(1) Find the following indefinite integrals.

(a)
$$\int (5x^3 - x^{-2} - x^{3/5}) dx$$

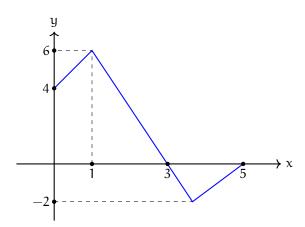
(b)
$$\int \frac{3}{x^{3/2}} \, \mathrm{d}x$$

$$(c) \int \frac{x^2 + 2x - 3}{x^4} \, \mathrm{d}x$$

$$(d) \int 18\cos(3z+8) dz$$

(2) If $f''(x) = x^3 - 2x + 1$, f'(0) = 0, and f(0) = 0, first find f' and then find f.

(3) Evaluate the sums. (You may use a calculator to do simple arithmetic.)


(a)
$$\sum_{k=1}^{20} 2k + 1$$

(b)
$$\sum_{j=1}^{10} j^3 + 2j^2$$

(c)
$$\sum_{j=101}^{200} j$$

(4) Consider the function $f(x)=x^2$ on the interval [0,1]. Find a formula for R_N and compute the area under the graph as a limit. You may use the formula $\sum_{j=1}^N j^2 = \frac{N(N+1)(2N+1)}{6}$.

(5) Let f(x) be the function plotted below.

Compute the following integrals.

(a)
$$\int_0^5 f(x) dx$$

(b)
$$\int_0^5 |f(x)| \, dx$$

(6) Compute the following definite integrals without using the Fundamental Theorem of Calculus. (*Hint: draw a picture.*)

3

(a)
$$\int_{1}^{3} |2x - 4| dx$$

(b)
$$\int_0^{\pi} \cos x \, dx$$

(c)
$$\int_{2}^{6} \sqrt{4 - (x - 4)^2} \, dx$$

(7) Recall that a function is called **even** if f(-x) = f(x) for all x, and a function is called **odd** if f(-x) = -f(x) for all x. Explain graphically:

(a) If
$$f(x)$$
 is an odd function,
$$\int_{-\alpha}^{\alpha} f(x) dx = 0.$$

(b) If
$$f(x)$$
 is an even function $\int_{-\alpha}^{\alpha} f(x) dx = 2 \int_{0}^{\alpha} f(x) dx$.

(8) Evaluate
$$\lim_{N\to\infty}\frac{1}{N}\sum_{j=1}^N\sqrt{1-\left(\frac{j}{N}\right)^2}$$
 by interpreting the limit as an area.