Math 4410 HW 2 - Due Sept. 23, 2019 in class

1. Let X be a nonempty finite set and \mathcal{I} a nonempty set of subsets of X which is closed under subsets. Equivalently, if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$. Furthermore, suppose there exist $I, J \in \mathcal{I}$ such that $|I|<|J|$ and for all $x \in J-I, I \cup\{x\} \notin \mathcal{I}$. Prove there exists a weight function $w: X \rightarrow \mathbb{R}$ such that the greedy algorithm defined in class does NOT work.
2. Let X be a nonempty finite set and \mathcal{I} a nonempty set of subsets of X. Assume that \mathcal{I} satisfies the following two properties.

- If $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.
- If $I, J \in \mathcal{I}$ and $|I|<|J|$, then there exists $x \in J-I$ such that $I \cup\{x\} \in \mathcal{I}$.

Prove that \mathcal{I} satisfies the greedy algorithm defined in class.
3. A graph G is bipartite if there exist two disjoint subsets A and B of the vertices of G such that every edge has one endpoint in A and another in B. Prove that G is bipartite if and only if it has no odd polygons.
4. How many trees with vertex set [n] do not contain the edge $\{1,2\}$? (Hint: What is the probability that a random tree with vertex set $[n]$ does contain a given edge?)

