(1) Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$ be nonzero vectors in a vector space and let U be the span of X. We set d to be the dimension of U. Let $w: X \rightarrow \mathbb{R}$ be a weight function. Since X spans U the following set is not empty:

$$
\mathcal{B}=\{B \subseteq X: B \text { is a basis of } U .\}
$$

For any basis of U in \mathcal{B} we define the weight of B as

$$
w(B)=\sum_{x \in B} w(x)
$$

We are going to try to find the basis in \mathcal{B} of minimum weight by using a 'greedy alogorithm' as follows. We are going to choose e_{1}, e_{2}, \ldots until we reach e_{d} so that for all $i,\left\{e_{1}, e_{2}, \ldots, e_{i}\right\} \subset X$ and is a linearly independent set. We start by setting e_{1} to be a vector in X of minimum weight. If there is more than one vector with minimum weight choose one at random. Once you have picked e_{1}, \ldots, e_{i} choose e_{i+1} as follows. If $i=d$ stop since $\left\{e_{1}, \ldots, e_{i}\right\}$ is a basis of U. (Do you know why?) $B=\left\{e_{1}, \ldots, e_{d}\right\}$ is your basis. If not, then let $Z=\left\{x \in X: x\right.$ is not in the span of $\left.\left\{e_{1}, \ldots, e_{i}\right\}\right\}$ and set e_{i+1} to be a vector in Z of minimum weight (of vectors in Z). Then $\left\{e_{1}, \ldots, e_{i}, e_{i+1}\right\}$ is linearly independent. (Do you know why?) We repeat this procedure until we get a basis $B=\left\{e_{1}, \ldots, e_{d}\right\}$ of U which is a subset of X. (Why do we always end up with a basis?)

Example: $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ with

$$
x_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], x_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], x_{4}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], x_{5}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

and $w\left(x_{1}\right)=2, w\left(x_{2}\right)=1, w\left(x_{3}\right)=8, w\left(x_{4}\right)=3$ and $w\left(x_{5}\right)=6$. In this case your basis would be $B=\left\{x_{2}, x_{1}, x_{5}\right\}$.

Prove that if you choose B using this greedy algorithm, then B is a basis of U contained in X with the following strong minimizing property. Let $C=\left\{a_{1}, \ldots, a_{d}\right\}$ be any basis of U contained in X ordered so that $w\left(a_{1}\right) \leq w\left(a_{2}\right) \leq \cdots \leq w\left(a_{d}\right)$. Then for all $i, w\left(e_{i}\right) \leq w\left(a_{i}\right)$.
(2) Use the above question and hw 1 question \# 4 to prove Theorem 2.2 of the text.
(3) Let E be a finite set and \mathcal{I} be a set of subsets of E. A maximal subset of \mathcal{I} is a set $A \subseteq E$ such that

- $A \in \mathcal{I}$.
- If $B \in \mathcal{I}$ and $A \subseteq B$, then $A=B$.

For example, if E is a spanning subset of vectors in a vector space V and \mathcal{I} consists of the subsets of E which are linearly independent, then the maximal subsets of \mathcal{I} are the subsets of E which are also bases of V.

Let $w: E \rightarrow \mathbb{R}$ be a weight function. For $A \in \mathcal{I}$ define

$$
w(A)=\sum_{e \in A} w(e)
$$

Define a "greedy algorithm" to find a maximal subset of \mathcal{I} which has minimal weight so that your definition agrees with the first problem when E is a spanning subset of vectors and \mathcal{I} are the linearly independent subsets of \mathcal{I}.

Do not worry (yet!) about when your algorithm works and when it doesn't.
(4) Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$ be vectors in a vector space and let $\mathcal{I}=\{I \subseteq X: I$ is linearly independent . $\}$ Prove that if $I, J \in \mathcal{I}$ and $|I|<|J|$, then there exists $x \in J-I$ such that $I \cup\{x\} \in \mathcal{I}$.

