ONE-PAGE REVIEW

§7.1 (Exponential Functions), §7.2 (Inverse functions), §7.3 (Logarithms)

MATH 1910 Recitation September 29, 2016

⁽¹⁾ and decreasing if (1) $f(x) = b^x$ is increasing if (2) The derivative of $f(x) = b^x$ is $\frac{d}{dx}b^x =$ (3) $\frac{d}{dx}e^x =$ (4) and $\frac{d}{dx}e^{f(x)} =$ (5) and $\frac{d}{dx}e^{kx+b} =$ (4) $\int e^x dx =$ (7) and $\int e^{kx+b} =$ for constants *k*, *b*. (5) A function *f* with domain *D* is **one to one** if (6) Let *f* have domain *D* and range *R*. The **inverse** f^{-1} is the unique function with domain *R* and range *D* such that $e^{(11)}$ on its domain. (7) The inverse of *f* exists if and only if *f* is (8) Horizontal Line Test: *f* is one-to-one if and only if every horizontal line (14) (9) To find the inverse function, solve y = f(x) for (13) in terms of $\int^{(15)}$ the graph of f through the line (10) The graph of f^{-1} is obtained by (11) If *f* is differentiable and one-to-one with inverse *g*, then for *x* such that $f'(g(x)) \neq 0$, $g'(x) = \frac{1}{f'(g(x))}.$ (12) The inverse of $f(x) = b^x$ is (13) Logarithm Rules (a) $\log_b(1) =$ (18) and $\log_b(b) =$ (19). (b) $\log_b(xy) =$ (20) and $\log_b\left(\frac{x}{y}\right) =$ (c) Change of Base: $\frac{\log_a(x)}{\log_a(b)} =$ (22). (d) $\log_b(x^n) =$ (14) $\frac{d}{dx}\ln(x) =$ and $\frac{d}{dx}\log_b(x) =$ (15) $\int \frac{1}{r} dr =$ (26).

Handout format by Drew Zemke

PRACTICE PROBLEMS

§7.1 (Exponential Functions), §7.2 (Inverse functions), §7.3 (Logarithms)

MATH 1910 Recitation September 29, 2016

(1) Calculate the derivative.

(a)
$$f(x) = 7e^{2x} + 3e^{4x}$$

(b) $f(x) = e^{e^x}$
(c) $f(x) = 3^x$
(d) $f(t) = \frac{1}{1 - e^{-3t}}$
(e) $f(t) = \cos(te^{-2t})$
(f) $\int_4^{e^x} \sin t \, dt$
(g) $f(x) = x \ln x$
(h) $f(x) = \ln(x^5)$
(i) $f(x) = \ln(\sin(x) + 1)$
(j) $f(x) = e^{\ln(x)^2}$
(k) $f(x) = \log_a(\log_b(x))$
(l) $f(x) = 16^{\sin x}$

(2) Calculate the integral.

.

(a)
$$\int (e^{x} + 2) dx$$

(b)
$$\int \frac{7}{x} dx$$

(c)
$$\int e^{4x} dx$$

(d)
$$\int \frac{\ln x}{x} dx$$

(e)
$$\int \frac{1}{9x - 3} dx$$

(f)
$$\int_{2}^{3} (e^{4t - 3}) dt$$

(g)
$$\int e^{t} \sqrt{e^{t} + 1} dt$$

(h)
$$\int e^{x} \cos e^{x} dx$$

(i)
$$\int \tan(4x + 1) dx$$

(j)
$$\int x 3^{x^{2}} dx$$

(3) For each function shown below, sketch the graph of the inverse.

- (4) Calculate g(b) and g'(b), where g is the inverse of f.
 - (a) $f(x) = x + \cos x, b = 1.$
 - (b) $f(x) = 4x^3 2x, b = -2.$
 - (c) $f(x) = \sqrt{x^2 + 6x}$ for $x \ge 0, b = 4$.
 - (d) $f(x) = \frac{1}{x+1}, b = \frac{1}{4}.$
- (5) Which of the following statements are true and which are false? If false, modify the statement to make it correct.
 - (a) If *f* is increasing, then f^{-1} is increasing.
 - (b) If *f* is concave up, then f^{-1} is concave up.
 - (c) If *f* is odd then f^{-1} is odd.
 - (d) Linear functions f(x) = ax + b are always one-to-one.
 - (e) $f(x) = \sin(x)$ is one-to-one.