Math 4410 Discussion questions, Sept. 9, 2019

Throughout these problems G is a graph with a finite number of vertices and edges.
(1) Let G be a simple graph with at least two vertices. Prove that there are two distinct vertices x, y of G such that $\operatorname{deg}(x)=\operatorname{deg}(y)$.
(2) Let $n=|V(G)|$. Consider the following three possible properties of G.

- $|E(G)|=n-1$.
- G is connected.
- G has no polygons.

Prove that any two of these properties implies the third.
(3) Let T be a tree with at least two vertices. Prove that T has at least two monovalent vertices.
(4) (a) Let P_{1} and P_{2} be polygons which are subgraphs of a graph G. Prove that if $e \in E\left(P_{1}\right) \cap E\left(P_{2}\right)$, then there exists a third polygon P_{3} in G such that $e \notin P_{3}$ and $E\left(P_{3}\right) \subseteq E\left(P_{1}\right) \cup E\left(P_{2}\right)$.
(b) Let T be a tree with $V(T)=[n]$. Let e be an edge in K_{n} which is not in T. Show that $T \cup\{e\}$ has a unique polygon.

