Roller Coaster Design Project

The goal of this project is to design a rollercoaster and compute it's thrill. The roller coaster with the greatest thrill will win a prize! You may work with a partner if you wish.

DEFINITIONS

A roller coaster is the graph of a function $r(x)$ with domain $[0,200]$ such that:

- the roller coaster starts on the ground: $r(0)=0$.
- the maximum height of the roller coaster is 75 meters: $r(x) \leq 75$ for all $x \in[0,200]$.
- the roller coaster does not go underground: $r(x) \geq 0$ for all $x \in[0,200]$.
- the ride is smooth: $r(x)$ is differentiable everywhere on its domain.
- the angle of steepest descent for the roller coaster is never more than 80 degrees ($4 \pi / 9$ radians).

A drop of a roller coaster is an interval on which the graph of the coaster is strictly decreasing.
The thrill of a drop is the product of the angle of steepest descent in the drop (in radians) and the total vertical distance of the drop.

The thrill of a coaster is the sum of the thrills in each drop. This is the quantity you're trying to maximize.

Submission

You will submit a report that outlines the design of your roller coaster, including a graph of the coaster and all relevant computations. You will be graded on the following criteria. (50 points total)

Mathematical Content (35 points)

- The thrill of each drop and the total thrill are computed correctly and clearly stated. (10 points)
- The roller coaster adheres to the constraints of roller coaster design:
- The graph of the roller coaster passes through the origin, is less than 75 meters tall, is no more than 200 meters long, and does not go underground. (4 points)
- Calculus is used to demonstrate that the graph of the roller coaster is differentiable everywhere on its domain. (8 points)
- Calculus is used to find the angle of steepest descent in each drop, and verify that it is less than 80 degrees. (8 points)
- At least three equations for different types of functions (logarithmic, exponential, trigonometric, rational, polynomial, etc.) are used to define your roller coaster. (5 points)

PRESENTATION (15 points)

- The equation for the graph of the roller coaster is clearly listed as a piecewise function. (5 points)
- A graph of the roller coaster is produced using technology (such as desmos.com). (5 points)
- The report is well-organized and easy to follow. Computations are presented neatly by hand or typed. (5 points)

A Sample Coaster. There are three drops total, on the intervals $[50+5 \pi, 50+15 \pi],[50+25 \pi, 50+35 \pi]$, and $[160,200]$. Each of the first two drops has thrill $20(\pi / 4)$. The thrill of the final drop is

$$
(25-2.5 \ln (81)) \cdot \arctan (2.5)
$$

The total thrill is therefore $40\left(\frac{\pi}{4}\right)+(25-2.5 \ln (81)) \cdot \arctan (2.5)$, or approximately 51.7

