Math 4410 Discussion questions, Sept. 23, 2019

- (1) Let G be a simple graph with vertices $V(G) = \{x_1, \ldots, x_n\}$ Construct a new simple graph H as follows:
 - $V(H) = V(G) \cup \{y_1, \ldots, y_n, z\}$
 - G is an induced subgraph of H.
 - The neighbors of z are $\{y_1, \ldots, y_n\}$.
 - The neighbors of y_i are z and the neighbors of x_i in G.
 - (a) Prove that if G has no triangles, then H has no triangles.
 - (b) Prove that $\chi(H) = \chi(G) + 1$.
 - (c) Prove that for all $n \ge 3$ there exists a simple graph G with no triangles and $\chi(G) = n$.
- (2) Let G be a graph. For $t \ge 1$ define $\chi_G(t)$ to be the number of proper t-colorings of G.

 - (a) Prove that $\chi_G(t) = \chi_{G-e}(t) \chi_{G/e}(t)$. (b) Prove that if G has no loops, then G(t) is a polynomial of degree |V| with integer coefficients whose leading term is $t^{|V|}$ and whose nonzero coefficients alternate in sign.
 - (c) Prove that if G is simple, then the first two terms are $\chi_G(t) = t^{|V|} |E|t^{|V|-1} + \dots$