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If we find the area under a curve on an interval [a,b] using an infinite number of rectangles with the base
length of the rectangles getting closer and closer to zero, we use this notation, where f(x) is the function of
the curve:

lim
N→∞

n∑
i=1

f
(
a+ i

(b−a)
n

) (
(b−a)
n

)
=

∫b
a
f(x)dx

The limit is called the definite integral of f from a to b. The number a is the lower limit of integration, and
the number b is the upper limit of integration.

The first way we are going to evaluate such integrals is to look for common geometric shapes that we
already know how to determine the area of (circles, triangles, rectangles, or a combination of those). Try
some! To do so, sketch the curve given and then find its area.

(1)
∫6
−4
6 dx

SOLUTION:
∫6
−4
6 dx = 6 · 10 = 60 square units. This integral represents the area shaded below, so

the area is the area of a (6 by 10) rectangle.
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(2)
∫8
0

x

4
dx

SOLUTION:
∫8
0

x

4
dx = 1

2 · 8 · 2 = 8 square units. This integral represents the area shaded below, so

the area is the area of a (b = 8 by h = 2) triangle.

-4 6

0 8

-3 3

-4 4

(3)
∫3
−3

√
9− x2 dx

SOLUTION:
∫3
−3

√
9− x2 dx = 1

2 · π · 32 = 9π
2 square units. The function

√
9− x2 is the top half of a

circle of radius 3, so the integral represents the area shaded below. This has the area of half of a radius
3 circle.
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(4)
∫4
−4

(4− |x|) dx

SOLUTION:
∫4
−4

(4− |x|) dx = 1
2 · 8 · 4 = 16 square units. This integral represents the area shaded

below, so the area is the area of a (b = 8 by h = 4) triangle.
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Using what you know about area under a curve, try these! Sketches may help you see what is going on in
each problem.

(1) Given
∫3
0
f(x)dx = 4 and

∫6
3
f(x)dx = −1 evaluate:

(a)
∫6
0
f(x)dx

SOLUTION:
∫6
0
f(x)dx =

∫3
0
f(x)dx+

∫6
3
f(x)dx = 4− 1 = 3 .

(b)
∫3
6
f(x)dx

SOLUTION:
∫3
6
f(x)dx = −

∫6
3
f(x)dx = −(−1) = 1 .

(c)
∫6
3
−5f(x)dx

SOLUTION:
∫6
3
−5f(x)dx = −5

∫6
3
f(x)dx = −5 · (−1) = 5 .

(2) Given
∫4
2
x3 dx = 60

∫4
2
xdx = 6

∫4
2
dx = 2 evaluate:

(a)
∫2
2
x3 dx

SOLUTION:
∫2
2
x3 dx = 0 because

∫a
a
f(x) dx = 0 for any a and any f(x).

(b)
∫4
2

(
10+ 4x− 3x3

)
dx

SOLUTION: ∫4
2

(
10+ 4x− 3x3

)
dx = 10

∫4
2
1 dx+ 4

∫4
2
xdx− 3

∫4
2
x3 dx

= (10 · 2) + (4 · 6) − (3 · 60) = 136
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