(1) Consider the following three posets.

- $P_{1}=\left(\mathbb{Z}^{>0}, \leq_{1}\right)$, where \leq_{1} denotes divides. So in this poset $3 \leq_{1} 6$, but $3 \not \mathbb{L}_{1} 7$.
- $P_{2}=\left(\mathcal{M}, \leq_{2}\right.$ where \mathcal{M} is monomials in infinitely many variables $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$, and \leq_{2} is divides. So in this poset $x_{1}^{3} x_{5}^{2} \leq x_{1}^{3} x_{3} x_{5}^{7}$.
- $P_{3}=\left(\mathcal{F N} \mathcal{Z}, \leq_{3}\right)$ where $\mathcal{F N} \mathcal{Z}$ is finitely nonzero sequences with values in $\mathbb{Z} \leq 0$ and $\left(a_{1}, a_{2}, a_{3}, \ldots\right) \leq$ $\left(b_{1}, b_{2}, b_{3}, \ldots\right)$ if and only if $a_{i} \leq b_{i}$ for all i.
Which, if any, pairs of posets are isomorphic?
(2) Problem 6A of the text.
(3) Let \mathcal{S} be the symmetric chain covering of B_{n} in the text (and class). For $i \leq n / 2$ how many chains in the covering does the minimal subset have cardinality i ? For instance, for any n and $i=0$ the answer is one. For $n=3$ and $i=1$ the answer is two.

