1. Let c_{n} be the number of lattice paths in \mathbb{R}^{2} from $(0,0)$ to (n, n) such that $x_{i} \geq y_{i}$ for all i. Prove that

$$
c_{n+1}=\sum_{i=0}^{n} c_{i} c_{n-i}
$$

2. Prove that $c_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
3. Let a_{n} be a sequence so that there exists k and q_{1}, \ldots, q_{k} such that

$$
a_{n}=q_{1} a_{n-1}+q_{2} a_{n-2}+\cdots+q_{k} a_{n-k}
$$

Prove that $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ equals $P(x) / Q(x)$ for some polynomials $P(x)$ and $Q(x)$.

