Math 4410 Discussion questions, Nov. 8, 2019

(1) Let G be a simple graph with n vertices and m edges. Order the edges $E=\left\{e_{1}, \ldots, e_{m}\right\}$. A broken circuit is a circuit with its least element removed. (Note: A circuit is a polygon.) So if a circuit was $\left\{e_{5}, e_{7}, e_{1}, e_{3}\right\}$ then $\left\{e_{3}, e_{5}, e_{7}\right\}$ is a broken circuit. The order in which the elements of the circuit (and broken circuit) are listed does not matter. Only the order determined by listing them e_{1}, e_{2}, etc. Now define f_{i} to be the number of subsets of edges of cardinality i which do not contain a broken circuit.

Theorem (Whitney, '32)

$$
\chi_{G}(t)=f_{0} t^{n}-f_{1} t^{n-1}+\cdots+(-1)^{n-1} f_{n-1} t+(-1)^{n} f_{n}
$$

We prove this in several steps. (Remark - remember, $\chi_{G}(t)$ counts the number of colorings using t or fewer colors.)
(a) Let A be a nonempty subset of $[m]$. Define E_{A} to be the subgraph of G consisting of all of the vertices of G and all edges $\left\{e_{i}: i \in A\right\}$. Now let $N(A)$ be the number of colorings (not proper!) using t or fewer colors such that for every edge $e \in E_{A}$, the endpoints of the edge e have the same color.

Example: $G=K_{4}$ and we order the edges $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$. If $A=\{1,6\}$, then $N(A)=t^{2}$. If $A=\{5\}$, then $N(A)=t^{3}$. Write down a formula for $N(A)$ in terms of the number of components of E_{A}. Show that inclusion-exclusion immediately implies that $\chi_{G}(t)$ is a polynomial of degree n whose initial term is t^{n}.
(b) Let \mathcal{B} be the broken circuits of G. Order them $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{s}\right\}$ so that if $i<j$, then B_{j} is not contained in B_{i}. For instance, you could start with the broken circuits of cardinality three, then cardinality four, etc. Now define P_{1} to be all $A \subseteq[m]$ such that $B_{1} \subseteq E_{A}$. Prove that

$$
\sum_{A \in P_{1}}(-1)^{|A|} N(A)=0
$$

(c) Now, for $2 \leq i \leq s$ define P_{j} to be all subsets A of $[m]$ such that $B_{j} \subseteq E_{A}$ and $B_{i} \nsubseteq E_{A}$ for $i<j$. Some of the P_{j} may, of course, be empty. By definition, the set of all $A \subseteq[m]$ such that E_{A} contains a broken circuit is the disjoint union of $P_{1}, P_{2}, \ldots, P_{s}$. Prove that

$$
\sum_{j=1}^{s} \sum_{A \in P_{j}}(-1)^{|A|} N(A)=0
$$

(d) Prove the theorem. (If E_{A} has no broken circuits, then E_{A} has no circuits - so the number of components in E_{A} is)
(2) Let

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

be the Riemann zeta function. Prove that

$$
\frac{1}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
$$

