Math 4410 HW 11 - Will not be collected

1. Let C be a convex n-gon in the plane. How many ways are there to draw chords which divide the n-gon into triangles? For a square there are two - one for each of the two diagonals. For a pentagon there are five - for each vertex v of the pentagon there is one way to divide the pentagon into triangles by having two chords starting at v .
2. Let a_{n} be a sequence so that there exists k and q_{1}, \ldots, q_{k} such that

$$
a_{n}=q_{1} a_{n-1}+q_{2} a_{n-2}+\cdots+q_{k} a_{n-k}
$$

Prove that $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ equals $P(x) / Q(x)$ for some polynomials $P(x)$ and $Q(x)$.
3. Let a_{n} be as defined in HW 10 problem \#3. Let $F(x)=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}$ be the associated exponential generating function.
(a) Prove that $2 F^{\prime}(x)=(F(x))^{2}+1$.
(b) Prove that $F(x)=\sec x+\tan x$.

