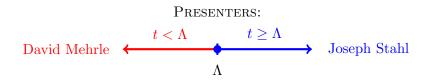
<u>Newman's Conjecture for function field</u> <u>*L*-functions</u>



September 28, 2014

JOINT WORK WITH: Tomer Reiter, Dylan Yott ADVISORS: Steve Miller, Alan Chang

The Riemann Hypothesis and the ζ Function

$$\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$$

$$\xi(s) = \xi(1-s), \quad \xi(s) := \frac{s(s-1)}{2} \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$$

$\label{eq:conjecture: Riemann Hypothesis} \frac{\text{Conjecture: Riemann Hypothesis}}{\xi(s)=0 \implies \Re(s)=\frac{1}{2}$

Pólya's idea

$$\Xi(x) = \xi\left(\frac{1}{2} + ix\right)$$

- If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.
- Riemann Hypothesis true \iff all zeros of $\Xi(x)$ are real.

$$\Xi \rightsquigarrow \Phi(u) = \frac{1}{2\pi} \int_0^\infty \Xi(x) \cos ux \, dx \rightsquigarrow \Xi_t(x) = \int_0^\infty e^{tu^2} \Phi(u) \cos ux \, du$$

NEWMAN'S CONJECTURE

THEOREM (DE BRUIJN, NEWMAN)

There exists $\Lambda \in \mathbb{R}$ such that if $t < \Lambda$, Ξ_t has a nonreal zero, and if $t \ge \Lambda$, Ξ_t has only real zeros.

Riemann Hypothesis $\iff \Lambda \le 0$

Conjecture (Newman) $\Lambda \ge 0.$

"The new conjecture is a quantitative version of the dictum that the Riemann hypothesis, if true, is only barely so." - Newman

Fact

It is known that $\Lambda \geq -1.2 \cdot 10^{-11}$.

FUNCTION FIELD ANALOGY

Slogan: Function fields behave a lot like number fields!

NUMBER FIELDS AND FUNCTION FIELDS		
Field	K (Q)	$\mathbb{F}_q(T)$
Ring of Integers	\mathcal{O}_K (Z)	$\mathbb{F}_q[T]$
Primes	$\mathfrak{p} \subseteq \mathcal{O}_K ((p) \subseteq \mathbb{Z})$	$\pi \in \mathbb{F}_q[T]$ irreducible
Zeta Function	$\zeta_K (\zeta_{\mathbb{Q}} = \zeta)$	Weil Zeta Function
	Riemann Hypothesis	Weil Conjectures

NEWMAN SETUP IN FUNCTION FIELDS

IDEA: Mimic Pólya's setup

$$q = p^n, \quad D \in \mathbb{F}_q[x], \quad L(s, \chi_D) := \sum_{f \text{ monic}} \frac{\chi_D(f)}{|f|^s}$$

(0)

$$L(s,\chi_D) = \sum_{n=0}^{\infty} c_n \left(q^{-s}\right)^n, \qquad c_n = \sum_{\substack{f \text{ monic} \\ \deg f = n}} \chi_D(f)$$

 $L(s, \chi_D)$ is a polynomial in q^{-s} of degree deg D - 1.

$$L(s,\chi_D) \rightsquigarrow \xi(s,\chi_D) \rightsquigarrow \Xi(x,\chi_D) \rightsquigarrow \Xi_t(x,\chi_D)$$

NEWMAN'S CONJECTURE IN FUNCTION FIELDS

LEMMA (ANDRADE, CHANG, MILLER 2013)

If $\Xi_t(x, \chi_D)$ has only real zeros for some $t \in \mathbb{R}$, then for all t' > t, $\Xi_{t'}(x, \chi_D)$ has only real zeros.

LEMMA (ANDRADE, CHANG, MILLER 2013)

There exists $\Lambda_D \in [-\infty, 0]$ such that

- 1. if $t \ge \Lambda$, then $\Xi_t(x, \chi_D)$ has only real zeros,
- 2. if $t < \Lambda$, then $\Xi_t(x, \chi_D)$ has a non-real zero.

EXAMPLES

$\underline{\text{EXAMPLE}}$ $D = x^5 + x^4 + x^3 + 2x + 2 \in \mathbb{F}_5[x] :$ $\Xi_t(x, D) = 10e^{4t} \cos 2x - 2\sqrt{5}e^t \cos x - 1$ $\Lambda_D \approx -0.188565066$

EXAMPLE

$$D(T) = T^3 + T \in \mathbb{F}_3[T] \implies \Xi_t(x, \chi_D) = \sqrt{3}e^t \cos x$$
$$\Lambda_D = -\infty$$

NEWMAN'S CONJECTURE IN FUNCTION FIELDS

Conjecture

Fix q a power of an odd prime. Then

 $\sup_{D\in\mathbb{F}_q[T] \text{ good}} \Lambda_D \ge 0.$

CONJECTURE

Fix $g \in \mathbb{N}$. Then

$$\sup_{\substack{D \text{ good, } \deg D = 2g+1\\q = p^k, \ p \ge 3}} \Lambda_D \ge 0.$$

NEWMAN'S CONJECTURE IN FUNCTION FIELDS

CONJECTURE

Fix $D \in \mathbb{Z}[T]$ square-free. Let p be prime, and let $D_p \in \mathbb{F}_p[T]$ be the polynomial obtained by reducing D modulo p. Then

$$\sup_{\substack{D_p \text{ good} \\ p \ge 3}} \Lambda_{D_p} \ge 0.$$

PREVIOUS WORK

THEOREM (ANDRADE, CHANG, MILLER 2013)

Let $D \in \mathbb{Z}[x]$ be square-free with deg D = 3. For each odd prime p, we can reduce D to $D_p \in \mathbb{F}_p[x]$. Then $\sup_p \Lambda_{D_p} = 0$.

PROOF SKETCH.

Step 1: Show that

$$\Lambda_{D_p} = \log \frac{|a_p(D)|}{2\sqrt{p}}$$

where $a_p(D)$ is the trace of Frobenius. Step 2: Use the Sato-Tate conjecture.

MOTIVATION FOR OUR STRATEGY

- If $q = p^n$ is a square, then $2\sqrt{q} \in \mathbb{Z}$, so $|a_q(D)|$ can actually equal $2\sqrt{q}$. In this case, $\Lambda_D = \log 1 = 0$.
- Weil conjectures ⇒ *E*/𝔽_p with the average number of points will acheive the maximum and minimum number of points possible over particular extensions of 𝔽_p.
- Judicious choices of D and p (such that $y^2 = D(x)$ has p+1 points over \mathbb{F}_p) will give us Newman's conjecture in certain cases!

The Weil Conjectures for Curves

THEOREM (WEIL CONJECTURES)

Let X be a curve over \mathbb{F}_q . The Hasse-Weil zeta function of X is defined as $Z(X,s) = \exp\left(\sum_{m\geq 1} \frac{N_m}{m} (q^{-s})^m\right)$, where N_m is the number of points of X over \mathbb{F}_{q^m} .

$$Z(X,s) = \frac{P(T)}{(1-T)(1-qT)}, \qquad P \in \mathbb{Z}[2]$$
$$Z(X,n-s) = \pm q^{f(X)}Z(X,s).$$

3. Let α be a root of P. Then $|\alpha| = q^{-1/2}$.

Example:

1.

2.

$$Z(\mathbb{P}^{1}, s) = \frac{1}{(1 - T)(1 - qT)}$$

A KEY LEMMA AND A KEY OBSERVATION

LEMMA (ANDRADE, CHANG, MILLER 2013)

 $\Lambda_D = 0 \iff L(s, \chi_D)$ has a double root.

OBSERVATION

 $L(s, \chi_D)$ is the numerator of the zeta function Z(X, s), $X: y^2 = D(x)$. More precisely, $Z(X, s) = Z(\mathbb{P}^1, s)L(s, \chi_D)$.

PROOF (IDEA)

Use the Euler products for Z(X,s), $L(s,\chi_D)$.

$$Z(X,s) = \prod_{\substack{\pi \text{ monic, irred.}}} (1 - N(\pi))^{-s}$$
$$L(s,\chi_D) = \prod_{\substack{\pi \\ \pi}} (1 - \chi(\pi)N(\pi)^{-s})^{-1}$$

RESULTS

THEOREM

The *L*-function corresponding to $D(x) = x^q - x$ has a double root. This implies that $\Lambda_D = 0$ (considering *D* over \mathbb{F}_q).

PROOF SKETCH

The curve $X: y^2 = x^q - x$ carries an action of \mathbb{F}_q that commutes with Frobenius. These actions reduce to actions at the level of cohomology $H_{\ell}^*(X)$. For $X: y^2 = x^q - x$, $Z(X,s) = Z(\mathbb{P}^1, s)L(s, \chi_D)$. Next, recall that the *L*-function is defined as a Gauss sum. A result of Nick Katz $\implies L(s, \chi_D) = (T^2q \pm 1)^g$.

RESULTS

COROLLARY

If \mathcal{F} is a family of good polynomials over various finite fields, and contains at least one polynomial over \mathbb{F}_q of the form $x^q - x$ for some q, then

$$\sup_{D \in \mathcal{F}} \Lambda_D = 0.$$

In particular, $\mathcal{F} = \{D \in \mathbb{F}_q[T] \mid D \text{ good}\}$ and $\mathcal{F} = \{D \mid \deg D = 2g + 1, 2g + 1 = p^k \text{ for some } p\}$ are such families.

This sup is really a max!

CONTINUING PREVIOUS RESULTS

THEOREM

Let $D \in \mathbb{Z}[T]$ be a square-free monic cubic polynomial. Then there exists a number field K/\mathbb{Q} such that

$$\sup_{\mathfrak{p}\subseteq\mathcal{O}_K}\Lambda_{D_{\mathfrak{p}}}=\max_{\mathfrak{p}\subseteq\mathcal{O}_K}\Lambda_{D_{\mathfrak{p}}}=0,$$

where $D_{\mathfrak{p}}$ denotes reduction modulo the prime ideal \mathfrak{p} .

FUTURE DIRECTIONS

- Degree greater than 3 case of the third Newman's conjecture.
- Fix a number field K/\mathbb{Q} and a square-free monic cubic $D \in \mathcal{O}_K[T]$. Does there exist a prime $\mathfrak{p} \subseteq \mathcal{O}_K$ such that $\Lambda_{D_{\mathfrak{p}}} = 0$ or a sequence of primes $\{\mathfrak{p}_n\}_{n \in \mathbb{N}}$ such that $\Lambda_{D_{\mathfrak{p}_i}} \to 0$?
- Does Newman's conjecture hold for the family $\mathcal{F} = \{D \mid \deg D = 2g + 1, g \in \mathbb{N}\}$ when 2g + 1 is not a power of a prime?

Acknowledgements

Presented by:

David Mehrle Joseph Stahl

Joint work with:

Tomer Reiter Dylan Yott

Advised by:

Steven J. Miller Alan Chang tomer.reiter@gmail.com
dtyott@gmail.com

josephmichaelstahl@gmail.com

dmehrle@cmu_edu

sjm1@williams.edu
alan.chang.math@gmail.com

Special thanks to:

The PROMYS Program Boston University The SMALL REU Williams College

Funded by: NSF Grants DMS1347804, DMS1265673, the PROMYS Program, and Williams College