Math 4410 HW 2 - Due Sept. 23, 2019 in class

- 1. Let X be a nonempty finite set and \mathcal{I} a nonempty set of subsets of X which is closed under subsets. Equivalently, if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$. Furthermore, suppose there exist $I, J \in \mathcal{I}$ such that |I| < |J| and for all $x \in J - I$, $I \cup \{x\} \notin \mathcal{I}$. Prove there exists a weight function $w : X \to \mathbb{R}$ such that the greedy algorithm defined in class does NOT work.
- 2. Let X be a nonempty finite set and \mathcal{I} a nonempty set of subsets of X. Assume that \mathcal{I} satisfies the following two properties.
 - If $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.
 - If $I, J \in \mathcal{I}$ and |I| < |J|, then there exists $x \in J I$ such that $I \cup \{x\} \in \mathcal{I}$.

Prove that \mathcal{I} satisfies the greedy algorithm defined in class.

- 3. A graph G is *bipartite* if there exist two disjoint subsets A and B of the vertices of G such that every edge has one endpoint in A and another in B. Prove that G is bipartite if and only if it has no odd polygons.
- 4. How many trees with vertex set [n] do not contain the edge $\{1,2\}$? (Hint: What is the probability that a random tree with vertex set [n] does contain a given edge?)