(1) Let G be a simple graph with vertices $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ Construct a new simple graph H as follows:

- $V(H)=V(G) \cup\left\{y_{1}, \ldots, y_{n}, z\right\}$
- G is an induced subgraph of H.
- The neighbors of z are $\left\{y_{1}, \ldots, y_{n}\right\}$.
- The neighbors of y_{i} are z and the neighbors of x_{i} in G.
(a) Prove that if G has no triangles, then H has no triangles.
(b) Prove that $\chi(H)=\chi(G)+1$.
(c) Prove that for all $n \geq 3$ there exists a simple graph G with no triangles and $\chi(G)=n$.
(2) Let G be a graph. For $t \geq 1$ define $\chi_{G}(t)$ to be the number of proper t-colorings of G.
(a) Prove that $\chi_{G}(t)=\chi_{G-e}(t)-\chi_{G / e}(t)$.
(b) Prove that if G has no loops, then $G(t)$ is a polynomial of degree $|V|$ with integer coefficients whose leading term is $t^{|V|}$ and whose nonzero coefficients alternate in sign.
(c) Prove that if G is simple, then the first two terms are $\chi_{G}(t)=t^{|V|}-|E| t^{|V|-1}+\ldots$.

