Cornell Dynamical Systems Seminar www.math.cornell.edu/~dynsem/

Igors Gorbovickis (Cornell University)

n-dimensional analog of Fatou bifurcation

Let k be a positive integer and $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ be a germ of a holomorphic map such that zero is an isolated fixed point of the k-th iteration of f. Then by $N_{k}(f)$ we denote the maximal number of periodic orbits of period k that can be "born" from the fixed point zero by a small perturbation of the linear part of f at zero. Given the linearization matrix Λ of f at zero, we ask which sequences of numbers $N_{1}(f), N_{2}(f), \ldots$ can be realized by some holomorphic map f. We restrict ourselves to the case when all eigenvalues of Λ are roots of unity of pairwise co-prime degrees and we give an explicit answer to the question when $n \leq 2$. We also show that the case when $n>2$ is essentially different from the lower dimensional ones.

Friday, October 22, 2010, 2:15 pm, in 205 Malott Hall

