Math 4410 HW 3 - Due Sept. 30, 2019 in class IN TEX

1. Let G be a simple graph with subgraphs H_{1}, H_{2}. We write $G=H_{1} \cup H_{2}$ if $V(G)=V\left(H_{1}\right) \cup V\left(H_{2}\right)$ and $E(G)=E\left(H_{1}\right) \cup E\left(H_{2}\right)$. Prove that $\chi(G) \leq \chi\left(H_{1}\right) \cdot \chi\left(H_{2}\right)$. (Hint: First show that you can assume that $V(G)=V\left(H_{1}\right)=V\left(H_{2}\right)$.)
2. Let G be a simple graph with $V(G)=[n]$. The complement of G is the simple graph whose vertex set is $[n]$ and whose edges are the complement of the edges of G. Let \bar{G} be the complement of G. Prove that

$$
\chi(G)+\chi(\bar{G}) \leq n+1
$$

3. Let T and T^{\prime} be trees with vertex set $[n]$. Prove that $\chi_{T}(t)=\chi_{T^{\prime}}(t)$ and provide an explicit formula for $\chi_{T}(t)$.
