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Chapter 1

Affine and convex geometry

1.1 Affine subspaces

The geometry of polytopes begins with the study of affine spaces and convexity.
An affine subspace of Euclidean space is any translation of a linear subspace. Since
most geometric concepts such as distance, angle and colinearity are invariant un-
der translation we should expect them to behave reasonably in affine spaces. The
translation of a subset A of Rd by v ∈ Rd is defined by

A+ v = {x + v : x ∈ A}.

An affine subspace of Rd is a subset of Rd which is either empty or of the form W+v,
where W is a linear subspace. Familiar examples include points, lines and planes.

Problem 1 Suppose A = W + v = W ′ + v′ is an affine subspace of Rd. Prove that
W = W ′. Also, A+ (−y) = W for every y ∈ A.

As is the case with linear subspaces, the notions of dimension, span and in-
dependence are critical to understanding affine subspaces. The dimension of the
empty set is defined to be −1, otherwise the dimension of an affine subspace W + v
is defined to be the dimension of the linear subspace W. The previous problem shows
that this is well defined and that the dimensions of points, lines and planes are what
we expect: 0, 1 and 2.

Problem 2 The intersection of a set of affine subspaces of Rd is an affine subspace
of Rd.

3



4 CHAPTER 1. AFFINE AND CONVEX GEOMETRY

Let A ⊆ Rd. Consider the intersection of all affine subspaces which contain A.
This is a nonempty intersection since Rd is such a set. By the above problem this
intersection is the smallest affine subspace which contains A. It is called the affine
span of A and we denote it by aspan(A).

The affine analogues of linear combinations are called affine combinations. A
linear combination of the form

a1x1 + · · ·+ anxn

is an affine combination if a1 + · · ·+ an = 1.

Problem 3 The affine span of A equals the set of all affine combinations of elements
of A.

What is the affine notion corresponding to linear independence? If {x1, . . . ,xn}
is a finite set of distinct point of Rd, then we say they are affinely independent if
their affine span has dimension n− 1.

Problem 4 A subset A of Rd is affinely independent if and only if no element of
A can be written as an affine combination of the other elements of A.

The definition implies that the empty set is affinely independent as is any set of
cardinality one.

Just as linear maps are the natural morphisms for linear spaces, affine maps
are the natural morphsims for affine spaces. A function f : Rd → Re is an affine
map if f(x) = T (x) + v for some linear map T : Rd → Re and fixed vector v ∈ Re.

Problem 5 If f : Rd → Re is an affine map and A is an affine subspace of Rd, then
f(A) is an affine subspace of Re. Suppose B is an affine subspace of Re. Is f−1(B)
an affine subspace of Rd?

Exercise 1.2

1. Prove that A ⊆ Rd is an affine subspace if and only if A is the solution to a
set of simultaneous linear equations in d variables.

2. Recall that for two distinct elements x and y, the line determined by them
consists of all points of the form tx+(1− t)y, t ∈ R. Prove that A is an affine
subspace if and only if for all x 6= y in A, the line determined by x and y is
contained in A.
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3. Let A and B be two affinely independent subsets of Rd. Prove that if |B| > |A|,
then there exists x ∈ B − A such that A ∪ {x} is affinely independent.

4. An affine hyperplane of Rd is an affine subspace of dimension d − 1. If H
is an affine hyperplane, then there exists constants a1, . . . ad, and c such that
H = {(x1, . . . , xd) ∈ Rd : a1x1 + · · · + anxn = c}. Let A be an affine subspace
and H an affine hyerplane which does not contain A. Prove that if A∩H 6= ∅,
then dim(A ∩H) = dimA− 1.

5. Prove that if A is an i-dimensional affine subspace of Rd, then A is the inter-
section of d− i affine hyperplanes.

6. Let

x1 =

x1,1
...
xd,1

 , . . . ,xn =

x1,n
...

xd,n


be n elements of Rd written as column vectors. Prove that x1, . . . ,xn are
affinely independent if and only if

x̂1 =


1
x1,1

...
xd,1

 , . . . , x̂n =


1
x1,n

...
xd,n


are linearly independent in Rd+1.

7. Let T : Rd → Re be a linear map and v a fixed vector in Rd. Then S : Rd → Re

defined by S(x) = T (x + v) is an affine map. Show that not all affine maps
are of this form. Characterize which ones are.

1.3 Convexity

One way to view affine subspaces is as those sets which are closed under forming
lines (Exerc. 2). Convex sets are those that are closed under forming line segments.
For two points x,y ∈ Rd, the line segment between them, which we denote by [x,y],
is the set of all points of the form t x + (1− t)y, 0 ≤ t ≤ 1.

Definition 1.3.1 A subset A of Rd is convex if for all x,y ∈ A the line segment
[x,y] ⊆ A.
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Figure 1.1: Some convex subsets of R2

Problem 6 The intersection of a collection of convex sets is convex.

As was the case with affine spaces, the above problem implies that for any
subset A of Rd there is a smallest convex set which contains A. It is called the
convex hull of A and we denote it by ch(A).

As can be seen from the above examples convex sets can be empty, open,
closed, neither open nor closed, bounded or unbounded. In a fashion similar to
using affine combinations to form the affine span, convex combinations can be used
to form the convex hull of a set. A convex combination is a linear combination

a1x1 + · · ·+ anxn

such that 0 ≤ ai ≤ 1 and a1 + · · · + an = 1. Equivalently, a convex combination is
an affine combination with all of the scalars nonnegative.

Problem 7 The convex hull of A consists of all convex combinations of elements
of A.

At this point we know that if y ∈ ch(A), then y is a convex combination of
points of A. However, we do not yet have a bound on the number of elements needed.

Problem 8 (Carathéodory) Let y ∈ ch(A), where A ⊆ Rd. Then there exists
x1, . . . ,xd+1 (not necessarily distinct) in A such that y is a convex combination
of the xi.

Exercise 1.4

1. If K is convex and T is an affine map, then T (K) is convex.
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2. Let K be a convex set and x,y be distinct points not in K. If x ∈ ch(K∪{y}),
then y /∈ ch(K ∪ {x}).

3. Let f : R→ R be a twice differentiable function with f(x) ≥ 0 and f ′′(x) ≤ 0
for all x ∈ R. Prove that for any a < b the points under the curve y = f(x),
i.e.

{(x, y) : a ≤ x ≤ b, y ≤ f(x)}
is a convex subset of R2.

1.5 Simplices

Simplices are one of the fundamental examples and building blocks of polytopes.
They are the higher dimensional analogues of line segments, triangles and tetrahedra.
The d-simplex, which we denote by ∆d, is the convex hull of the standard unit
coordinate vectors e1, . . . , ed+1 in Rd+1. Equivalently,

∆d = {(x1, . . . , xd+1) : 0 ≤ xi ≤ 1, and x1 + · · ·+ xd+1 = 1.}

The dimension of a convex set is the dimension of its affine span. Since the
affine span of ∆d is the hyperplane x1 + · · ·+ xd+1 = 1 it is d-dimensional.

A d-simplex (as opposed to the d-simplex) is the convex hull of d+ 1 affinely
independent points. A d-simplex can live in any Re as long as e ≥ d. For instance,
any triangle is a 2-simplex.

Exercise 1.6

1. A d-simplex is d-dimensional.

2. Some texts define the d-simplex as the convex hull of {~0, e1, . . . , ed in Rd.}
Denote this version of the simplex by ∆̃d. Prove that if S is a d-simplex in Re,
then there exists an injective affine map T : Rd → Re such that T (∆̃) = S. To
what extent is T uniquely defined?

3. Let S = ch(x0, . . . ,xd} be a d-simplex. A face of S is the convex hull of any
subset of {x0, . . . ,xd}. Prove that if F is a face of S other than S itself, then
there exists a hyperplane H such that F = S ∩H.

4. Is the closure of a convex set convex?

5. Is the convex hull of a closed set closed?
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Chapter 2

What is a polytope?

Some of the first geometric objects that a child encounters are convex polygons and
polyhedra. Squares, hexagons, cubes and pyramids are familiar to almost anyone
over the age of five. What are the higher dimensional analogues of these shapes?
There are several approaches to this question. Here we will consider two apparently
different possibilities. The first idea is that a polyhedron is the smallest convex
subset which contains its vertices. The second approach is to examine the problem
from the point of view of linear optimization.

2.1 V-polytopes

Definition 2.1.1 A subset P of Rd is a V-polytope if it is the convex hull of a
finite set of points.

By definition the empty set is a V-polytope. What are some examples of V-
polytopes? Perhaps the easiest to write down are the d-simplex, the d-cube and the
d-crosspolytope. We have already seen the d-simplex. The d-cube is defined by

�d = {x = (x1, . . . , xd) : |xi| ≤ 1, i = 1, . . . , d}.

So, the 2-cube is a square and the 3-cube is a cube. The d-cube is a d-dimensional
V-polytope. The d-crosspolytope is the convex hull of {±ei : 1 ≤ i ≤ d} in Rd. By
definition it is a V-polytope and it is easy to see that it is d-dimensional. We denote
it by �d. The 3-crosspolytope is the octahedron.

Problem 9 Let f : Rd → Re be an affine map and P a V-polytope. Is f(P )
necessarily a V-polytope? What about f−1(P )?

9
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Problem 10 Let P be a V-polytope in Rd. If A is an affine subspace of Rd, is P ∩A
a V-polytope?

An alternative way to generalize convex polygons is from the point of view of
linear optimization. The general idea of linear optimization is that you are asked to
find the maximum (or minimum) of a linear objective function when restricted to a
number of linear inequalities. Here is an example to illustrate the point. Suppose
that you are responsible for purchasing the gold and platinum your company needs
during the coming year. The company has contracts with two mines, one for each
metal. In order to insure continued business with the mines you must purchase at
least 2 tons of platinum and 3 tons of gold. Your budget, plus the fact that platinum
is approximately 50 percent more expensive than gold, implies that if you purchase
x tons of platinum and y tons of gold, then 2x + 3y ≤ 24. Your last constraint is
that due to political pressure from the owner of the platinum mine you must be sure
to purchase at least 2 more tons of platinum than gold. As usual, your objective is
to maximize the company’s profit. Currently the items with more platinum have a
greater profit margin, so you can estimate the profit by the expression 6x + y. We
can sum up your problem as trying to maximize 6x+ y given that

x ≥ 2
y ≥ 3

2x + 3y ≤ 24
x − y ≥ 2.

The situation is depicted in Figure 2.1. The shaded quadrilateral is the intersection
of the four inequalities above and represents the feasible region, those points (x, y)
which satisfy all the constraints. The dotted lines represent the objective function.
From the diagram the optimal answer is 6 tons of platinum and 4 tons of gold.
Notice that no matter what the objective function is, as long as it is linear and
your goal is to maximize (or minimize) it, then an optimal solution is at one of the
vertices of the polygon. (Can you explain why?) In practice the number of variables
and constraints can easily be several thousand.

With the above model in mind we now introduce H-polytopes. The dual of Rd,
which we denote by (Rd)?, is the real vector space of all linear functions a : Rd → R.
We will denote the value of a at x ∈ Rd by a · x. This notation suggests the usual
dot product on Rd, and if we coordinatise (Rd)? in the usual way it is the ‘usual’
dot product. A closed half-space of is any subset of the form

Ha,b = {x ∈ Rd : a · x ≥ b}

for some fixed a 6= 0 in (Rd)? and b ∈ R. While H0,b is not a closed half-space, we
will use this notation where appropriate. Obviously H0,b is either all of Rd or empty
depending on the sign of b.
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(5,3)

X=2

Y=3

2X + 3Y = 24

(2,3)

(2, 20/3)

(6,4)

6 X + Y = B

X − Y = 2

Figure 2.1: An H-polytope
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Definition 2.1.2 An H-polytope is a bounded set which is the intersection of finitely
many closed half-spaces.

Since closed half-spaces are convex, any H-polytope is convex.

Problem 11 �d, �d, and any simplex are H-polytopes.

As a hyperplane is the intersection of two closed half-spaces we can see that if
P is an H-polytope and H a hyperplane, then P ∩H is an H-polytope. By (Exerc.
1.2.5) any affine subspace can be written as the intersection of hyperplanes. So,
Problem 10 is very easy when applied to H-polytopes.

Problem 12 Is the affine image of an H-polytope an H-polytope?

2.2 Examples of Polytopes

Here we give some examples of polytopes. In each case it will be obvious from the
definition that it is either an H or V-polytope, but no so obvious if it is the other.

The permutahedron in Rd is the convex hull of all possible permutations of the
coordinates of the vector 

1
2
...
d

 .
For instance, the permutahedron in R2 is the line segment between

[
1
2

]
and

[
2
1

]
.

Let P be a convex subset of Rd. The prism of P is defined by

prism(P ) = P×[0, 1] = {(x1, . . . , xd, xd+1) ∈ Rd+1 : (x1, . . . , xd) ∈ P and 0 ≤ xd+1 ≤ 1.}

Figure 2.2 is a simple example. As we will see in Exercise 3, if P is an H or
V-polytope, then so is prism (P ).

In order to define our next example, order polytopes, we recall the definition
of a partially ordered set. A partially ordered set, which usually called a poset, is a
pair (Π,≤) such that for all x, y, z ∈ Π

• x ≤ x. (reflexivity)
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Figure 2.2: Prism (P )

• If x ≤ y and y ≤ x, then x = y (antisymmetry).

• If x ≤ y and y ≤ z, then x ≤ z (transitivity).

When the binary relation is clear we will frequently suppress ≤ . If x ≤ y or y ≤ x,
then x and y are comparable. Otherwise they are incomparable. It may well
happen that the binary relation is empty, in which case all pairs of distinct elements
of the poset are incomparable and Π is called an antichain.

Examples of posets are everywhere in mathematics. Familiar ones include the
rationals or reals with the usual ordering. For any set X, we use BX to represent
the poset of all subsets of X with ⊆ as the binary relation. In particular, the poset
of all subsets of [n] is denoted Bn. Another interesting poset is (Z+, |) where the
binary relation is “divides”. For instance, in this poset 3|6 but 3 6 | 5. We will use
Dn to denote (Z+, |) restricted to the finite poset consisting of those elements which
divide n. For instance, D4 has three elements, 1 < 2 < 4.

An isomorphism between posets (Π,≤) and (Π′,≤′) is a bijection φ : Π→ Π′

such that x ≤ y if and only if φ(x) ≤′ φ(y). The face poset of a convex set K,
denoted F(K), is the partially ordered set of faces of K with the subset relation.
(Faces of convex sets are defined below, Definition 2.4.1)

Let [n] = {1, . . . , n}. A natural poset on [n] is a poset structure ([n],≤[n]) such
that if i ≤[n] j, then i ≤ j (the usual ≤ on the integers). The order polytope for
([n],≤[n]) is

{(x1, . . . , xn) ∈ [0, 1]n : If i ≤[n] j, then xi ≤ xj.
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By definition, order polytopes are H-polytopes.

Exercise 2.3

1. What is the dimension of the permutahedron in Rd?

2. What is the dimension of prism (P )?

3. Show that if P is an H or V-polytope, then so is prism (P ).

4. Let (L,≤) be a finite poset with |L| = n. Show that there exists a natural poset
on [n] isomorphic to (L,≤).

5. Let (L,≤) be a poset with L countably infinite. Is there a natural poset on Z
isomorphic to (L,≤)?

6. Let ([n],≤[n]) be a natural poset on [n]. What is the dimension of its order
polytope?

7. Show that the order polytope of the usual linear order on [n] is a simplex. What
are its vertices?

As you can see, sometimes V-polytopes appear to be better while other times
H-polytopes look more useful. Our analysis of the exact nature of the relationship
between these two definitions will occupy the next two chapters. In the mean time
we will use ‘polytope’ to refer to both types. Central to the study of any polytope
are its faces.

2.4 Faces of polytopes

What are the higher dimensional generalizations of the vertices, edges and faces of a
three-dimensional polyhedron? A brief examination of the cube shows that each of
these is the intersection of the cube and a hyperplane where the cube is completely
contained on one side of the hyperplane.

An inequality of the form a · x ≤ b, a ∈ (Rd)?,x ∈ Rd, b ∈ R is valid for a
convex set K if it holds for all x ∈ K. An important special case is ~0 · x ≤ 0.

Definition 2.4.1 A face of a convex set K in Rd is any subset of the form Ha,b∩K,
where a · x ≤ b is a valid inequality for K.
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Since ~0 ·x ≤ 0 is always valid, K is always a face of K. It is called the improper face
of K. The maximal proper faces of K are called the facets of K. If K is bounded,
then it is easy to see that the empty set is a face of K. The vertices of K are its
zero-dimensional faces. Similarly, the edges of K are its one-dimensional faces. Since
the intersection of convex sets is convex, faces of convex sets are convex.

Problem 13 Let P = ch(x1, . . . ,xn) be a V-polytope. Then the vertices of P are a
subset of {x1, . . . ,xn}.

We can easily see that if F is a face of a 3-dimensional polyhedron and G is a
face of F, then G is also a face of the polyheron. We will see later that this holds
for any polytope. However, it is not true for arbitrary convex sets.

Problem 14 Construct an example in R2 of a convex set K with a face F such
that F contains a face G which is not a face of K.

When are two polytopes ‘the same’? Two possible approaches to this question
are affine and combinatorial equivalence.

Definition 2.4.2 Two convex subsets K ⊆ Rd and K ′ ⊆ Re are affinely equiv-
alent if there exists an affine map f : Rd → Re such that f restricted to K is a
bijection onto K ′.

Affine equivalence allows us to assume that whatever convex set we are investigating
has full dimension.

Problem 15 Let K be a convex set. Prove that K is affinely equivalent to a convex
set K ′ ⊆ Rd where d is the dimension of K.

The notion of affine equivalence is very restrictive. For instance, there are
convex quadrilaterals in the plane that are not affinely equivalent (Exercise 5). In
order to make precise the idea that any two polygons with the same number of sides
should be considered equivalent we introduce the face poset of a convex set.

Definition 2.4.3 Two convex sets K and K ′ are combinatorially equivalent if
their face posets F(K) and F(K ′) are isomorphic.

It is now easy to see that any two polygons with the same number of sides are
combinatorially isomorphic.
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Problem 16 Prove that if P and Q are two affinely equivalent convex sets, then P
and Q are combinatorially equivalent.

One class of polytopes which have received a great deal of attention are sim-
plicial polytopes. A polytope P is simplicial if all of its proper faces are simplices.
For instance, any polygon is simplicial as is the octahedron and the icosahedron.
However, the cube and the dodecahedron are not simplicial.

One of the most fundamental algorithms in linear optimization is Dantzig’s
simplex algorithm [5]. The idea is that the maximum (or minimum) of an objec-
tive function will always be at the vertices of the feasible region. Combined with
an intelligent method for searching the vertices yields an algorithm which is very
effective in practice. This leads to the natural question of what is the maximum
number of vertices the simplex algorithm will have to examine given a fixed number
of constraints? In Chapter 5 we will see that this is equivalent to asking what is the
maximal number of facets in a simplicial polytope with a given number of vertices.
It turns out that this is answered by the cyclic polytopes.

The moment curve in Rd is given by γ : R→ Rd, γ(t) = (t, t2, . . . , td). For n ≥
d+1 the cyclic polytope C(n, d) is defined to be the convex hull of {γ(t1), . . . , γ(tn)},
where t1 < · · · < tn. Evidently C(n, d) depends on the choices for ti. However, as
we are about to see, the face poset, and in particular the number facets, does not
depend on these choices!

Problem 17 C(n, d) is a simplicial d-dimensional V-polytope.

We will eventually show that the vertices of a face F of a polytope P are the
vertices of P contained in F. Furthermore, any face (including P ) is the convex hull
of its vertices. Hence, we can determine all of the faces of a simplicial polytope P
by specifying which vertices are the vertices of facets. By Problem 13 this amounts
to figuring out when the hyperplane determined by a d-subset of {γ(t1), . . . , γ(tn)}
gives a valid inequality.

Problem 18 (Gale evenness condition) A subset V = {γ(ti1), . . . , γ(tid)}, ti1 <
· · · < tid is a set of vertices for a facet of C(n, d) if and only if for all tj < tm with
tj and tm not in V, the cardinality of {l : j < l < m and tl ∈ V } is even.

Exercise 2.5

1. Suppose K is a convex proper subset of Rd. Is the empty face necessarily a
face of K?
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2. Let K be a convex set. If F is a proper face of K, then dimF < dimK. If the
dimension of a face of K is exactly one dimension less than the dimension of
K, then F is a facet of K. Is the converse true?

3. What are the faces of �d?

4. What are the faces of �d?

5. Give an example of two convex quadrilaterals in R2 which are not affinely
equivalent.

6. Give an example of two compact convex sets of different dimensions whose face
posets are isomorphic. Can this happen if the two convex sets are polytopes?

7. Assuming that any face of a face of C(n, d) is a face of C(n, d), show that
cyclic polytopes of dimension four or higher are two-neighborly. That is, the
line segment between any two vertices of C(n, d) is a face whenever d ≥ 4.

8. Let fi(P ) be the number of i-dimensional faces a d-polytope P. Compute

d∑
i=0

(−1)ifi

for the d-cube, d-simplex and d-crosspolytope.
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Chapter 3

Convexity

In this chapter we develop the tools necessary to understand the relationship between
V and H-polytopes. Our presentation is based on Grünbaum’s classic text [9].

3.1 Projection

Our initial investigation of the relationship between H and V-polytopes revolves
around convexity. Here we establish a number of important properties of convex
sets. Perhaps the single most useful property is the existence of projections for
closed convex sets.

Problem 19 Let K ⊆ Rd, K 6= ∅, be a closed and y ∈ Rd. Prove there exists x ∈ K
which minimizes the distance to y. Specifically, there exists x ∈ K such that for
all z ∈ K, ||x − y|| ≤ ||z − y||. Prove that if K is also convex, then there exists a
unique such x.

The point x whose existence and uniqueness is given by the above problem is called
the projection of y onto K and is denoted projK(y).

Any hyperplane {x ∈ Rd : a ·x = b} partitions Rd into three sets, H+
a,b = {x ∈

Rd : a · x > b}, H−a,b = {x ∈ Rd : a · x < b}, and H=
a,b the hyperplane itself. The

two half-spaces H+
a,b and H−a,b are called the sides of the hyperplane and when no

confusion is possible we will simply write H+ and H−. The hyperplane separates
two sets A and B if A ⊆ H+ and B ⊆ H− or vice versa.

Problem 20 If K is a closed convex set and x /∈ K, then there exists a hyperplane
which separates K and {x}.

19
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Looking at polygons and three-dimensional polyhedra it is fairly obvious that
any point on the boundary is contained in a proper face, and the only face a point
in the relative interior is contained in is the improper face. This holds for any closed
convex set.

Theorem 3.1.1 Let K be a closed d-dimensional convex subset of Rd. If x is on
the boundary of K, then x is contained in a proper face of K.

Proof: W.L.O.G. we assume that 0 is in the interior of K. Let Kε = {εx : x ∈
K}. Since x ∈ ∂K,x /∈ K(1−ε) for 0 < ε < 1. (Why?) By the previous proposition,
for each such ε there exists a hyperplane Hε which separates x and K(1−ε). The
collection of all the Hε must have at least one limit hyperplane H which will satisfy
the proposition. (What is a limit hyperplane? Why does one exist? Why does it
work?) �

Problem 21 Fill in the details left out in the above proof.

Exercise 3.2

1. Every closed convex set is the intersection of the closed half-spaces which con-
tain it.

2. Is the interior of a convex set convex?

3. For any closed convex K, projK is a continuous idempotent (projK ◦projK =
projK .)

4. If x ∈ H+
a,b and y ∈ H−a, b, then any path from x to y passes through H=

a,b.

5. Let K and K ′ be closed convex sets in Rd. Prove that if one of them is
bounded, then there exists a hyperplane which separates them. What if nei-
ther is bounded?

3.3 Extreme points

Our intuition from two and three dimensional polyhedra suggests to us that a com-
pact convex set is the convex hull of its vertices. But Probem 14 warns us that this
is not the case. The next best thing involves the extreme points of a convex set.



3.4. V AND H-POLYTOPES 21

Definition 3.3.1 x is an extreme point of a convex set K if x is never in the
relative interior of a line segment contained in K. We denote the extreme points of
K by extK.

If you look at any compact solution to Problem 14, you will notice that the
convex set is the convex hull of its extreme points. Before we can prove this in
general we need some elementary properties of extreme points.

Lemma 3.3.2 Let K be convex.

• Every vertex of K is an extreme point of K.

• If K = ch(A), then extK ⊆ A.

• If F is a face of K, then extF = F ∩ extK.

Problem 22 Prove the above lemma.

Theorem 3.3.3 If K is a compact convex set, then ch(extK) = K.

Proof: Evidently, ch(extK) ⊆ K. We prove the reverse inclusion by induction
on the dimension of K. Dimension one is obvious.

Suppose that x ∈ K. If x is an extreme point then obviously x ∈ ch(extK).
So, let [y0, z0] be a line segment in K containing x in its relative interior. Extend
this segment in both directions. It will intersect the boundary of K at two points, y
and z. By the previous proposition there exist faces Fy and Fz which contain y and
z respectively. Each of these faces has dimension less that K, so by the induction
hypothesis, Fy = ch(extFy) and Fz = ch(extFz). As x ∈ ch(extFy ∪ extFz) and
the lemma tells us that extFy ∪ extFz ⊆ extK, we are done. �

3.4 V and H-polytopes

As the reader may (or may not) of guessed by now, the main theorem of polytopes
is that V and H-polytopes are the same. We are finally ready to prove this.

Theorem 3.4.1 P ⊆ Rd is a V-polytope if and only if P is an H-polytope.
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Figure 3.1: ch(extK) = K

Proof: Using an affine equivalent polytope if necessary, we can assume that P
is d-dimensional. Let P be an H-polytope. We prove P is a V-polytope by induction
on dimension. As usual, dimension one is trivial.

Write P as a minimal intersection of closed half-spaces P = ∩mi=1Hi. By min-
imal we mean that if we set Pi = ∩j 6=iHj, then Pi 6= P for any i. Minimality guar-
antees that the boundary of P is contained in the union of the (d− 1)-dimensional
faces of P and there are m of these.

Problem 23 Why?

By induction, each such face has a finite number of extreme points. All of the
extreme points of P are on the boundary. Hence, the previous lemma and the
last theorem imply that P has a finite number of extreme points and must be a
V-polytope.

Now suppose that P is a d-dimensional V-polytope in Rd.Write P = ch(V ), |V | =
n. By the previous theorem, we might as well assume that V = extP. Any k-face of
P is determined by (k+ 1) affinely independent points in the face. Hence, for every
k the number of k-dimensional faces is less than or equal to

( |V |
k+1

)
. In particular it

is finite. Let Fi enumerate the facets of P and let Hi be the corresponding closed
half-spaces. The proof is complete once we show the following.

Claim: P = ∩Hi.

Proof: (of claim) Certainly P ⊆ ∩Hi. Suppose x /∈ P. For each face Gj of P
of dimension d − 2 or less, let Aj be affine span of Gj and x. The Aj form a finite
collection of affine subspaces each of which has dimension at most d− 1. Therefore
their union does not cover the interior of P.

Problem 24 Why?
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Figure 3.2: P = ∩Hi

So, there exists y in the interior of P so that y is not in the union of the Aj.
Consider the line segment from y to x. Since y ∈ P and x /∈ P there exists z on
the boundary of P and the line segment from y to x. By Theorem 3.1.1 there is a
proper face of P which contains z. As y is not in any of the Aj, it must be the case
that z is on the boundary of one of the Hi. Hence, x /∈ ∩Hi. �

Theorem 3.4.1 makes it clear the V and H-polytopes are the same. As we have
already seen, each point of view has its advantages and disadvantages. In chapter 5
we will see that this is only the beginning of the story.

Exercise 3.5

1. Open convex sets have no extreme points.

2. A convex set K is centrally symmetric if whenever x ∈ K, then −x ∈ K.
Prove that if P ⊆ Re is a nonempty centrally symmetric polytope, then there
exists d > 0 and an affine map f : Rd → Re such that f(�d) = P.

3. Every face of a polytope is a face of a facet.

4. Let F be a face of a polytope P , and let G be a face of F. Prove that G is a
face of P.

5. Let F be a k-dimensional face of a d-dimensional polytope P. Show that F is
the intersection of d− k facets of P.
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6. (The basis of the simplex algorithm) Let {v1, . . . , vn} be the vertices of a poly-
tope P ⊆ Rd. Prove that for any a ∈ (Rd)?

sup
x∈P

a · x = max{a · v1, . . . , a · vn}.



Chapter 4

Shelling

The boundary of a d-polytope is homeomorphic to the (d− 1)-sphere. It turns out
that this boundary can be built up by gluing the facets together in a ‘nice’ way. This
will lead us to some remarkable enumerative results for the f -vector of the polytope,
especially when P is simplicial. The f -vector of a d-polytope is (f−1, f0, f1, . . . , fd),
where fi is the number of i-dimensional faces of P. Until further notice, P is a
simplicial d-polytope in Rd.

A shelling of P is an ordering F1, . . . , Fm of the facets of P such that for all
j ≥ 2, Fj ∩ (∪j−1

i=1Fi) is a nonempty union of facets of Fj. If P has a shelling order,
then we say P is shellable. Figure 4.1 shows a shelling of the boundary of the
octrahedron, while figure 4.2 shows an ordering of the four facets of the boundary
of the octahedron which is not the beginning of any shelling.

Now view the ordering of the facets as a way of building up ∂P. Each facet
adds new faces of ∂P as we take the union of the facet with the previous ones. The

Figure 4.1: A shelling of the boundary of the octahedron

25
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Figure 4.2: The beginning of a non-shelling of the boundary of the octohedron

(empty set)

Figure 4.3: Minimal new faces of the shelling

shelling condition insures that there is a unique new minimal face added at each
step. Indeed, at the jth step Fj ∩ (∪j−1

i=1Fi) is a union of facets of Fj. The minimal
face is Mj = ch({vj1 , . . . , vjm}), where the vjk are the vertices opposite the facets
of Fj in the intersection. Figure 4.3 shows the minimal new faces of the shelling in
Figure 4.1.

Problem 25 Prove that Mj is the minimal new face at the jth step of the shelling.

Exercise 4.1

1. Any ordering of the facets of ∆d is a shelling of its boundary.

2. Are there any other simplicial polytopes such that any ordering of their facets
are shellable?

3. Is ∂ �d shellable?

4. Can a simplicial polytope with f -vector (1, 7, 19, 20, 8, 1) be shellable?
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The concept of shellability is very important and extends to a number of situ-
ations including abstract simplicial complexes. An abstract simplicial complex
consists of a set V, the vertices of the complex, and a set of faces ∆ ⊆ 2V The faces
must be closed under subsets. If F ∈ ∆ and G ⊆ F, then G ∈ ∆. The maximal
faces (with respect to inclusion) of ∆ are the facets of the complex. The dimension
of a face G ∈ ∆ is |G| − 1. The dimension of ∆ is the maximum of the dimensions
of its faces.

Example 4.2 Some examples of abstract simplicial complexes.

1. Boundaries of simplicial polytopes. The faces are the subsets of vertices whose
convex hull is a proper face of the polytope.

2. Simple graphs. The faces are the pairs of vertices which have an edge between
them.

3. Let V be a subset of vectors in a vector space and let ∆ be the subsets of V which
form independent subsets of vectors. What are the facets of this complex?

The definition of shellable for a pure abstract simplicial complex is almost
exactly the same as for simplicial polytopes; for j ≥ 2, Fj ∩ (∪j−1

i=1Fi) must be a
union of facets of the boundary of Fj. The boundary of a face of ∆ is all subsets
of Fj of cardinality less than or equal to |Fj| − 1. An abstract simplicial complex
is pure if all facets have the same dimension. For instance, if V = [4] and the
facets of ∆ are {1, 2, 3}, {1, 4}, {2, 4}, then ∆ is not pure, but does satisfy the above
conditions. There is a notion of nonpure shellability, but we will not discuss that
here. Whenever we are considering shellability the complex will be pure.

Problem 26 Show that connected graphs and the complexes described in Example
4.2 (3) are shellable.

Example 4.3 Let G be the graph in Figure 4.4. Let the vertices of ∆ be the edges
of the graph. The faces of ∆ are those subsets of edges whose removal does not dis-
connect the graph. Specifically, ∅, all singleton, and all doubletons except {a, b} and
{c, d} are the faces of ∆. We represent ∆ in Figure 4.4. Singletons are represented
by vertices, doubletons by edges. Ordering the edges (which are the facets of ∆) as
shown, we see that ∅ is the minimal new face for 1, and the minimal new face is a
single vertex for faces 2, 3, 4 and an edge for faces 5, 6, 7, 8.

Suppose that G above represents a network and each edge has equal and independent
probability of failing p, 0 < p < 1. What is the probability that that network will
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Figure 4.4: G and ∆

remain connected? Directly checking each possible subset of edges which keep the
graph connected we see that this probability is

(1− p)5 + 5p(1− p)4 + 8p2(1− p)3 = (1− p)3[1 + 3p+ 4p2].

Notice that the coefficient in each degree i of the last factor is the number of steps
in the shelling in which we added a minimal new face of cardinality i.

Suppose ∆ is a shellable abstract simplicial complex and we are given a shelling.
For each i, let hi be the number of facets whose unique new minimal face has
cardinality i. The h-vector of ∆ is (h0, . . . , hd).

Example 4.4 The shelling in Figure 4.1 gives h-vector (1, 3, 3, 1).

The shelling polynomial of the shelling F1, . . . , Fm is

(4.1) h∆(x) = h0x
d + h1x

d−1 + · · ·+ hd−1x+ hd.

The shelling polynomial appears to depend on the shelling. We can also encode the
f -vector of ∆ in a polynomial. The f -vector of an abstract simplicial complex ∆ is
defined like the f -vector of a polytope, fi is the number of i-dimensional faces and
the f(∆) = (f−1, f0, . . . , fd−1), where (d− 1) is the dimension of ∆. Define the face
polynomial of ∆ to be

f∆(x) = f−1x
d + f0x

d−1 + f1x
d−2 + · · ·+ fd−1.

Theorem 4.4.1 h∆(x+ 1) = f∆(x).
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Problem 27 Prove this theorem.

Corollary 4.4.2 The h-vector of ∆ does not depend on the shelling order.

Problem 28 Write down formulas for hi in terms of fj and vice versa. Which
fj does hi depend on (and vice versa)? Show that if D is a collection of abstract
simplicial complexes and ∆ ∈ D has the property that hi(∆) ≥ hi(∆

′) for all 0 ≤
i ≤ d and ∆′ ∈ D, then fi(∆) also maximizes all fi(∆

′) in D. Is this still true if we
reverse the role of the f - and h-vector?

Aside from the formulas established in Problem 28 there is another method for
computing h-vectors known as ‘Stanley’s trick’. We write the f -vector (including
f−1 = 1) along the right-hand side of a triangle that looks like Pascal’s triangle.
Then put ones along the left-hand side. Fill in the rest of the triangle as you
would Pascal’s triangle, except subtract instead of add. Compute one extra row of
subtractions and you get the h-vector. Here is an example which shows that the
f -vector (1, 7, 21, 14) becomes the h-vector (1, 4, 10,−1).

1
1 7

1 6 21
1 5 15 14

1 4 10 −1

Problem 29 Prove that Stanley’s trick works.

4.5 Geometric simplicial complexes

We saw in Example 4.2 (1) a geometric object, the boundary of a simplicial polytope,
represent the combinatorial data of an abstract simplicial complex. Is this possible
for all abstract simplicial complexes? The answer lies with geometric simplicial
complexes.

Definition 4.5.1 A geometric simplicial complex ∆ in Rd is a finite set of
simplices in Rd such that

• ∆ 6= ∅.
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• If F ∈ ∆ and G is a face of F , then G ∈ ∆.

• If F1 and F2 are in ∆, then F1 ∩ F2 is a face of both F1 and F2. (Recall that
the empty set is always a face of both.)

Examples illustrating the above definition are in Figures 4.5 and 4.6

Figure 4.5: A geometric simplicial complex in R2

Figure 4.6: Two examples which are not geometric simplicial complexes in R2

Suppose that ∆ is a geometric simplicial complex. Let V be the 0-dimensional
faces in ∆. The abstract simplicial complex associated to ∆ has as its vertices V ,
and as its faces those subsets of vertices whose convex hull is a simplex in ∆. For
instance, the figure on the right hand side of Figure 4.4 is a geometric simplicial
complex in R2 whose associated abstract simplicial complex is the one described
in Example 4.3. Does every abstract simplicial complex come from a geometric
simplicial complex?

Let ∆ be an abstract simplicial complex with vertex set [n]. The geometric
realization of ∆ is the subset of Rn given by
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|∆| =
⋃
F∈∆

ch(∪i∈F ei).

It is immediate from the definition that the abstract simplicial complex asso-
ciated to |∆| is ∆. A geometric realization of an abstract simplicial complex ∆ (as
opposed to the geometric realization) is any geometric simplicial complex whose
associated abstract simplicial complex is ∆. Any two geometric realizations of the
same abstract simplicial complex are homeomorphic. The idea is simple. Map corre-
sponding vertices of the two complexes to each other and ‘extend linearly’. Because
it does not matter what geometric realization is used, we will simply say that ∆ is
homeomorphic to a given space if any of its geometric realizations is.

There are many geometric realizations for a given abstract simplicial complex
∆. One of the big disadvantages of |∆| is that it lies in Rn for n much bigger than
necessary. The geometric realization of the complex in Example 4.4 would be in
R5, but obviously only R2 is needed. In general, what is the smallest Rd needed to
realize a given complex?

Problem 30 Let ∆ be an abstract simplicial complex of dimension d. Prove that
there is a geometric realization of ∆ in R2d+1.

Note that the bound in the above problem is optimal. Indeed, there are one-
dimensional complexes, such as K5, which can not be realized in R2. Because of
the close connection between abstract and geometric simplicial complexes we will
simply say simplicial complex from here on and hope that the context makes it clear
which type we mean.

4.6 Line shellings

A little experimentation shows that not all simplicial complexes are shellable. Dis-
connected graphs and two triangles with exactly one vertex in common are two
examples. What about the boundary of a simplicial polytope? For a long time it
was simply assumed that any simplicial complex homeomorphic to a ball or sphere
was shellable. However, this turned out not to be true! In 1958 Rudin demon-
strated how to construct a simplicial complex homeomorphic to a ball which was
not shellable [14]. Finally, in 1971 Brugessor and Mani proved that all polytopes
were shellable [4]. What does it mean for a nonsimplicial polytope to be shellable?
To make sense of this we need the notion of a polytopal complex.
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Definition 4.6.1 A polytopal complex in Rd is a nonempty finite set of polytopes
∆ in Rd such that

• If P is in ∆ and F is a face of P , then F is in ∆.

• If P1 and P2 are in ∆, then P1 ∩ P2 is a face of P1 and P2.

The prototypical example of a polytopal complex is the boundary of a polytope. Of
course, any geometric simplicial complex is a polytopal complex. Just as in the case
of simplicial complexes a polytopal complex is pure if all of its maximal polytopes (in
the sense of inclusion) have the same dimension. As before, the maximal polytopes
of ∆ are called facets. The definition of a shelling of a polytopal complex is almost
the same as for a simplicial complex.

Definition 4.6.2 A shelling of a polytopal complex ∆ is an ordering P1, . . . , Pt
of the facets of ∆ such that for all j ≥ 2,

Pj
⋂(

j−1⋃
i=1

Pi

)
is a union of a subset of the facets of Pj which form an initial segment of a shelling
order for ∂Pj.

In view of Exercise 4.1 (1) the above definition reduces to our previous def-
inition if ∆ is a geometric simplicial complex. Note that the definition is very
inductive!

The shellings that Bruggessor and Mani constructed for polytopes are called
line shellings. Let x be a point in the interior of P, a d-polytope in Rd, not necessarily
simplicial. Now choose a line l through x with the following two properties:

1. l intersects all the hyperplanes of the facets of P. (These are the affine spans
of the facets.)

2. l does not intersect any nontrivial intersection of the hyperplanes of the facets
of P .

Problem 31 Why is it obvious we can always choose such a line?

Now imagine you are in a rocket ship inside the planet P heading along the line l
in a chosen positive direction. Initially you can not see anything as you are inside
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Figure 4.7: Line shelling of a polygon

the planet. By (2) you will emerge at a facet, F1. As you travel away from P you
will see one new facet each time you pass through its corresponding hyperplane.
The shelling order for these facets is the same as the order you see them. By (2)
you will never see two (or more) new facets simultaneously. Eventually you will go
far enough towards “+∞” so that you can see as many facets as possible in that
direction. Now begin your return to P coming from the “−∞” direction. At this
point you can see all the facets you could not see from the “+∞” direction. As you
pass through each of their corresponding hyperplanes the corresponding facet will
disappear from your vision. The shelling order continues from before in the order in
which the facets disappear from your vision. By (1) each facet of P occurs exactly
once in your shelling order.

Problem 32 Show that this is a shelling of P . Where did you use convexity?

The fact that every simplicial polytope is shellable already shows there are
strong restrictions on their f -vectors. For instance, (1, 6, 15, 18, 7, 1) is not the
f -vector of any simplicial 4-polytope. Indeed, this would give (1, 2, 3, 2,−1) as
the h-vector of its boundary, and this is impossible. In fact, for the same reason,
(1, 6, 15, 18, 7) is not the f -vector of any shellable abstract simplicial complex.

What happens if we travel along l in the opposite direction? This simply re-
verses the shelling order. But now, if P is a simplicial polytope, then each facet
which originally contributed to hi, contributes to hd−i. Since the h-vector is inde-
pendent of the shelling order we obtain the Dehn-Sommerville equations.

Theorem 4.6.3 [6], [15] If P is a simplicial d-polytope, then hi = hd−i.
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This is an even stronger restriction on the h-vector of P. Combining this theo-
rem with Problem 28, we can see now that once we know f0, . . . , fbd/2c, we know the
entire f -vector of P. Are there any other restrictions on the h-vectors of simplicial
polytopes? In order to discuss this we must introduce some notation.

Let a, i be natural numbers. Then there is a unique way of writing

a =

(
ai
i

)
+

(
ai−1

i− 1

)
+ · · ·+

(
aj
j

)
, ai > ai−1 > · · · > aj ≥ j.

Problem 33 Prove the above statement.

Example 4.7 a = 14, i = 3. Then 14 =
(

5
3

)
+
(

3
2

)
+
(

1
1

)
.

With a decomposed as above define

a<i> =

(
ai + 1

i+ 1

)
+

(
ai−1 + 1

i

)
+ · · ·+

(
aj + 1

j + 1

)
.

Example 4.8 So, 14<3> =
(

6
4

)
+
(

4
3

)
+
(

2
2

)
= 15 + 4 + 2 = 21.

In 1971 P. McMullen conjectured that necessary and sufficient conditions for
(h0, . . . , hd) to be the h-vector of the boundary of a simplicial d-polytope are

• hi ≥ 0.

• hi = hd−i.

• h0 ≤ h1 ≤ · · · ≤ hbd/2c.

• For i ≤ d/2, define gi = hi − hi−1. Then for i ≤ d/2, gi+1 ≤ g<i>i .

Stanley [17] proved necessity, while Billera and Lee [1] proved sufficiency. These
results give a complete characterization of h-vectors (and hence f -vectors) of the
boundaries of simplicial polytopes. For instance, here are two problems that are
now fairly easy.

Problem 34 Show that Cd(n) maximizes every fi among all possible simplicial d-
polytopes with n vertices. What is fewest number faces in dimension i that a sim-
plicial d-polytope with n vertices can have?
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Looking at many examples, it appears that the f -vector of a simplicial polytope
is unimodal. A sequence (f0, f1, . . . , fd) is unimodal if there exists i such that f0 ≤
f1 ≤ · · · ≤ fi ≥ fi+1 ≥ · · · ≥ fd). By Stanley’s proof of the necessity of McMullen’s
conditions, the h-vector of a simplicial polytope is symmetric and unimodal. It can
be shown that the f -vector of a simplicial d-polytope is unimodal when d ≤ 19
[7]. Shortly after Billera and Lee proved the sufficiency of McMullen’s conditions,
Björner [2] and Lee [12] gave examples of 20-dimensional simplicial polytopes with
trillions of vertices with f11 > f12 < f13.

What can we say about f -vectors of nonsimplicial polytopes? You may have
guessed from Exercise 2.5 (8) that the alternating sum of the face numbers of a
polytope only depended on the dimension. Analogously to our definition for sim-
plicial complexes, for a polytopal complex ∆ we define fi(∆) to be the number of
i-dimensional polytopes in ∆.

Definition 4.8.1 Let ∆ be a d-dimensional polytopal complex. The Euler char-
acteristic of ∆ is

χ(∆) =
d∑
i=0

(−1)ifi(P ).

Theorem 4.8.2 Let P be a d-polytope. Then χ(P ) = 1. Equivalently, χ(∂P ) is
zero if dimP is even (dim ∂P is odd) and two if dimP is odd (dim ∂P is even).

Proof: The proof is by induction on d. In fact, we will prove something
stronger. Let F1, . . . , Ft be a line shelling of the facets of P. Define ∆i = ∪ij=1Fj. So
∆1 = F1 and ∆t = ∂P. We will show that χ(∆i) = 1 for i < t and χ(∆t) = χ(∂P )
is as claimed in the theorem. Our induction hypothesis is this stronger statement.
It is easy to check that it holds for d equal to zero, one or two.

Now assume the induction hypothesis holds for (d− 1)-polytopes. We proceed
by induction on i. For i = 1, ∆1 = F1, a (d − 1)-polytope. So χ(∆1) = 1. What
is ∆i−1 ∩ Fi? When i < t the intersection is the initial segment of a partial shelling
of the boundary of Fi. When i = t the intersection is the entire boundary of Fi. In
either case

χ(∆i) = χ(∆i−1 ∪ Fi) = χ(∆i−1) + χ(Fi)− χ(∆i−1 ∩ Fi).

The theorem now follows by all of the inductive hypotheses. �

The fact that the Euler characteristic of a polytope is always one is just the tip
of a remarkable iceberg. For instance, the Euler characteristic of any polytopal com-
plex homeomorphic to a ball is one, and if ∆1 and ∆2 are two polytopal complexes
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which are homeomorphic, then χ(∆1) = χ(∆2). The interested reader is invited to
check out any of the many texts on algebraic topology where vast generalizations of
these results are derived.



Chapter 5

Duality

Duality takes many shapes and sizes in mathematics. We have already met (Rd)?,
the linear dual of Rd. In this chapter we take a closer look at polytope duality, and
more generally, duality for closed convex sets. Anyone who has done Exercise 2.5.8
will (hopefully!) have noticed that fi(�d) = fd−i(�d). This is one manifestation of
the fact that the d-cube and the d-cross polytope are dual to one another. For a
myriad of reasons, some of which we will see, duality in this context is an important
idea with many applications.

5.1 K?

Definition 5.1.1 Let K be a closed convex subset of Rd. Then the dual of K is

K? = {a ∈ (Rd)? : a · x ≤ 1 for all x ∈ K.}

Example 5.2

• K = Br(~0) ⊆ Rd. K? = B1/r(~0) (in (Rd)?).

• K = [1, 2] ⊆ R. K? = (−∞, 1/2] ⊆ R?.

• K = {(x, 0) ∈ R2 : −1 ≤ x ≤ 1}. K? = {(x, y) ∈ (R2)? : −1 ≤ x ≤ 1.}

• (�d)? = �d and (�d)? = �d.

Without further restrictions the dual of a closed convex set may be of a different
dimension, be unbounded when the set is bounded, or vice versa. However, with
very mild restrictions it is very well behaved.

37
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Lemma 5.2.1 Let K be a compact convex subset of Rd with the origin in its inte-
rior. Then K? is a also a compact convex subset with the origin in its interior.

Problem 35 Prove the above lemma.

One of the most useful properties of duality for convex sets is that under mild
conditions K = K??. In order to even make sense of this statement we need a method
of identifying Rd and (Rd)?? = ((Rd)?)?. So far we have frequently identified Rd with
its dual (Rd)? using the dot product. This isomorphism between Rd and its dual
depends on the choice of the unit coordinate vectors as a basis for Rd. In a certain
sense (which we will not follow up on here) this is unavoidable. So perhaps it is a
little surprising to discover that there is a natural choice of isomorphism between
Rd and its double dual which does not depend on any choices.

Let x ∈ Rd. Define an element of (Rd)?? by

x??(a) = a(x)

for a ∈ (Rd)?. While it is immediate that x?? is a function from (Rd)? → R, the real
value of this definition is the following.

Problem 36 Prove that x→ x?? is a linear isomorphism between Rd and (Rd)??.

Now we can make precise one of the most useful properties of K?.

Proposition 5.2.2 If K is a closed convex subset which contains the origin, then
under the above identification K = K??.

Before we begin the proof we observe that the hypothesis that K contains the origin
is unavoidable since K?, and hence K??, contains the origin.

Proof: Using the isomorphism from Problem 36 and Definition 5.1.1

K?? = {x ∈ Rd : a(x) ≤ 1 for all a ∈ K?}
= {x ∈ Rd : a(x) ≤ 1 for all a ∈ (Rd)? such that a(y) ≤ 1 for all y ∈ K.}

Hence any x ∈ K is in K??. To see that K?? ⊆ K we show that if x /∈ K, then
x /∈ K??. So suppose that x is not in K. Then, since the origin is in K, there exists
a hyperplane H=

a,1 that separates K and x with K ⊆ H−a,1. In particular, a ∈ K?.
However, a · x = a(x) > 1. Thus x /∈ K??. �
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Figure 5.1: A planar graph and its dual

In addition to linear duality, the reader has probably seen graph duality. For
any (embedded) planar graph G it dual is defined by assigning a vertex to each
region of the plane that G divides R2 into and an edge between any two regions
separated by a single edge of G. See Figure 5.1 for a typical example.

One way to view this process is as a way of changing the dissection of R2

induced by the graph G. Zero-dimensional faces (the vertices of G) are replaced by
two-dimensional faces (regions) of its dual. Similarly, edges are replaced by other
edges and two-dimensional faces are replaced by vertices. Under mild conditions
this is another kind of duality encoded by K?.

Let K be a compact convex subset of Rd with the origin in its interior. For
each subset F of K define Ψ(F ) ⊆ K? by

Ψ(F ) = {a ∈ K? : a(x) = 1 for all x ∈ F.}

Theorem 5.2.3 Let K be as above.

1. If G ⊆ F, then Ψ(G) ⊇ Ψ(F ).

2. If F is a face of K, then Ψ(F ) is a face of K?.

3. If F is a face of K, then Ψ(Ψ(F )) = F.
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Proof: The first property follows easily from the definition. For the second,
we first consider two extreme cases. If F = K, then, since K contains the origin,
Ψ(F ) = Ψ(K) = ∅. On the other hand, if F = ∅, then it is immediate that Ψ(F ) =
Ψ(∅) = K?. So from here on we assume that F is neither of these extremes. Let x
be in the relative interior of F (equal to F when F is just a point).

Problem 37 H−x??,−1 is a valid inequality for K? and Ψ(F ) = K? ∩ H−x??,−1.
Hence Ψ(F ) is a face of K?.

The last property we leave as a problem. �

Problem 38 Prove that if F is a face of K, then Ψ(Ψ(F )) = F.

One way to sum up the above result would be to observe that if K is a compact
subset of Rd with the origin in its interior, then Ψ induces an inclusion reversing
bijection between F(K) and F(K?). The order dual of a poset (Π,≤), which we
denote by (Π?,≤?), is the poset whose ground set is also Π and whose order relation
is given by x ≤? y if and only if y ≤ x. Hence, F(K) is isomorphic to F(K?)?.

What consequences can we derive for face posets of polytopes? To begin with,
we need the following.

Problem 39 If P is a polytope, F a face of P and G a face of F, then G is a face
of P.

Problem 40 If P is a d-polytope in Rd, then P ? is also a d-polytope.

A chain in a poset is a sequence

x0 < x1 < · · · < xm

of distinct elements of the poset. The length of the chain is one less than the number
of elements in the chain. The above chain has length m. A chain is maximal if it
is not contained in any strictly longer chain. For instance, in D30, 1 < 3 < 6 < 30
is a maximal chain as is 1 < 5 < 10 < 30. (Recall the definition of Dn in Chapter 2
However, in B3, ∅ < {2} < {1, 2, 3} is not a maximal chain. A poset is graded if
the length of every maximal chain is the same. If Π is a graded poset, then the rank
of an element x ∈ Π is the maximum length among all chains which end with x. The
rank of a graded poset is the maximum rank obtained by its elements. Equivalently,
the common length of all of its maximal chains. For examples of graded posets see
Exercises 2 and 3
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Problem 41 If P is a d-polytope, then F(P ) is a graded poset of rank d+ 1. More
generally, the rank of any face F of P in F(P ) is 1 + dimF.

The dual of a simplicial polytope is called a simple polytope. A simple com-
binatorial characterization of simple polytopes is contained in the exercises below.
By Problem 41, Ψ interchanges i-dimensional faces of a rank d-polytope with (d−i)-
dimensional faces of P ?. Thus the complete description of possible f -vectors of sim-
plicial polytopes with n vertices given in Chapter 4 also gives a complete description
of the possible f -vectors of simple polytopes with n facets. In addition, Problem 34
gives an exact formula for the maximum number of vertices for such a polytope.

Exercise 5.3

1. Let K be a closed convex subset of Rd which contains the origin. Then K?

contains an affine subspace of dimension i if and only if dimK ≤ d− i.

2. Bn is a graded poset and the rank of A ⊆ [n] is equal to |A|.

3. Dn is a graded poset. If a ∈ n and the prime factorization of a is

a = pe11 · pe22 · · · · · pemm ,

then the rank of a is e1 + · · ·+ em.

4. Let P be a d-polytope. If F is a (d− 2)-dimensional face, then F is contained
in exactly two facets.

5. P is a simple d-polytope if and only if every vertex is incident to d edges.

6. Any simplex is both simple and simplicial. Are there any other polytopes with
this property?

7. Are there any polytopes such that P = P ?? Polytopes with the property that
F(P ) ' F(P ?) are called self-dual. Simplices are self dual. Are there other
self dual polytopes?

8. What can you say about self dual convex subsets?
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Chapter 6

The Möbius function

In order to further advance our study of face posets of polytopes, their connections
to hyperplane arrangements and graph coloring, we now turn to Möbius inversion.
This is now one of the standard techniques of modern combinatorics. Introduced by
Weisner [18], Möbius inversion is a poset based generalization of inclusion-exclusion.
Its real value as a powerful approach to many enumerative problems was pioneered
by Rota [13]. Throughout this chapter Π is a finite poset. While the theory applies
to locally finite posets, those such that every interval [x, y] is finite, we will have no
need of this generality.

6.1 The Möbius function

The Möbius function is a simultaneous generalization of inclusion-exclusion and its
more famous number theory namesake. It is the function µ : Π × Π → Z defined
inductively using the following properties:

1. If x 6≤ y, then µ(x, y) = 0.

2. µ(x, x) = 1.

3. If x < y, then ∑
x≤z≤y

µ(x, z) = 0.

As long as [x, y] is finite, µ(x, y) can be computed using the last two properties
inductively. See Figure 6.1 for a simple example where µ(x, y) is computed for a
specific poset and a fixed x in the poset.

43
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0

x 1

1 1

2

1

1

0

0

1

Figure 6.1: Computing µ(x, y).

While the above inductive procedure gives a finite algorithm to compute the
Möbius function for any two elements in Π, it is known that for general posets and
elements it is not computationally fast. However, in many specific cases it can be
computed easily. Here are two examples. (Recall the definitions of Bn and Dn in
Chapter 2,)

Problem 42 Compute µ(A,B) for any A,B ∈ Bn.

Problem 43 Compute µ(s, t) for any s, t ∈ Dn.

Another class of posets for which the Möbius function is (very) easy to compute
are Eulerian posets. A poset is called Eulerian if it is graded, contains a unique
minimal element and a unique maximal element, and its Möbius function satisfies

µ(x, y) = (−1)ρ(y)−ρ(x)

for all x ≤ y. Here, ρ(x) is the rank of x. The easiest example of an Eulerian
poset is Bn. Perhaps the most interesting class of Eulerian posets are face posets of
polytopes.

Problem 44 If P is a polytope, then F(P ) is an Eulerian poset.

Another large class of Eulerian posets are the face posets of simplicial complexes
homeomorphic to spheres or odd-dimensional manifolds.

The Möbius inversion formula is probably best understood by introducing the
incidence algebra of a poset. The incidence algebra of Π, denoted by I(Π), is the



6.1. THE MÖBIUS FUNCTION 45

space of all functions η : Π × Π → R such that η(x, y) = 0 whenever x 6≤ y. It
comes with the usual real vector space structure associated to spaces of functions to
the reals. It also has a multiplicative structure which looks suspiciously like matrix
multiplication (if you are an algebraist) or convolution (if you are an analyst). For
η, ψ ∈ I(Π) define η ◦ ψ in I(Π) by

(η ◦ ψ)(x, y) =

{
0 if x 6≤ y∑

x≤z≤y η(x, z) · ψ(z, y) if x ≤ y.

This multiplicative structure is easily deciphered from the point of view of
matrix multiplication. Let n = |Π| and let β : [n] → Π be a bijection so that the
induced order relation ≤[n], given by i ≤[n] j if and only if β(i) ≤ β(j), is natural.
(See Section 2.3.)

Problem 45 The incidence algebra I(Π) is isomorphic to the matrix algebra of
n× n real matrices M such that Mi,j = 0 if i 6≤[n] j.

All of the properties of I(Π) below follow easily from the above problem.

Corollary 6.1.1

1. (η ◦ ψ) ◦ ν = η ◦ (ψ ◦ ν) (associativity).

2. Define δ(x, y) =

{
1 x = y

0 x 6= y
.

Then η ◦ δ = δ ◦ η (existence of identity)

3. Define ζ(x, y) =

{
1 x ≤ y

0 x 6≤ y
.

Then µ ◦ ζ = ζ ◦ µ = δ (inverse of the Möbius function).

Let f and g be functions from Π to Z. Möbius inversion is a method for
analyzing the situation when

g(y) =
∑
x≤y

f(x)

or its order dual relation
g(x) =

∑
x≤y

f(y).

It might seem that such a relationship would be quite rare. As we will see, it occurs
quite frequently. Here is a simple example. Let φ(n) be the Euler totient - φ(n) is
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the number of positive integers less than or equal to n which are relatively prime to
n. (Have no common factors other than one.) For instance, φ(12) = 4 since 1, 5, 7, 11
are the only such integers.

Proposition 6.1.2 ∑
d|n

φ(d) = n.

Proof: Write down the fractions 1
n
, 2
n
, . . . , n

n
. Then put them in lowest terms.

For instance, for n = 12 we end with

1

12
,
1

6
,
1

4
,
1

3
,

5

12
,
1

2
,

7

12
,
2

3
,
3

4
,
5

6
,
11

12
,
1

1
.

Notice that only denominators d which divide n occur, and each such denominator
occurs exactly φ(d) times. �

Theorem 6.1.3 (Möbius inversion) Let f and g be functions from Π to Z.

g(y) =
∑
x≤y

f(x)

if and only if

f(y) =
∑
x≤y

g(x)µ(x, y).

Dually,

g(x) =
∑
x≤y

f(y)

if and only if

f(x) =
∑
x≤y

µ(x, y) g(y).

The above formulas look like multiplication of vectors and matrices and that
is the main idea behind the proof of the theorem.

Problem 46 Prove the Möbius inversion formulas.
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The number theoretic Möbius function, for which the poset version gets its
name is defined for n ∈ Z+ by

µ(n) =


1 n = 1

(−1)k n = p1 · · · pk, the pi distinct primes

0 otherwise.

Corollary 6.1.4

φ(n) =
∑
d|n

µ(n/d) · d.

Proof: Problem 43 and Möbius inversion. �

Our first combinatorial application of Möbius inversion involves graph coloring.
Let G be a graph without loops. Denote the vertices of G by V (G). A λ-coloring
of G is a function f : V (G)→ [λ]. The coloring f is proper if no vertices with the
same color (i.e. image) share an edge. Define χG(λ) to be the number of proper
λ-colorings of G. Evidently χG is only defined for λ ≥ 1.

What kind of function is χG? It is called the chromatic polynomial, so it
is a good guess that χG is a polynomial! Any λ-coloring of G induces a partition of
the vertices which has at most λ many blocks. The partition-induced subgraph
of G corresponding to the coloring f is the graph whose vertices are the same as G,
but whose edges are those whose end points have the same color. Thus a proper
coloring corresponds to the graph consisting of the vertices of G and no edges. For
another example, consider the graph in Figure 6.2. If f mapped vertices A and D
to color 1, and vertices B and C to color 2, then the partition-induced subgraph
would consist of the vertices and the single edge between B and C. Notice that the
same thing would happen if f mapped vertex A to 1, vertex D to 2 and vertices B
and C to 3.

The poset of vertex-induced subgraphs of G, which we denote by LG, consists
of all possible partition-induced subgraphs of G (over all possible colorings, not just
those of a fixed λ) ordered by inclusion. Its least element is the graph with no edges
and its maximal element is G itself. The Hasse diagram for the graph in Figure 6.2
can be seen in Figure 6.3. What else can we say about LG?

Problem 47 LG is graded. The rank of a partition-induced subgraph H of G is
|V | −# components of H.
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D

A

B C

Figure 6.2: A simple graph

In order to connect LG with the chromatic polynomial, for H ∈ LG define
fλ(H) to be the number of λ-colorings of G such that H is the associated partition-
induced subgraph. By definition, χG(λ) is fλ(0̂), where 0̂ is the least element of
LG. Can we apply Möbius inversion? For any graph H let c(H) be the number of
components of H.

Problem 48

χG(λ) =
∑
H∈LG

µ(0̂, H)λc(H) = λc(G)
∑

H∈L(G)

µ(0̂, H)λρ(G)−ρ(H).

From this we easily see that χG(λ) is a polynomial of degree |V |, contains λc(G) as a
factor and the coefficient of λc(G) is µ(0̂, G). The last term of the right-hand side of
the above equality makes sense for any (finite) graded poset with a unique minimal
element 0̂.

Definition 6.1.5 Let Π be a (finite) graded poset with unique minimal element 0̂
and let r be the rank of Π. The chracteristic polynomial of Π is

χΠ(λ) =
∑
x∈Π

µ(0̂, x)λr−ρ(x).

We will meet the characteristic polynomial again in the next chapter on hyperplane
arrangements.
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Figure 6.3: LG
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Exercise 6.2

1. An element ν ∈ I(Π) is multiplicatively invertible if and only if ν(x, x) 6= 0
for all x ∈ Π.

2. Inclusion-exclusion is the following combinatorial principle. Let A1, . . . , Am be
finite sets. For each nonempty subset I of [m] define AI = ∩i∈IAi. Then

|A1 ∪ · · · ∪ Am| =
m∑
i=1

∑
|I|=i

(−1)i+1|AI |.

Prove this by showing it is a consequence of Möbius inversion on Bm.

3. Let G be a connected graph. Prove that if λ does not divide µLG(0̂, G), then G
has a proper λ-coloring. Prove the converse holds if λ = 2.

4. Fix n ≥ 1. The partition lattice, πn, is the poset whose elements are parti-
tions of [n] and whose order relation is given by refinement. For instance, in
π3 the least element is the partition with three blocks, {1}, {2}, {3}, the great-
est element is the partition with one block, {1, 2, 3}, and there are a total of
five elements. In general πn has a unique minimum, 0̂ = {1}, . . . , {n} and a
unique maximum 1̂ = {1, . . . , n}. Compute µ(0̂, 1̂) in πn.

5. A different approach to the chromatic polynomial is through deletion-contraction.
Let G be a graph. It may have parallel edges (more than one edge between a
pair of vertices) and/or loops. Define χG(λ) as before. If G has a loop, then
χ(G) ≡ 0. Let e be an edge of G. The deletion of e, denoted G−e, is the graph
obtained by removing the edge e. The contraction of G along e, denoted G/e is
the graph obtained by contracting the edge down to a vertex and identifying the
two vertices of the edge down to one vertex. This may introduce loops and/or
parallel edges. For instance, if G is a triangle, then the contraction of G along
any of its edges is a graph with two vertices and two parallel edges. Prove that
for any edge e of a loopless graph,

χG(λ) = χG−e(λ)− χG/e(λ).

6. Prove that the coefficients of χG(λ) alternate in sign.

7. Compute χG when G is a tree, a connected graph with no circuits.



Chapter 7

Hyperplane arrangements and
Zonotopes

On the surface, hyperplane arrangements are easy to describe. They are simply
a finite collection of hyperplanes in Rd. As noted earlier, any hyperplane H=

a,b di-
vides space into three disjoint convex sets, the hyperplane itself and two open half
spaces, H+

a,b and H−a,b. The two full-dimensional sets are called regions. As we add
hyperplanes there will be more regions. The main question we will address is, “How
many regions are there?” Along the way we will discover a connection between this
question, “Does χ(−1) mean anything”, and how many pieces a d-dimensional cake
can be cut into using n slices.

7.1 Hyperplane arrangements

A hyperplane arrangement in Rd is a finite collection A = {H1, . . . , Hn} of
hyperplanes in Rd. The arrangement is called central if the hyperplanes are all
linear, i.e. all contain the origin. Otherwise A is called affine. If the intersection
of all the hyperplanes in a central arrangement is exactly the origin, then it is
essential.

A central arrangement divides space into various subsets which are called cones.

Definition 7.1.1 C is a cone in Rd if for all x ∈ C and t ≥ 0, tx ∈ C.

By definition, the empty set and Rd are cones in Rd. Examples of cones include closed
half-spaces of the form Ha,0, a 6= ~0 and their intersections. A cone is polyhedral if it
is the intersection of a finite number of such half-spaces. In general, the intersection
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of cones is a cone. As usual, this means that for any subset Y of Rd there is a
smallest cone containing Y which we denote by co(Y ). It consists of all of the rays
starting at the origin and containing a nonzero point of Y. Hence nonempty cones
in Rd are in one-to-one correspondence with subsets of the unit sphere in Rd.

Let A = {H=
a1
, . . . , H=

an} be a central arrangement in Rd. For x ∈ Rd we can
record using {+, 0,−}n whether ai · x is positive, zero or negative. The resulting
sign vector sA(x) is in {+, 0,−}n. As long as there is not confusion we will suppress
the subscript A. Note that sA(x) depends on the choice of direction of ai. For a
potential sign vector s ∈ {+, 0,−}n we want to describe the points of Rd with the
given sign vector. For this purpose, define

c(s) =

{
x ∈ Rd :


ai · x = 0, s(i) = 0

ai · x ≤ 0, s(i) = −
ai · x ≥ 0, s(i) = +

}
.

Figure 7.1 shows a typical example in R2. The covectors of A are those sign vectors
s ∈ {+, 0,−}n such that{

x ∈ Rd :


ai · x = 0, s(i) = 0

ai · x < 0, s(i) = −
ai · x > 0, s(i) = +

}

is not empty. For instance, for the arrangement in Figure 7.1, c(+,−,+) = c(+,−, 0) =
c(−, 0, 0) = c(0, 0, 0) = {~0}, but only (0, 0, 0) is a covector of the arrangement. With
this notation, part 3 of the next proposition shows us that our original question can
be rephrased, “How many covectors are there with no zeros in their sign vector?”

Proposition 7.1.2

1. c(s) is a closed convex cone.

2. Suppose that s and t are covectors of A. Then c(s) ⊆ c(t) if and only if s can
be obtained from t by changing some +’s and/or −’s to zeros and this holds if
and only if c(s) is a face of c(t).

3. If s is a covector of A, then dim c(s) = dim∩i:s(i)=0Hi.

Problem 49 Prove the above proposition.

Looking at Figure 7.1 and Proposition 7.1.2 suggests that the various cones c(s) are
arranged in a way somewhat similar to the way polytopal complexes are configured.
To make this precise requires the notion of a fan.
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Figure 7.1: Several sign vectors

Definition 7.1.3 A finite set of cones C = {C1, . . . , Cn} in Rd is a fan if

1. Any nonempty face of a cone in the fan is in the fan.

2. For all Ci and Cj in the fan, Ci ∩ Cj is a face of both Ci and Cj.

The fan is called complete if its union is all of Rd.

Problem 50 If A is a central hyperplane arrangement, then the collection of the
cones c(s), s a covector of A, is a complete fan.

A second example of a complete fan is the face fan of a polytope. Let P be
a d-polytope in Rd with the origin in its interior. We form a fan by collecting all
subsets of the form co(F ), F a proper face of P and then including the origin. See
Figure 7.2 for an example of the face fan of a polygon. Since the dimension of co(F )
is the dimension of F plus one, the number of cones of dimension i, 1 ≤ i ≤ d in the
face fan of P is just fi−1 of P .

Problem 51 Let C be the face fan of a d-polytope P with the origin in its interior
and let fi(C) be the number of i-dimensional cones in C. Prove that

d∑
i=0

(−1)ifi(C) = (−1)d.

The key to relating face fans to the fans coming from hyperplane arrangements
are zonotopes.
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Figure 7.2: Face fan of a polygon

7.2 Zonotopes

An polytope Z in Re is a zonotope if it is the affine projection of a cube. Specifically,
there exists an affine map f : Rd → Re such that f(�d) = Z. Since faces of cubes
are translates of cubes, it is not unreasonable to hope that faces of zonotopes are
zonotopes.

Problem 52 Let f be a projection of a polytope P onto a polytope Q. If F is a face
of Q, then f−1(F ) ∩ P is a face of P.

Corollary 7.2.1 Faces of zonotopes are zonotopes.

At first sight it is not apparent how zonotopes might be related to hyperplane
arrangements. A hint that there might be a connection comes from an alternative
characterization of zonotopes via Minkowski sums.

Definition 7.2.2 Let X and Y be nonempty subsets of Rd. The Minkowski sum
of X and Y is

X + Y = {x + y : x ∈ X,y ∈ Y.}

Since addition is commutative and associative Minkowski sums are commu-
tative and associative. Furthermore, it is easy to see that {~0} acts as the identity
with respect to Minkowski sums. Several operations we have seen can be described
in terms of Minkowski sums. Figure 7.3 suggests how to construct cubes, translate
subsets, and form prisms using Minkowski sums.
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Figure 7.3: Cube, translation and prisms as Minkowski sums

Problem 53 Z is a zonotope in Rd if and only if there exists x1, . . . ,xn in Rd such
that Z can be written as a translation of a Minkowsi sum

Z = [−x1,x1] + · · ·+ [−xn,xn].

(Recall that [−xi,xi] is the line segment from −xi to xi.)

Now suppose A = {H=
a1,0

, . . . , H=
an,0} is an essential central hyperplane ar-

rangement. Consider the zonotope in ZA in (Rd)? given by

[−a1, a1] + · · ·+ [−an, an].

Since A is essential, ZA is a d-polytope with the origin in its interior. What does
the face fan of Z?

A in (Rd)?? = Rd look like?

Theorem 7.2.3 The face fan of Z?
A equals the fan of the hyperplane arrangement

A. Specifically, F is a proper face of ZA if and only if the smallest cone containing
Ψ(F ) equals c(s) for some covector s 6= (0, . . . , 0) of A.

Proof: We begin by considering the faces of ZA. By Problems 52 and 53 we
know that a proper face F of Z is the image of a face of the cube �n. So there is a
partition of [n] into three blocks [n] = Pl ∪Mi ∪ Ze such that

(7.1) F =

{
a : a =

n∑
i=0

λiai,


if i ∈ Pl, then λi = 1

if i ∈Mi, then λi = −1

if i ∈ Ze, then − 1 ≤ λi ≤ 1

}
.

Note that while every face is of this form, it is not true that every partition corre-
sponds to a face.
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When is x = (x1, . . . , xd) ∈ Rd in Ψ(F ) (the face in Z?
A dual to F )? When

a · x = 1 for all a ∈ F and a · x ≤ 1 for all a in Z. From this we can see that
tx, t > 0 is in co(Ψ(F )) if and only if x ·a = a ·x is maximized over all a ∈ ZA on F .
Looking at F we first notice that this means that ai · x must be zero for all i ∈ Ze.
Otherwise, for a ∈ F of the form specified in (7.1), a · x would not be constant.
Similarly, ai · x ≥ 0 for i ∈ Pl, and ai · x ≤ 0 for i ∈ Mi. Otherwise a · x is not
maximized over ZA on the face F. Thus, each co(F ) is equal to c(s) for the covector
s which is + for all i ∈ Pl,− for all i ∈ Mi and 0 for all i ∈ Ze. Conversely, any
nonzero covector s determines F by reversing the above reasoning. �

Corollary 7.2.4 Let A be a central arrangement. Let C be the fan of the arrange-
ment.

d∑
i=0

(−1)ifi(C) = (−1)d.

Proof: When A is essential this follows immediately from Theorem 7.2.3 and
Corollary 51.

Problem 54 Prove the above formula when A is not essential.

7.3 The intersection poset

In order to use the above result on the number of cones in the fan of a central
hyperplane arrangement we introduce the intersection poset of A. It consists of
all intersections of hyperplanes ordered by reverse inclusion. This includes the
intersection of no hyerplanes, Rd. The intersection poset is denoted LA and always
has a minimal element 0̂ = Rd, and a maximal element 1̂ equal to the intersection
of all of the hyperplanes. One way to get a feeling for LA is to look at graphic
arrangements.

Let G be a graph without loops or parallel edges, whose vertex set is [d] and
edge set is E. For each edge e = {i, j} ∈ E define the hyperplane He in Rd by
xi − xj = 0. The set AG = {He}e∈E of all the He is the graphic arrangement
associated toG. Evidently AG is a central arrangement. However, it is never essential
(see Exerc. 5).

Problem 55 LAG ' LG.
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The most well known graphic arrangements are the braid arrangements - the graph
arrangements associated to complete graphs, Kn. There is a close connection between
the fan of the arrangement AKn and the permutahedron (see Exerc. 6).

This suggests several properties of intersection posets of all central hyperplane
arrangements. A poset is a lattice if every pair of elements of the poset have a least
upper bound and a greatest lower bound. Suppose L is a lattice. The least upper
bound of x and y in L is called their join and is denoted by x ∨ y. The greatest
lower bound of x and y is called their meet and is denoted x∧ y. The operations of
meet and join are commutative and associative. When L is finite we can take the
join of all of the elements to see that L has a unique maximal element 1̂. Similarly,
the meet of all the elements of L shows that there is a unique minimal element 0̂.
In any poset which contains a unique minimal element 0̂ the elements which cover
0̂ are called the atoms of the poset.

Problem 56 Let A be a central arrangement in Rd.

1. LA is graded. The rank of A ∈ LA is d− dimA.

2. LA is a lattice.

3. Let x, y ∈ L. Then ρ(x) + ρ(y) ≥ ρ(x∨ y) + ρ(x∧ y). (LA is semi-modular.)

4. Every x > 0̂ in LA is the join of atoms of LA. (LA is atomic.)

Any finite lattice which satisfies the last two properties of the above problem is
called a geometric lattice.

Problem 57 Are there any geometric lattices which are not isomorphic to LA for
some central hyperplane arrangement?

We are finally ready to prove the promised formula for the number of regions
of a central hyperplane arrangement. For A ∈ LA define f(A) to be the number of
cones in the fan of A whose affine span equals A. Thus the number of regions of the
hyperplane arrangement equals f(0̂).

Theorem 7.3.1 [19], [11] Let A be an essential central hyperplane arrangement in
Rd. Then

f(0̂) = (−1)dχLA
(−1).



58 CHAPTER 7. HYPERPLANE ARRANGEMENTS AND ZONOTOPES

Figure 7.4: Two orientations of a graph, one acyclic

Problem 58 Prove the above formula.

What if A is not essential?

Problem 59 Let A be a nonessential central arrangement, dim∩Hi = n > 0. Then
there exists an essential central arrangement A in Rd−n such that LA ' LA and the
covectors of the two arrangements are identical.

7.4 Acyclic orientations

At the beginning of the chapter we asked whether or not χG(−1) meant anything.
Since χG(λ) = λc(G)χLG(λ), χLG = χLAG

and Theorem 7.3.1 tells us that the num-

ber of regions of the hyperplane arrangement AG is (−1)|V (G)|χLAG
(−1), we could

say that χG(−1) is (−1)|V (G)|−c(G) times the number of regions of the hyperplane
arrangement AG. This does not seem like a very satisfactory answer. At the very
least an interpretation of χG(−1) should involve objects which are ‘obviously’ graph
invariants. In 1973 Richard Stanley showed how to do this via acyclic orientations.

An orientation of a graph is a choice of direction for every edge of the graph.
If G has n edges, then there are 2n possible orientations for G. An orientation of G
is acyclic if there are no directed circuits. See Figure 7.4 for examples.

Let O be an orientation of G. Define a binary relation ≤O on the vertices of
G by v1 ≤ v2 if there is a directed path from v1 to v2. The empty path is permitted
(as a directed path from v1 to v1).

Problem 60 The orientation O is acyclic if and only if ≤O is a partial order on
the vertices of G. Conversely, if (Π,≤) is a poset, then there exists a graph G and
an acyclic orientation O on the graph so that (Π,≤) is isomorphic to (V (G),≤O).
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Stanley’s original observation was the following.

Problem 61 [16] If G is a graph, then the number of acyclic orientations of G is
(−1)|V |−c(G)χG(−1).

Acyclic orientations occur in a variety of contexts. We will see a simple appli-
cation of them in the next chapter as we examine the graphs of polytopes.

Exercise 7.5

1. Classify all open cones in Rd.

2. Classify all convex cones in R2.

3. An n-gon is a zonotope if and only if n is even.

4. The Minkowski sum of two polytopes is a polytope.

5. If G is a simple graph, then dim∩e∈EHe = c(G).

6. Let A be the arrangement guaranteed by Problem 59 for AKn . Show that ZA is
combinatorially equivalent to a permutahedron.

7. Give an example of a lattice L with no maximal element.

8. Let L be a finite poset such that x ∧ y exists for all x, y ∈ L. Show that L̂, the
poset obtained by adding a unique maximal element to L, is a lattice. Does
this work if L is infinite?

9. Let E be a finite set of vectors in a vector space V. Define LE to be poset of
all subsets of the form E ∩W, where W is a linear subspace of V, ordered by
inclusion. Prove that LE is a geometric lattice.
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Chapter 8

Graphs of polytopes

The simplex algorithm optimizes a linear function over a polytope by examining a
vertex and then considering the vertices adjacent to that vertex to see if a better
choice is available. This requires an understanding of the graph of the polytope -
the graph given by the vertices and edges of the polytope. For a polytope P we
denote this graph by G(P ).

How much information does G(P ) tell us about P? A natural question to ask
is whether or not G(P ) determines the face poset of P. Can we determine which
subsets of vertices of the graph correspond to faces of the polytope? Looking at
Exercise 1 we can see that G(P ) does not even determine the dimension of P ! There
are at least two situations where G(P ) does determine F(P ).

One is when P is three-dimensional. In this case we already know the vertices
and edges, so all that remains is to determine which circuits of the graph are the
boundaries of facets. If we remove the boundary of a facet from the boundary of
the polytope, then the graph will still be connected. However, if we remove a circuit
that is not the boundary of a 2-face then the graph will be disconnected. This gives
us an algorithm for figuring out which circuits correspond to facets.

The other situation when G(P ) determines F(P ) is when P is a simple poly-
tope. A remarkably simple argument due to Kalai shows that G(P ) does indeed
determine the face poset of P. The acyclic orientations we met at the end of the last
chapter play a crucial role in Kalai’s proof.

8.1 Acyclic orientations of G(P )

The most common method for obtaining an acyclic orientation of the graph of a
polytope is by using a generic element of (Rd)?.

61
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Definition 8.1.1 Let P be a polytope in Rd. An element a ∈ (Rd)? is generic for
P if for all distinct vertices v1 and v2 of P, a · v1 6= a · v2.

Let a be generic for the polytope P . The orientation of the graph of the
polytope induced by a is given by orienting an edge {v1, v2} so that it points toward
v1 if a · v1 > a · v2 and points toward v2 otherwise. Since all of the arrows point
toward vertices whose dot product with a is greater, there cannot be any directed
circuits and the orientation is acyclic. For this to be useful we need to know that
there are generic a.

Problem 62 Let P be a d-polytope and let GP be the linear maps in (Rd)? which
are generic for P . Then GP is an open subset and has nonvoid intersection with
every nonempty open ball.

Corollary 8.1.2 Let F be a face of a polytope P and let V (F ) be the vertices of F.
Then there exists an acyclic orientation O of G(P ) such that the vertices of F form
an initial segment of ≤O .

An initial segment of a poset with minimal element 0̂ is a subset of the poset of
the form [0̂, x] for some x in the poset.

Proof: Let Ha,b be a closed half-space which shows that F is a face of P . By
Problem 62 there exist generic a′ arbitrarily close to a. In the partial order associ-
ated to −a′ the vertices of F must come first. �

8.2 Simple polytopes

Most properties of simple polytopes are either self-evident or follow easily by looking
at their simplicial duals.

Problem 63 Let P be a simple d-polytope.

• Any k-dimensional face of P is the intersection of exactly d− k facets.

• Let v be a vertex of P and {e1, . . . , em} edges incident to v. There exists a
unique m-dimensional face of P which contains {e1, . . . , em} and v.
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How can we identify the faces of a simple polytope knowing only the graph of
the polytope? The key to Kalai’s algorithm are special class of acyclic orientations of
G(P ). An acyclic orientation of G(P ) is good if the graph of every nonempty every
face of P has a unique sink. The prototypical example of a good orientation is one
associated to a generic linear map. Is it possible to know which acyclic orientations
O are good without knowing the faces of P? For an acyclic orientation O define hO

i

to be the number of vertices with indegree i. Now set

(8.1) fO = hO
0 + 2hO

1 + · · ·+ 2dhO
d .

Problem 64 Prove that fO is greater than or equal to the number of faces P . Fur-
thermore, fO equals the number of nonempty faces of P if and only if O is a good
acyclic orientation.

Notice that this allows us to determine which acyclic orientations of G(P ) are good
without knowing the faces of P . We compute fO for all of them and O is good if it
is a minimizer.

Are there any other properties of the vertices of a face of P that could help us
identify them? Every face of a simple polytope is a simple polytope and the graph
of any simple polytope is regular. A graph is regular if the degree of every vertex
is the same.

Theorem 8.2.1 [10] Let P be a simple polytope. Then a vertex induced subgraph
H of G(P ) equals G(F ) for some face of P if and only if

• H is regular.

• The vertices of H form an initial segment of ≤O for some good acyclic orien-
tation of G(P ).

Problem 65 Prove the above theorem.

Theorem 8.2.1 gives us an algorithm for determining the face poset of a simple
polytope from its graph. However, this is not the end of the story. The first complete
proof that F(P ) was determined by G(P ) for simple polytopes was due to Blind
and Mani [3]. However, it was not constructive. Kalai’s algorithm, while elegant
and transparent, is exponential in time and it was an open question whether or not
a polynomial time algorithm for determining the faces of a simple polytope from its
graph exists. In [8] Friedman provided such an algorithm.
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8.3 Balinkski’s theorem

Another property of polytope graphs is that they are connected. In fact, they are
highly connected. A simple graph G is k-connected if it has at least k vertices
and is connected whenever (k − 1) or fewer vertices (and their incident edges) are
removed. The following is usually called Balinski’s theorem.

Theorem 8.3.1 [?] Let P be a d-polytope. Then G(P ) is d-connected.

Before we begin the proof we state a lemma that we will need.

Lemma 8.3.2 Let P be a polytope in Rd, a ∈ (Rd)? and v a vertex of P . Then
there exists a path in G(P )

v = v0 → v1 → · · · → vm

such that for all 0 ≤ i ≤ m − 1, a · vi > a · vi+1 and a · vm minimizes a · x for all
x ∈ P.

Problem 66 Prove this lemma.

By applying the lemma to −a, the same result holds for paths with increasing a · vi
instead of decreasing.

Proof (Balinski’s theorem): Let S be a subset of the vertices of P with |S| ≤
d− 1. We consider two cases.

Case one: The vertices in S all lie on a proper face F of P. Then F = P ∩Ha,b

for some hyperplane H=
a,b. Let c be the minimum of a · x,x ∈ P. By Exercise 3.5 (6)

Fmin = P ∩H=
a,c is a face of P containing at least one vertex. By Lemma 8.3.2 any

vertex not in S is part of a path which ends in Fmin. Since Fmin is connected, all
vertices not in S are connected by paths which do not go through S.

Case two: The vertices in S do not lie in a proper face of P. Let v be any
vertex of P not in S. Consider S ∪ {v}. Since |S ∪ {v}| ≤ d, this set lies in at least
one hyperplane H=

a,b. (More than one if S∪{v} is affinely dependent.) Furthermore,
there are points in P on both sides of H=

a,b. Otherwise, all of the vertices of S would
lie in the proper face P ∩H=

a,b. Define

H+ = {x ∈ P : a · x ≥ b}, H− = {x ∈ P : a · x ≤ b.}

Now apply Lemma 8.3.2 to both H+ and H− in the appropriate direction to see
that all the vertices of P not in S are connected to v by paths which do not contain
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any vertices of S. �

An immediate consequence of Balinski’s theorem is that the graphs of 3-
polytopes are simple, planar and 3-connected. The remarkable fact is that this
is a characterization of such graphs.

Theorem 8.3.3 (Steinitz’ theorem) [?] A graph is the graph of a 3-polytope if and
only if it is simple, planar and 3-connected.

Exercise 8.4

1. Give examples of two polytopes P and Q such that G(P ) is isomorphic to
G(Q), but dimP 6= dimQ.

2. Prove that hO
i from Equation (8.1) equals hi(P

?).

3. Does every good acyclic orientation of a G(P ) for a simple polytope come from
a generic a?

4. Let P be a 3-polytope with n facets. Then for any two vertices of P there exists
a path of length at most n− 3 between them in G(P ). (The length of a path is
the number of edges in the path.)
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Chapter 9

Hints

9.1 Affine and convex geometry

1. If W is a linear subspace, then W + v is a linear subspace if and only if v ∈ W
and (hence) W + v = W.

2. Translate.

3. Show by induction on the number of terms in the affine combination that every
affine combination is in the affine span.

4. Equate to linear independence.

5. Write in terms of linear maps.

6. Just like Problem 2.

7. The set of all convex combinations of elements of A is convex.

8. Write y as a convex combination of elements of A with as few terms as possible.
If there are more than d+ 1 terms then there must be an affine dependence among
the elements of A in the expression.

9.2 What is a polytope?

9. Compare to Problem 5.

10. This will be easier in the future.

11. (x1, . . . , xd) ∈ �d if and only if |x1|+ · · ·+ |xd| ≤ 1.

12. See 10.
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13. If y is not one of the xi, then it must lie on a line segment contained in P.

14. You have seen an example.

15. K lies in an affine space of dimension d.

16. Use the previous problem.

17. Use Exerc. 1.2.6 to show that γ(ti1), . . . , γ(tid+1
) are affinely independent.

18. For a potential set {γ(ti1), . . . , γ(tid)} of vertices for a facet of C(n, d) use
determinants to find a formula for the hyperplane containing those vertices.

9.3 Convexity

19. Compactness for existence. If K is convex and there are two points x1,x2 which
minimize the distance to y, consider the triangle ∆(x1,x2,y).

20. Consider the line segment [y,x] where y is the projection of x onto K.

21. For a fixed affine hyperplane Hε there are many possible ways to write Hε =
H=

aε,bε
Try to normalize them so that aε and bε converge.

22. How do hyperplanes intersect line segments?

23. Induction on m.

24. Induction on dimension.

9.4 Shelling

25. When is a face new?

26. For connected graphs, start with a spanning tree. For the last, order the vertices
any way you want, and list the facets lexicographically.

27. Induction on the number of facets.

28. Use the previous problem.

29. What is the effect on the coefficients of a polynomial in t when you multiply by
t− 1?

30. Put the vertices in general position.
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9.5 Duality

35. Mostly straightforward. For instance, if Br(~0) ⊆ K, then K? is contained in
B1/r(~0).

36. dim Rd = dim(Rd)? = dim(Rd)?? = d.

37. Suppose that a is in K?∩H−x??,−1 but not in Ψ(F ). Then a ·x = 1, and a ·y < 1
for some y ∈ F.
38. There is an a in K? such that F = Ha,1 ∩K.
39. Rotate the hyperplane which defines F ‘correctly’.

40. What are the hyperplanes which define P ??

41. Problem 39 and Exercise 3.5.3

9.6 Möbius inversion

42. First compute µ(∅, [n]) in Bn.

43. First compute µ(1, n) in Dn. For this, consider two cases. When n is the product
of distinct primes and when n has a factor which is a square of a prime.

44. Induction on dimension. Euler characteristic.

45. For ν ∈ I(Π) define β(ν) to be the matrix whose i, j entry is ν(β(i), β(j)).

46. For f : Π→ R define β(f) to be the vector in Rn whose ith coordinate is f(β(i)).
What is β(ζ) · β(f)? (Notation as in the previous hint.)

47. If H ⊆ G can they have the same number of components?

48. Consider f : LG → R, where f(H) is the number of λ-colorings of G such that
H is the associated partition-induced subgraph.

9.7 Hyperplane arrangements and zonotopes

49. If s is a covector, then the affine span of c(s) = ∩s(i)=0Hi.

50. Proposition 7.1.2.

51. Polytope Euler characteristic.

52. Use the projection f : P → Q and the a ∈ (Rd)? which defines F.

53. A linear map is determined by the image of the unit coordinate vectors.
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54. Let H = ∩Hi. Consider A ∩H.
55. x is in He, where e = {i, j} if and only if the ith and the jth coordinates are
equal.

56. Translate to linear algebra.

57. The Fano plane.

58. Corollary 7.2.4.

59. See the hint for Problem 54.

9.8 Graphs of polytopes

62. The union of a finite number of hyperplanes does not contain a nonempty ball.

63. Translate to the simplicial setting.

64. The second item of Problem 63.

65. Suppose H satisfies the conditions of the theorem and O is the good orientation
guaranteed by these conditions. Look at the minimum vertex in H with respect to
O≤. Its incident edges correspond to a face F (Problem 63). Show that H = G(F ).

66. What does it mean if for all vertices w which share an edge with v, a ·w ≥ a · v?
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Solutions

10.1 Affine and convex geometry

1. Suppose that W is a linear subspace of Rd and v is a vector such that W + v is a
linear subspace. Then v ∈ W and W+v = W. To see this, note that since ~0 ∈ W+v,
we know that −v, and hence v, is in W. As linear subspaces are closed under vector
addition, W + v ⊆ W. Similarly, for any y ∈ W, y = (y + −v) + v ∈ W + v, so
W ⊆ W + v.

Now assume that W + v = W ′ + v′. Then, W = W ′ + (v′ − v) and the above
discussion shows that W = W ′.

2. Let A = ∩αAα be an intersection of affine subspaces. If A is empty there the
result is immediate. So, let v ∈ A. Each Aα − v is a linear subspace, hence their
intersection W is a linear subspace. But A = W + v.

3. Let Y be the set of all affine combinations of elements of A and let y ∈ Y.
We show by induction on n, the number of terms in the affine combination, that
y ∈ aspan(A). For n = 0 or 1 this is obvious. From Problem 1 we know that
aspan(A) = W + v for any v ∈ aspan(A) and W a fixed linear subspace. For the
induction step we consider two cases. If an = 1, then v = y − xn + xn−1 is in
aspan(A) which implies that y = v− xn−1 + xn is also in aspan(A). When an 6= 1,
the induction hypothesis implies that

v =
1

1− an
(a1x1 + · · ·+ an−1xn−1)

is in A which implies that v − xn is in W . So (1− an)(v − xn) is also in W. Hence
y = (1− an)(v − xn) + xn is in aspan(A).

Now that we know that Y ⊆ aspan(A) it remains to show that Y is an affine
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subspace. Equivalently, Y − v is a linear subspace for any element of A. However,
Y − v consists of all linear combinations of elements of A whose coefficients sum to
zero. As this set of linear combinations is a linear subspace we are done.

4. Let X = {x1, . . . ,xn}. Suppose that x1 = a2x2 + · · ·+anxn with a2 + · · ·+an = 1.
Then a2(x2−x1)+· · ·+an(xn−x1) is a nontrivial linear dependence in aspan(X)−x1.
So, the dimension of X is less than n− 1.

Conversely, if dimX < n − 1, then there exists x2, . . . ,xn in X such that
x2 − x1, . . . ,xn − x1 have a nontrivial linear independence relation. If the sum of
the coefficients of this relation is zero, then one of x2, . . . ,xn can be written as an
affine combination of the others. If the coefficients do not sum to zero, then by
first multiplying the linear relation by the reciprocal of the sum of the coefficients
we can reverse the process of the first part to write x1 as an affine combination of
x2, . . . ,xn.

5. Write f = T + v with T : Rd → Re a linear map. Then f(A) = f(W + v) =
f(W ) + f(v) which is an affine subspace.

Now suppose that B is an affine subspace of R3. If f−1(B) is empty then by
definition it is affine. Suppose that B = x is a single point and f−1(B) is not empty.
Then f−1(B) = f−1(x) = T−1(x−v) = W+y, where y is any element of T−1(x−v)
and W is the kernel of T. So, in this case f−1(B) is affine. For the general case,
write B = U + z, so f−1(B) = f−1(U + z) = T−1(U + z−v) = T−1(U) +T−1(z−v)
which is an affine subspace.

6. Let C =
⋂
A∈AA and let x, y ∈ C. Since each A ∈ A is convex, [x, y] ⊆ A for

every A ∈ A. Hence [x, y] ⊆ C.

7. If A is empty there is nothing to prove. Set C to be the set of all convex
combinations of elements of A. First we show that C ⊆ ch(A). Let x ∈ C and write
it as a convex combination

x = a1x1 + · · ·+ anxn

of elements of A. If n = 1 or 2, then by definition x is in every convex set containing
A and hence is in ch(A). For larger n we proceed by induction by observing that

x = (1− an)

[
1

1− an
(a1x1 + · · ·+ an−1xn−1)

]
+ anxn.

To see that ch(A) ⊆ C it is sufficient to show that C is convex. Let y and z be
elements of C. By setting several coefficients to zero if necessary, we can write both
y and z as convex combinations of the same finite number of elements of A.

y =
n∑
i=1

aixi, z =
n∑
i=1

bixi.
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Hence for any 0 ≤ t ≤ 1,

(1− t)y + tz =
n∑
i=1

[(1− t)ai + tbi]xi,

is a convex combination of elements of A.

8. Write y as a convex combination of the elements of A with as few terms as
possible. We want to show a contradiction if there are d + 2 or more terms. So,
suppose

y = a1x1 + · · ·+ ajxj

is a minimal expression with j ≥ d + 2. Since Rd is d-dimensional x1, . . . ,xj must
be affinely dependent. Let

b1x1 + · · ·+ bjxj = 0

be an affine dependence. Without loss of generality we can assume that bj > 0 and
among all bi with bi > 0,

aj
bj
≤ ai

bi
. For 1 ≤ i ≤ j − 1 set ci = ai − aj

bj
bi. Now check

that
∑j−1

i=1 ci = 1, ci ≥ 0 and

y = c1x1 + · · ·+ cj−1xj−1.

This gives our desired contradiction.

10.2 What is a polytope?

9. Yes. The affine image of convex combinations is a convex combination. So,
f(P ) is the convex hull of f(x1), . . . , f(xn), where P is the convex hull of x1, . . . ,xn.
However, if f is a projection of R2 onto R1, then the inverse image of any set is
unbounded. In this case f−1(P ) can not be a V-polytope.

10. As we will see in Chapter 3 the answer is yes.

11. The d-cube is the intersection of all closed half-spaces of the form xi ≤ 1, xi ≥
−1. The d-crosspolytope is the intersection of all closed half-spaces of the form

ε1x1 + · · ·+ εdxd ≤ 1,

where εi = ±1. The d-simplex is the intersection of x1 +· · ·+xd ≤ 1, x1 +· · ·+xd ≥ 1
and all inequalities of the form xi ≥ 0 and xi ≤ 1. This is definitely not the most
efficient way of presenting ∆d as an H-polytope.

12. See 10.
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13. For our previous work we know that any element y of P is a convex combination
of x1, . . . ,xn. If v is not one of the xi, then it must lie on a line segment ` which is
completely contained in P. We know from Exerc. 1.2.4 that the intersection of any
hyperplane Ha,b with ` must be empty, all of ` or just one point. In the last case the
line segment must be on both sides of the hyperplane. But this makes it impossible
for y to be a vertex of P.

14. The upper left hand corner of Figure 1.1

15. Let A be the affine span of K. By definition dimA = dimK. Since A is an affine
subspace it is equal to W + v where dimW = dimK. Let f : RdimK → W be any
linear isomorphism. Then φ(x) = f(x) + v is an affine map which is a bijection on
K ′ = φ−1(K).

16. By the previous problem we may assume that P and Q both lie in Rd and the
affine map given by the definition of affine equivalence is an affine isomorphism.
Hence it maps hyperplanes to hyperplanes. Now it is easy to see that it maps faces
of P to faces of Q and vice versa.

17. It is sufficient to show that any collection of d+ 1 distinct γ(ti1), . . . , γ(tid+1
) are

affinely independent. (Why? Is it necessary?) To do this we apply Exerc. 1.2.6.
For notational convenience we use t1, . . . , td+1. Consider the (d+ 1)× (d+ 1) matrix

1 1 . . . 1 1
t1 t2 . . . td td+1

t21 t22 . . . t2d t2d+1
...

...
...

...
...

td−1
1 td−1

2 . . . td−1
d td−1

d+1

td1 td2 . . . tdd tdd+1


This matrix is usually called the Vandermonde matrix and its determinant is called
the Vandermonde determinant and it is

d+1∏
1≤i<j≤d+1

tj − ti.

To see this, proceed by induction and perform elementary row operations to show
that the above determinant is equal to the determinant of

1 1 . . . 1 1
0 t2 − t1 . . . td − t1 td+1 − t1
0 t2(t2 − t1) . . . td(td − t1) td+1(td+1 − t1)
...

...
...

...
...

0 td−2
2 (t2 − t1) . . . td−2

d (td − t1) td−2
d+1(td+1 − t1)

0 td−1
2 (t2 − t1) . . . td−1

d (td − t1) td−1
d+1(td+1 − t1)


.
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18. Let A = {γ(ti1), . . . , γ(tid)} be the vertices of a potential facet F = ch(A) of
C(n, d). For x = (x1, . . . , xd) ∈ Rd define

δ(x) = det



1 1 . . . 1 1
x1 ti1 . . . tid−1

tid
x2 t2i1 . . . t2id−1

t2id
...

...
...

...
...

xd−1 td−1
i1

. . . td−1
id−1

td−1
id

xd tdi1 . . . tdid−1
tdid


.

The theory of determinants (for instance, Laplace expansion) tells us that
δ(x) = 0 is a hyperplane H in Rd. It also tells us that γ(ti1), . . . , γ(tid) are all
contained in H. Hence, H is the hyperplane determined by the γij . In addition, we
now know that F is a facet of C(n, d) if and only if for all tj /∈ A the signs of δ(γ(tj))
are all the same.

Now consider the function p(t) = δ(γ(t)). This is a polynomial of degree at
most d. On the other hand, ti1 , . . . , tid are d-distinct real roots of the polynomial.
Therefore they are the only roots and the sign of δ(t) changes between each root.
This implies that the number of vertices in A between any two vertices not in A
must be even.

10.3 Convexity

19. Let z any element of K and set r = ||z − y||. Since f(v) = ||v − y|| is a
continuous function and the closed ball Br(y) intersected with K is compact, there
exists at least one point x in K which minimizes the distance to y. To show that x
is unique when K is convex, suppose there are two such points, x1 and x2. Consider
the triangle ∆(x1,x2,y). Since K is convex the line segment [x1,x2] ⊆ K. However,
elementary Euclidean geometry tells us that the distance from the midpoint of the
line segment to y is strictly less than the distance to either x1 or x2. Contradiction.

20. Let y the projection of x onto K. The hyperplane H which is the perpendicular
bisector of the line segment [y,x] separates x and K. Indeed, if z ∈ H ∩K, then so
is [z,x] and by elementary Euclidean geometry there would exist v ∈ K closer to x
than y.

21 Since 0 is in the interior of K there exists a ball Br(0) contained in K. To see
that x /∈ (1− εK) suppose it is. Then y = 1/(1− ε)x is in K and hence x ∈ [0,y].
But this implies that x is in the interior of the convex hull of y ∪ Br(0) which is
contained in K, contrary to the assumption that x is on the boundary of K.
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Now, for each ε > 0 let H=
ε be a hyperplane which separates (1− ε)K and x.

Write each H=
ε = H=

aε,bε
, where we normalize so that aε is a unit vector pointing

away from K (this determines bε). The unit sphere in Rd is compact, so there exists
a subsequence of the aε which converge to a limit a. Set b = a · x. By definition
x ∈ H=

a,b ∩K, and an easy limit argument shows that Ha,b is a valid inequality for
K.

22 First observe that the intersection of any hyperplane and a line segment is either
empty, the whole line segment, or a single point.

Now, let x be a vertex of K. Since x is a vertex, x = K ∩ H=
a,,b, where Ha,b

is a valid inequality for K. If x is not an extreme point, then it is in the interior of
a line segment [y,x] ⊆ K. By the above observation H=

a,b ∩ [y, z] = x. But this is
impossible since Ha,b is a valid inequality for K.

To see that extK ⊆ A whenever K = ch(A), it is enough to show that if
x = a1x1 + · · · + anxn, n > 1 is a convex combination with distinct xi and all ai
nonzero, then x is in the interior of a line segment contained in ch(x1, . . . ,xn). This
is easily established by induction on n.

For the last item, it is immediate that F ∩ extK ⊆ extF. For the reverse
containment, suppose x ∈ extF but is not an extreme point of K. Then x is in the
relative interior of a line segment [y, z] in K. Since F is a face of K, there exists a
valid inequality Ha,b for K such that F = K ∩ H=

a,b. Once again, consideration of
[y, z] ∩Ha,b shows that either Ha,b is not a valid inequality, or [y, z] ⊆ F, contrary
to the assumption that x is an extreme point of F.

23

24 We show that if A is the union A1∪· · ·∪An of a finite number of affine subspaces
of Rd each of which is of dimension (d − 1) or less, then A does not contain any
nonempty ball Br(x). The proof is by induction on d, where the initial case d = 1
is obvious.

For the induction step, suppose Br(x) ⊆ A. Let H be any affine hyperplane
which contains x. For each Ai either H∩Ai is an affine subspace of dimension at most
d − 2, the empty set, or all of H. As there are only finitely many Ai and infinitely
many potential hyperplanes H, we can eliminate the last possibility by a judicious
choice of H. But now the induction hypothesis implies that Br(x) ∩H 6⊆ (A ∩H).

10.4 Shelling

25. Let G be a face of Fj which is not contained in the union of the previous facets.
Then each vjk must be a vertex of G, otherwise G ⊆ Fjk . Hence every new face
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contains Mj. Conversely, any face containing Mj was not in ∪j−1
i=0Fi.

26.

27. We proceed by induction t, where F1, . . . , Ft is a shelling order on the facets of
∆. If t = 1, then h∆(t) = td and f∆(t) = td +

(
d
1

)
td−1 + · · ·+

(
d
d−1

)
t+ 1 = (t+ 1)d =

h∆(t + 1). For the induction step, let Mj be the minimal new face, |Mj| = i. Set
∆s = F1 ∪ · · · ∪ Fs. The main point is that fk(∆j) = fk(∆j−1) plus the number of
new k-faces. How many of these are there? In dimension i − 1 there is one - Mj.
In dimension i there are

(
d−i

1

)
- those faces of Fj which contain the i vertices of Mj

and one other. We now see that in dimension i− 1 + k there are
(
d−i+k
k

)
new faces.

Thus, for 0 ≤ k ≤ d− i,

fi−1+k(∆j) = fi−1+k(∆j−1) +

(
d− i+ k

k

)
.

In terms of f∆ this means that f∆j
(t) = f∆j−1

(t) + (t+ 1)d−i. On the other hand, by
definition, h∆j

(t) = h∆j−1(t) + td−i. Hence, by the inductive hypothesis,

f∆j
(t) = f∆j−1

(t) + (t+ 1)d−i = h∆j−1
(t+ 1) + (t+ 1)d−i = h∆j

(t+ 1).
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Appendix A

Analysis

For the sake of completeness we include the basic facts from analysis that we need.
More detailed information can be found in any number of textbooks.

A.1 Compactness

The notions of open, closed, bounded and compact sets are some of the most fun-
damental ideas behind understanding the geometry of Rd.

Definition A.1.1 A ⊆ Rd is open if for all x ∈ A, there exists an open ball
centered at x, Br(x) = {y ∈ Rd : ||x− y|| < r}, r > 0, which is contained in A.

Examples of open subsets of R2 are open balls, the empty set, all of AR2 and
the interior of any polygon. A line segment and a polygon are not open. The union
of open sets is always open.

Definition A.1.2 A subset A of Rd is closed if it is the complement of an open
set.

Polygons, affine subspaces, any finite number of points and {(0, 1/n) : n ∈
Z+} ∪ {(0, 0)} are examples of closed subsets of R2. The intersection of closed sets
is closed. As usual, this means there is a smallest closed set containing a given set
A. It is called the closure of A. For instance, the closure of the rationals in R is all
of R.

A bounded subset of Rd is any subset which is contained in some ball Br(0).
Compact sets form one of the most well-behaved classes of subsets of Rd.

79
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Definition A.1.3 A ⊆ Rd is compact if it is closed and bounded.

Two of the most useful properties of compact sets are described by the following
theorem.

Theorem A.1.4 Let C be a nonempty compact subset of Rd.

• Let f : Rd → R be a continuous function. Then there exists x ∈ C which
maximizes f on C. Similarly, there exists y ∈ C which minimizes f on C.

• Let (x1,x2, . . . ) be an infinite sequence in C. Then there exists a subsequence
(xi1 ,xi2 , . . . ) which converges to some x ∈ C.

The hypotheses that C be closed and bounded are both necessary.

Exercise A.2

1. Polytopes are compact.

2. Construct a nonempty subset Ac ⊆ Rd which is closed and a continuous func-
tion f : Rd → R such that Ac does not contain a point which maximizes f on
Ac.

3. Construct a nonempty subset Ab ⊆ Rd which is bounded and a continuous
function f : Rd → R such that Ab does not contain a point which maximizes
f on Ab.

4. Construct a nonempty subset Ac ⊆ Rd which is closed and an infinite sequence
of elements of Ac which does not contain a convergent subsequence.

5. Construct a nonempty subset Ab ⊆ Rd which is bounded and an infinite se-
quence of elements of Ab which does not contain a convergent subsequence.

Intuitively it seems obvious that the proper faces of a convex set lie on its
‘boundary’. To make this precise requires we define what the boundary is!

Definition A.2.1 The boundary of a subset A of Rd consist of all points x ∈ Rd

such that any nonempty ball Br(x) contains points of A and points not in A.
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The boundary of A is denoted by ∂A. Note that it is not required that the points
in the boundary of a set are actually in the set. For instance, the boundary of the
half-open interval (0, 1] in R is {0, 1}. One of many properties of the boundary of a
set is the following.

Complementary to the boundary of a set is its interior. A point x in A is an
interior point of A if there exists a nonempty ball Br(x) contained in A. Any closed
set is the (disjoint) union of its interior and boundary.

Proposition A.2.2 x is in the boundary of A if and only if there exists a sequence
of points in A which converge to x, and there exists a sequence of points in the
complement of A which converge to x.
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