Math 4410 HW 10 - Due Dec. 2 in class

1. Problem 13 F of the text. Ignore the last sentence involving Theorem 13.7.
2. Problem 13 G of text.
3. Let A_{n} be the permutations $\pi \in S_{n}$ such that $\pi(1)>\pi(2)<\pi(3)>\pi(4)<\ldots$ etc. Similarly, let $B(n)$ be the permutations $\pi \in S_{n}$ such that $\pi(1)<\pi(2)>\pi(3)<\pi(4)>\ldots$. So, if we write permutations as an ordered sequence, $[315264] \in A_{6},[1527364] \in B_{7}$ and $[321] \in S_{3}$, but neither A_{3} nor B_{3}. Now set $a_{n}=\left|A_{n}\right|$ and $b_{n}=\left|b_{n}\right|$. By definition $a_{0}=b_{0}=1$. Prove
(a) $a_{n}=b_{n}$.
(b) $2 a_{n+1}=\sum_{i=0}^{n}\binom{n}{i} a_{i} a_{n-i}$.
