Math 4410 Discussion questions, Oct. 25, 2019

- (1) Consider the following three posets.
 - $P_1 = (\mathbb{Z}^{>0}, \leq_1)$, where \leq_1 denotes divides. So in this poset $3 \leq_1 6$, but $3 \not\leq_1 7$.
 - P₁ = (Z⁻¹, ≤₁), where ≤₁ denotes divides both this poset J ≤₁ 0, but J ≥₁ 1.
 P₂ = (M, ≤₂ where M is monomials in infinitely many variables {x₁, x₂, x₃,...}, and ≤₂ is divides. So in this poset x₁³x₅² ≤ x₁³x₃x₅⁷.
 P₃ = (FNZ, ≤₃) where FNZ is finitely nonzero sequences with values in Z^{≤0} and (a₁, a₂, a₃,...) ≤
 - (b_1, b_2, b_3, \dots) if and only if $a_i \leq b_i$ for all i.
 - Which, if any, pairs of posets are isomorphic?
- (2) Problem 6A of the text.
- (3) Let S be the symmetric chain covering of B_n in the text (and class). For $i \leq n/2$ how many chains in the covering does the minimal subset have cardinality i? For instance, for any n and i = 0 the answer is one. For n = 3 and i = 1 the answer is two.