elements of H (X, ) are represented by
{(uio,...,ip/ Sio,...,ip )} € I:Ip (ul ]:)

Two different elements are compared over refinements. This makes it easy to
get our hands on representatives of cohomology classes, and it was not obvious
how to do so before. The important theorem is that this is the same as regular
cohomology of X.

Theorem 67. H(X, F) = HP(X, F)
Example 68. X = S!, F the constant sheaf Z. U = {U;, Uy}

U is the union of red and black, U5 is union of blue and black.
U, z)=zo2z,
each component of the direct sum corresponding to an open set.

ClU,Z)=2Unlh) =Z8Z
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The map 6: C® — Cl is given by
6(a,b) = (b—a,b—a).
Therefore,
H'(X,z)=RU,Z)=2Z
H'(X,z)=H'U,Z)=2Z
This last line follows from the next fact.

Fact 69. If G is an abelian group and U is an open cover of X with all Uiy,....i,
contractible, then F? (U, G) = HP (X, G) = H?(X, G).

Remark 70. In many nice cases, including when X is a manifold, then H? (X, G) =
P

Hging (X, G).

Remark 71. The construction of the connecting homomorphism

I:IP<X/ ‘F3) *>I:Ip+l(xr Fl)

for a short exact sequence 0 — F; N ) 3, F3 — 0. Let {(Uio,...,ip/Sio,...,i,,)}

represent an element of HP (X, F3). Here Sig, .. iy 2 ]:3(Ui0,...,i,,)~ Possibly after

refining the cover U, we can lift Si,....i, tO some £, ; € Fr(U;
Now consider

0,...,ip)'

S({(Uig,...ji tig,..iy)}) € CPHU, F)

and
8O({(Uiy,...,ips ti,...ip)})) = 6({(Uis,...ip s Si,....1,)}) =0

Thus there exists t§0/~~~/ip+l e F1(Uy,..i,,,) with

f(tgo,...,i,,ﬂ) =0 ({(uig,...,iprtio,...,ip)}) 0wy 41
Then {(Uj,...i, téOr---ri;H»l )} € CPH1(U, F1) represents an element of HP 1 (U, F).
Lecture 8 30 January 2016

Last time we were talking about Cech cohomology, but today we’ll come down
to earth with a very explicit example.

Example 72. Let

0 z Oum 0% 1

be the exponential exact sequence, where O, is the sheaf of holomorphic func-

tions on M and O}, is the nowhere vanishing holomorphic functions. We have
connecting homomorphisms H(M, 03;) — H!(M, Z) and H (M, O%,) — H*(M, Z).
These are sheaf cohomology, but it’s the same as singular cohomology that you

may have seen in algebraic topology.
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An element s € H'(M, O%/) has a Cech representative {(M,s)} where the
open cover is Y = {M}. By passing to an open cover & = {U;} of M with U;
simply connected, then {(M, s)} is identified with {(U;,s|y;,)} € HO(U, O%)).

On U, there is a holomorphic function g; = % log(s|y,) (after choosing
a branch appropriately). This gives a Cech cochain {(U;,g;)} for Oy, with
coboundary

o = {(Ui 0 Uj gjlunu; — Gilunuy) 1< j} € H'(U, Z).

We're trying to do something very simple here: understand the obstruction to
lifting these locally defined logarithms.

Suppose this cocycle vanishes in FI! (4, Z). Then there exists 8 = {(U;, a;)} €
C%(U,Z) such that 6(B) = &, i.e. on U; N Uj, we have

gi‘uiﬁu]' _gj|Ujﬁu]' = ﬂ]' — 4a;.
Then set g/ = g; — a;. We have then that
8t — & = &ilu,~u, — ai) — (8jlunu; —aj) = 0.

Thus the g/ glue to give ¢’ € HY(M, Op) with %0—7; ¢ =s.

We just showed exactness at HY(M, O%;) in the long exact sequence
0——H'(M,Z) ——H(M, Op) —— HOUM, O%) —2—H' (M, Z) — - --

What does a Cech representative for H! (M, Oj) really mean? This is a

collection
o ={(U;n U gj) | i <j}

with g;; € O} (U; nUj) and g;;: U; n U; — C* holomorphic. Note that §(a) = 0
if and only if gijgizlgjk =1foralli <j<konU; nUn Uorgi-gjk = Sik-

If 6(a) = 0, this defines a holomorphic rank 1 vector bundle, that is, a holo-
morphic line bundle. Such a line bundle £ is given on U; by £; = U; x C and
by transition maps

(UlmU])xCL (U,mll])xC

E |=

Lilu;~u; Lilunu,

where the arrow labelled g;; represents the map g;;i(p,z) = (p, gij(p) - z). Con-
sistency of identifications is given by g;; - gjx = ik, so these locally trivial bun-
dles glue to give a line bundle on the whole manifold.

Exercise 73. (1) Given two Cech representatives for the same cohomology
class in H'(M, O%,), then they give isomorphic line bundles under this
construction.
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(2) Show the converse: if two Cech cocycles give isomorphic line bundles,
then these Cech cocycles define the same cohomology class.

Definition 74. The Picard group of M is the group Pic(M) of holomorphic line
bundles on M modulo isomorphism. By the previous exercise Exercise 73, note
that Pic(M) = H!(M, O%;), which has a group structure.

Remark 75. If E, F are vector bundles over M, we define the tensor product
E®F to e the vector bundle (taking &/ = {U;} a cover of M which trivializes
both E and F), which on U; is U; x (C" ® C™) and transition maps

(Ui nUj) x (C"®C") —— (U;n Uj) x (C"®C")

are e;; ® f;j where ¢;; and f;; are the transition maps for E and F, respectively.

So if ay,ay € HY(M, O3y) correspond to line bundles L1, L5, then a; - ay
corresponds to £ ® L,.

Remark 76. If E is a vector bundle with transition maps e;; on U; n Uj, then EV
is the vector bundle with transition maps (ei;l)T. Why is there a transpose in
there? We want the transitions to be compatible: on U; n U;j n Uy, ejjejr = ek,
SO

(e57 )T (e T = (5O
The conclusion is that on Pic M, there is a natural group operation given by ®
and inverse given by duals.

Where does the Picard group fit in with the other cohomology? We have
the long exact sequence

0 HUMZ) = 1AM, Ou) — KM, Of) —
1

MW — H'(M, O3y) = Pic(M)

We call this map c; the first Chern class map. If M is connected, then H'(M, Z) =
Z. If M is compact, then H’(M, Oy) = C is the constant functions (Proof: Let
f: M — C holomorphic. Since M is compact, |f| attains its maximum on M,
say at p € M. Passing to an open neighborhood of M, we can assume M is an
open ball in C", and |f] realizes its maximum on the boundary by the maxi-
mum modulus principle, hence f is constant. )
Hence, we see that the first row of the diagram above becomes a short exact
sequence
exp(zim-z) c* 0
and we may as well start our exact sequence on the second line.
So if M is compact, connected, we have an exact sqeuence

0 Z C

0 — HY(M,Z) - HY(M, Oy) — PicM — H*(M, Z).
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Lecture 9 2 February 2016

Comparison of sheaf and de Rahm cohomology

Consider the complex on a C* manifold M
0-R->0% 50l 4. 4 qdmM_,

where Q?\/I is the sheaf of C* functions on M. This is an exact sequence of
sheaves: exactness at (), is just the statement that df = 0 if and only if f is
locally constant and exactness at OO} is the Poincaré Lemma.

Lemma 77 (Poincaré Lemma). If U is a contractible open neihborhood of x €
M, and « is a p-form on U, then da = 0 if and only if thereisa p — 1 form w on
U with dw = a.

That is, 3, is a resolution of R. If we know that H{(M, Q]M) =0fori >0,
for all j, then )3, is an acyclic resolution of R, and

H!(M,R) = H(T(M, Q},)) = Hix (M, R).

Definition 78. Let F be a sheaf on a space X, and let &/ = {U;} be an open
cover of X which is locally finite. A partition of unity of 7 subordinate to I/ is
a collection of sheaf homomorphisms #;: 7 — F such that

(1) #; is zero on an open neighborhood of X\U;;
(2) 2 =id.

Definition 79. A sheaf is said to be fine if it admits a partition of unity subor-
dinate to any locally finite cover.

Example 80. Let F be a C* vector bundle on a C* manifold M, and let F be
the sheaf of C* sections of F, and U a locally finite cover, {¢;} a partition of
unity in the usual sense for If (meaning that ¢;: M — R are smooths, ¢; is zero
outside an open neighborhood of X\U;, and }; ¢; = 1).

Define #;(s) = ¢; - s.

Lemma 81. If F is a fine sheaf on a paracompact space X, then Hi(X, F)=0
foralli > 0.

Proof. By paracompactness, every open cover of X has a locally finite refine-
ment U. Let a € CP (U, F) with Sa = 0. Define, forip < ... < ip—1,

Tioyoipos = 2 @ig, iy 1)
jel
Each Uj(“j,io,...,ip,l) liveson Uj nUjy n...n Ul-pfl. Moreover, T]j(‘x]‘riO/---/ip—l) is
zero on an open neighborhood of U;; n ... N Uipfl\l,l]- inside of U;; n... N Ul-pi1
and hence we can extend the section by 0 to Uj, n ... n U;, , by the sheaf gluing

axiom. Thus,
-1
(Tigyipr)igip € CP (U, F).
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Now we have to compute 6T:

wa

(6T)ig,....i, =
k

277] ]/lo, /lk/ ‘U .. r\U
0 j€J
P

(Z ];iO/---r{;c/---ip|ui0m"'muip> (3)

k=0

I
J%

But since da = 0, then

P
dAp = Z iy ooy 0
k=0
onUjnUjn...n Uip- This implies that (3) is equal to

3) = > nj(aiy,..i,)

J€J

An immediate consequence of this is the following.
Theorem 82. Hix (M, R) = H' (M, R).

This, so far, was just a warm up. We really want to do this for DolbeauxIt
cohomology.

Theorem 83 (J-Poincaré Lemma or Dolbeault-Grothendieck Lemma). Let A(r) =
{(z1,...,2n) € C" | |2j| < r}. Then H%’q(A(r)) =0forallg>1

Let’s see the consequences of this theorem before we see the proof. Con-
sider the complex

mﬁ%qgﬁigﬁﬂgﬁi

on a complex manifold M. Qp is the sheaf of holomorphic p-forms, and Qﬁ/’ﬁ is

the sheaf of C* (p, q)-forms. This complex is exact at O’ M ,since a (p, 0)-form a
is holomorphic if and only if da = 0. Then ?? implies that this complex is exact
at Qﬁf forgq > 0. QK/’F is fine, hence acyclic, and therefore

HI(M, Q) = HI(T(M, Q")) = HE(M).

So now we can compare two gadgets that we don’t really understand.
Similarly, we have an exact sequence,

0 6. ~1 4 .~2
0-C—-Qy—Qy—0Qy—

but they are not fine — there are no partitions of unity for holomorphic func-
tions.
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Example 84. If dim M = 1, then we have a short exact sequence
0-C—-0% -0l -0

This gives a long exact sequence of cohomology

0 — HO(M,C) & H* (M) & HWO(M) — H!(M, C) — HY (M) — H' (M) — H2(M,C) — 0

Assuming that M is compact and connected, then H’(M,C) = C and also
HY0(M) = C, so the map f above is an isomorphism and the map g is the
Zero map.

Lecture 10 4 February 2016

Proof of the 0-Poincaré Lemma

Today we'll prove the J-Poincaré Lemma.

The goal is to show that Hg’q(A(r)) = 0 for all ¢ > 0. Recall that A(r) =
{(z1,...,2n) € C" | |24| < 1V i}.

The first step is to show that if a is a (p, g)-form on A(r) with da = 0. Then
for any s < r, there exists a (p, g — 1)-form B on A(r) such that 8 = a on A(s).

Step 1, Special Case

Proof of Theorem 83, special case. Let’s do a special case first. If (p, q) = (0,1) and
n = 1. Leta = f(z)dz. Then da = 0 is automatic. We need a C* function f
such that %P/;; = f(z). Let {,z € A(r) with z fixed and { varying. Then

(5)-35:4

Let z € A(s) for given s < 1, A a small disk centered at z contained in A(s).

Ae

Apply Stoke’s Theorem to A(s)\A,.

J B()dg 7] B()dg :j oBdZ A dg
ons) C—z one C— A(s)=he 00 C—2




The second integral on the left converges to 27if(z) as ¢ — 0. Hence, we get
the Generalized Cauchy Integral formula:

B op e ndl
27if(z) = LA(S) 7z " as) 00 &z

Henceforth write aﬁ/az as f.
Taking complex conjugates and replacing 8 by B,

—2mif(z) = J{M ﬁdg f /5 dC 4)

Note that if Bz = (), we get

27ip(2) ff Lt o2 5)

where g is a holomorphic function in z.
We want to check that (5) indeed defines the desired B, noting that g(z),
being holomorphic, doesn’t affect %/ ot = f- Note that

A7(0)log ¢ ~ 247) = i log]¢ 2P T+ [ ELag n g

Apply Stoke’s theorem to A(s) — A, again. Ase — 0,
LA f(p)loglp —zdf ——0
since if [f()| < B on A(s), then
U f(p)log o — z|2dC‘ < 2me-2-Bloge — 0.
O e—0
Thus, we get
LA( @) 10g ¢ —=dE - f  frlog|g—=2dg ndT - f L€ g ag = 2mip(a)
S

Notice that this is equal to (5). Differentiating under the integral sign with
respect to z, we get

—f &d@f fe —7dl ndf = Zm(’B
OA(s) AG) § —

(—z
Compare this to (4) to see that the above is equal to 27if(z). Therefore, this
particular choice of 8 solves the equation we're trying to solve. O
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Step 1, General Case

Proof of Theorem 83, general case. Proof by induction on n. Let n be arbitrary,
(p,q) arbitrary with g # 0. Let H; be the induction hypothesis that the claim is
true if « does not involve deH, .., dzy.

The base case Hj is that « = 0, so choose § = 0.

Now we want to show Hy,. Assume H; 1 for some j, and suppose a doesn’t
involve dzj,4,...,0z,. We can write & = py + dzj A Aj, where py, Ay don't
involve dzj, ..., dz,. We see that Ay is type (p,q — 1) and p is type (p, q). Since
oa = 0, the coefficients of 1y must be holomorphic in the variables Zjt1, - s Zn

By the special case applied to the variable z;, we can find some A} of type
(p,q — 1) such that

o)
é?j

= Ay,
and the coefficients of )\’1 are still holomorphic in Zjt1s- -1 Zne Then
AN —dZj A A =
doesn’t contain de, ...,dz,. And by substituting,
a=p —v+0A]

and da = 0 implies that (3 —v) = 0.

So we can apply the inductive hypothesis H; 1, which implies that there
exists a (p,q — 1)-form p on A(r) satisfying yy —v = Jp on A(s). Then a =
0(A] + p) on A(s). This concludes the general case. O

Step 2

Now that we’ve done the first step, the next is to do the full 0-Poincaré Lemma.
We need a sequence r, — r, with 7, < r, and a sequence B of solutions to
0Bx = a on A(s) with the By converging uniformly to some .

Fix a monotone increasing sequence 1, — r. Fix a k and assume g > 2.
Let rhoy be a C* bump function with support of A(r 1) and identically 1 on

A(i’k).
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