Math 4410 HW 5 - Due Oct. 25 in class

1. Let z be an integer (possibly negative). Define $z_{\star}=\max (1, z)$.
(a) (warm up for the next question) Let $m_{0} \leq m_{1} \leq m_{2}$ be positive integers. Prove that there exists a bipartite graph G such that

- $V(G)$ is the disjoint union of X and Y, and every edge has one end point in X and the other in Y.
- $X=\left\{x_{0}, x_{1}, x_{2}\right\}$ and for all $0 \leq i \leq 2, \operatorname{deg}\left(x_{i}\right)=m_{i}$.
- G has exactly

$$
m_{0} \cdot\left(m_{1}-1\right)_{\star} \cdot\left(m_{2}-2\right)_{\star}
$$

complete matchings.
(b) Now let $m_{0} \leq m_{1} \leq m_{2} \leq \cdots \leq m_{n-1}$ be a sequence of positive integers. Prove there exists a bipartite graph G such that

- $V(G)$ is the disjoint union of X and Y, and every edge has one end point in X and the other in Y.
- $X=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ and for all $0 \leq i \leq n-1, \operatorname{deg}\left(x_{i}\right)=m_{i}$.
- G has exactly

$$
\prod_{i=0}^{n-1}\left(m_{i}-i\right)_{\star}
$$

complete matchings.
2. Problem 5D of the text.
3. Problem 6B of the text.

