ERIN PEARSE

V. FIELDS AND GALOIS THEORY

V.1. Field Extensions.

7. If v is algebraic over K(u) for some $u \in F$ and v is transcendental over K, then u is algebraic over K(v).

If v is algebraic over K(u), then $\exists f(x) \in K(u)[x]$ such that f(v) = 0. Let

$$f(x) = \sum_{i=0}^{n} \frac{g_i(u)}{h_i(u)} x^i$$

where $g_i(x) = \sum_{j=0}^m a_{ij} x^j$, for $a_{ij} \in K, \forall i, j$. Then

$$f(v) = 0 \implies \sum g_i(u)v^i = 0 \implies g_i(u) = 0, \ \forall i$$

because the v^i are linearly independent. Then

$$D = \sum_{i=0}^{n} g_i(u) v^i$$

= $\sum_{i=0}^{n} \sum_{j=0}^{m} a_{ij} u^j v^i$
= $\sum_{j=0}^{m} \sum_{i=0}^{n} a_{ij} u^j v^i$
= $\sum_{j=0}^{m} \phi_j(v) u^j$

where $\phi_j(v) = \sum_{i=0}^n a_{ij}v^i$, where $a_{ij} \in k$. We know that $\phi_j(v) \neq 0$ because v is transcendental over K. This tells us that

$$\psi(x) = \sum_{j=0}^{m} \phi_j(v) x^j \in K(v)[x]$$

is a nonzero polynomial. Since $\psi(u) = 0$, u is algebraic over K(v).

- 8. If $u \in F$ is algebraic of odd degree over K, then so is u^2 and $K(u) = K(u^2)$. Was this one even assigned?
- 9. If $f(x) = x^n a \in K[x]$ is irreducible and $u \in F$ is a root of f and m|n, then prove that the degree of u^m over K is $\frac{n}{m}$. What is the irreducible polynomial for u^m over K?

Since n|m,

$$h(x) = x^{n/m} - a$$

is a polynomial in K[x]. Then

$$h(u^m) = (u^m)^{n/m} - a = u^n - a = 0$$

shows that u^m is a root of h. If h were reducible, then

$$h_1(x^m)h_2(x^m) = h(x^m) = x^n - a$$

shows that $x^n - a$ is reducible \leq hypothesis. Thus, h is the irreducible polynomial of u^m , and

$$[K(u^m):K] = \deg h = \frac{n}{m}$$

12. If $d \ge 0$ is an integer that is not a square, describe the field $\mathbb{Q}(\sqrt{d})$ and find a set of elements that generate the whole field.

d is not a square $\implies \sqrt{d} \notin \mathbb{Q}$, so the minimal polynomial of d over \mathbb{Q} is $f(x) = x^2 - d$. It is clear that f is irreducible because it can only have factors of degree 1, and we know that f factors linearly as (x - d)(x + d) and neither factor is in $\mathbb{Q}[x]$. Then

$$\left[\mathbb{Q}(\sqrt{d}):\mathbb{Q}\right] = \deg f = 2,$$

so $\{1, d\}$ is a basis for $\mathbb{Q}(\sqrt{d})$ over \mathbb{Q} . Thus,

$$\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} \stackrel{!}{:} a, b \in \mathbb{Q}\}$$

13. Note: this was done in lecture, but not assigned.

a) Consider the extension Q(u) of Q generated by a real root of f(x) = x³ - 6x² + 9x + 3. Express each of the following in terms of the basis {1, u, u²}: u⁴, u⁵. To see that f is irreducible over Q, it suffices to show that f is irreducible over Z, by III.6.13. But f is irreducible over Z, by Eisenstein's Criterion with p = 3. Now u³ = 6u² - 9u - 3 by construction, so

$$u^{4} = 6u^{3} - 9u^{2} - 3u$$

= 6 (6u² - 9u - 3) - 9u² - 3u
= 36u² - 45u - 18 - 9u² - 3u
= 27u² - 48u - 18

Then

$$u^{5} = 27u^{3} - 48u^{2} - 18u$$

= 27 (6u² - 9u - 3) - 48u² - 18u
= 162u² - 243u - 81 - 48u² - 18u
= 114u² - 261u - 81

Math 201C - Algebra - V.1

- 14. Note: this was done in lecture, but not assigned.
 - a) If $F = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, find $[F : \mathbb{Q}]$ and a basis of F over \mathbb{Q} .

The irreducible polynomial of $\sqrt{3}$ over \mathbb{Q} is $x^2 - 3$, so $[\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2$. Then the irreducible polynomial of $\sqrt{2}$ over $\mathbb{Q}(\sqrt{3})$ is x^-2 , so $[Q(\sqrt{2},\sqrt{3}) : Q(\sqrt{3})] = 2$. To see that $\sqrt{2} \notin \mathbb{Q}(\sqrt{3})$, suppose it were: then $\sqrt{2} = a + b\sqrt{3}$, for some $a, b \in \mathbb{Q}$. Then

$$\sqrt{2} = a + b\sqrt{3} \Rightarrow 2 = a^2 + 2b\sqrt{3} + 3b^2,$$

which is clearly impossible. Hence,

$$\left[Q(\sqrt{2},\sqrt{3}):Q\right] = \left[Q(\sqrt{2},\sqrt{3}):Q(\sqrt{3})\right] \cdot \left[Q(\sqrt{3}):Q\right] = 2 \cdot 2 = 4$$

b) If $F = \mathbb{Q}(i, \sqrt{3}, \omega)$, where $i = \sqrt{-1}$ and ω is a nonreal cube root of 1, find $[F : \mathbb{Q}]$ and a basis of F over \mathbb{Q} .

i has irreducible polynomial x^2+1 over \mathbb{Q} , so $[\mathbb{Q}(i):\mathbb{Q}]=2$. Then the irreducible polynomial of $\sqrt{3}$ over $\mathbb{Q}(i)$ is $x^2-3 \in \mathbb{Q}(i)[x]$, so

$$\left[\mathbb{Q}(i,\sqrt{3}):\mathbb{Q}(i)\right] = \left[\mathbb{Q}(i,\sqrt{3}):\mathbb{Q}(i)\right] \cdot \left[\mathbb{Q}(i):\mathbb{Q}\right] = 2 \cdot 2 = 4$$

Since *i* and $\sqrt{3}$ are linearly independent, $\{1, i, \sqrt{3}\}$ is a basis of $\mathbb{Q}(i, \sqrt{3})$ over \mathbb{Q} . Now notice that $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \in \mathbb{Q}(i, \sqrt{3})$, so $\mathbb{Q}(i, \sqrt{3}, \omega) = \mathbb{Q}(i, \sqrt{3})$.

15. In the field K(x), let $u = \frac{x^3}{x+1}$. Show that K(x) is a simple extension of the field K(u). What is [K(x) : K(u)]?

Let

$$f(y) = y^3 - \frac{x^3}{x+1}(y+1) = y^3 - \frac{x^3}{x+1}y - \frac{x^3}{x+1} \in K(u)[y]$$

so that x is a root of f. Then f is irreducible by Eisenstein's Criterion, with $p = \frac{x^3}{x+1} \in K(u)$. Then

$$[K(x):K(u)] = \deg f = 3$$

and $\{1, x, x^2\}$ is a basis of K(x) over K(u). Also note that

$$K(x) = K(x, \frac{x^3}{x+1}) = K\left(\frac{x^3}{x+1}\right)(x),$$

so K(x) is a simple extension of K(u).

- 4 June 7, 2002
 - 17. Find an irreducible polynomial f of degree 2 over the field \mathbb{Z}_2 ? Adjoin a root u of f to \mathbb{Z}_2 to obtain a field $\mathbb{Z}_2(u)$ of order 4. Use the same method to construct a field of order 8.

Let u be a root of $f(x) = x^2 + x + 1^1$. f is irreducible because f(0) = 1 and $f(1) = 3 \equiv_2 1$, so f has no linear factors in $\mathbb{Z}_2[x]$. Hence, $\mathbb{Z}_2(u) = \{0, 1, u, 1 + u\}$.

+	0	1	u	1+u	×	0	1	u	1+u
0	0	1	u	1+u	0	0	0	0	0
1	1	0	1+u	u	1	0	1	u	1+u
u	u	1+u	0	1	u	0	u	1+u	1
1+u	1+u	u	1	0	1+u	0	1+u	1	u

To construct a field of order 8, we need to adjoin the root of an irreducible cubic. Define $g(x) = x^3 + x + 1$. Then g is irreducible because g(0) = 1 and $g(1) = 3 \equiv_2 1$, so g has no linear factors in $\mathbb{Z}_2[x]$.

¹This polynomial was found by trial and error / exhaustion

22. F is an algebraic \iff for every intermediate field E, every monomorphism $\sigma: E \to E$ which is the identity on K is in fact an automorphism of E.

 \implies Let *E* be an intermediate field of the extension F: K, and let $\sigma: E \to E$ be a monomorphism fixing *K*. We need to show that σ is surjective, so pick $u \in E \setminus K$ and find its preimage under σ . Since F: K is algebraic and $u \in E \subset F$, *u* must be algebraic over *K*. Then let *f* be the irreducible polynomial of *u*. Now $f(u) = \sum_{i=0}^{n} a_i u^i = 0$ implies that

$$\sigma f(u) = \sigma \left(\sum_{i=0}^{n} a_{i} u^{i} \right)$$
$$= \sum_{i=0}^{n} \sigma \left(a_{i} u^{i} \right)$$
$$= \sum_{i=0}^{n} \sigma \left(a_{i} \right) \sigma \left(u^{i} \right)$$
$$= \sum_{i=0}^{n} a_{i} \sigma \left(u \right)^{i}$$
$$= 0,$$

showing that $\sigma(u)$ is also a root of f, by the ring-homomorphism properties of σ . Since f can only have finitely many roots,

$$\left|\left\{\sigma^{k}\left(u\right) \ \vdots \ k \in N\right\}\right| = n < \infty.$$

Since $\sigma: E \to E$, we know $\sigma^k(u) \in E, \forall k$. Hence, $\sigma^{n-1}(u) \in E$. Then $\sigma(\sigma^{n-1}(u)) = \sigma^n(u) = u$

shows that $\sigma^{n-1}(u)$ is in the preimage of u. Since this is true for any $u \in E$, σ must be surjective.

 \leftarrow Strategy: suppose F: K is not algebraic and find a σ which is not surjective.

If F: K is transcendental, then there is some $u \in F \setminus K$ which is not the root of any polynomial in K[x]. K(u) has basis $\{1, u, u^2, \ldots\}$ over K, so the action of any σ fixing K is completely determined by its action on u^2 . Define $\sigma: K(u) \to K(u)$ by $\sigma(u) = u^2$. Then u can have no preimage under σ . If it did, then $\exists v \in K(u)$ such that $\sigma(v) = u$. Then

$$v = a_0 + a_1 u + \ldots + a_n u^n = \sum_{i=0}^n a_i u^i, \ a_i \in K$$

because $v \in K(u)$. Also,

$$\sigma(v) = \sum_{i=0}^{n} \sigma(a_{i}u^{i}) = \sum_{i=0}^{n} a_{i}\sigma(u)^{i} = \sum_{i=0}^{n} a_{i}u^{2i}$$

But this would imply that u is a root of

$$f(x) = \left(\sum_{i=0}^{n} a_i x^{2i}\right) - x \in K[x]$$

 $\leq u$ is transcendental.

²All other u^i will be determined by the image of u under σ : $\sigma(u^i) = \sigma^i(u)$

Alternative \Leftarrow proof for 23: Pick $u \in E$, where E is any intermediate field of the extension F: K. Let $\sigma: K \xrightarrow{id} K$ be the identity. Then we can extend this to a homomorphism $\sigma: K(u) \longrightarrow K(u)$ by defining $\sigma(\frac{f(u)}{g(u)}) = \frac{f(u^2)}{g(u^2)}$ for any element $v = \frac{f(u)}{g(u)} \in E \setminus K$. Now

$$\sigma\left(\frac{f_1(u)}{g_1(u)} + \frac{f_2(u)}{g_2(u)}\right) = \sigma\left(\frac{f_1(u)g_2(u) + f_2(u)g_1(u)}{g_1(u)g_2(u)}\right) = \frac{f_1(u^2)g_2(u^2) + f_2(u^2)g_1(u^2)}{g_1(u^2)g_2(u^2)}$$
$$\sigma\left(\frac{f_1(u)}{g_1(u)}\right) + \sigma\left(\frac{f_2(u)}{g_2(u)}\right) = \frac{f_1(u^2)}{g_1(u^2)} + \frac{f_2(u^2)}{g_2(u^2)} = \frac{f_1(u^2)g_2(u^2) + f_2(u^2)g_1(u^2)}{g_1(u^2)g_2(u^2)}$$
$$\sigma\left(\frac{f_1(u)f_2(u)}{g_1(u)g_2(u)}\right) = \frac{f_1(u^2)f_2(u^2)}{g_1(u^2)g_2(u^2)} = \frac{f_1(u^2)}{g_1(u^2)} \cdot \frac{f_2(u^2)}{g_2(u^2)} = \sigma\left(\frac{f_1(u)}{g_1(u)}\right) \cdot \sigma\left(\frac{f_2(u)}{g_2(u)}\right)$$

shows that σ is a homomorphism.

- case i) σ is not injective. Then $\exists \frac{f(u)}{g(u)} \in \ker \sigma$, i.e., $\sigma\left(\frac{f(u)}{g(u)}\right) = 0$, where $f(u) \neq 0$. So $f(u^2) = 0$ shows that u is algebraic over K.
- case ii) σ is injective. Then the hypotheses give that σ is also surjective, so there is some $\frac{f(u)}{g(u)} \in E$ such that $\sigma\left(\frac{f(u)}{g(u)}\right) = \frac{f(u^2)}{g(u^2)} = u$. Then $f(u^2) - ug(u^2) = 0$ shows that u is algebraic over K, because u is a root of

$$h(x) = f(x^2) - xg(x^2) \in K[x].$$

23. If $u \in F$ is algebraic over K(U) for some $U \subset F$, then there exists a finite subset $U' \subset U$ such that u is algebraic over U'.

If u is algebraic over K(U), then u is the root of some irreducible polynomial

$$\varphi(x) = \sum_{i=0}^{n} \frac{f_i(u_1, \dots, u_m)}{g_i(u_1, \dots, u_m)} x^i$$

= $\frac{f_0(u_1, \dots, u_m)}{g_0(u_1, \dots, u_m)} + \frac{f_1(u_1, \dots, u_m)}{g_1(u_1, \dots, u_m)} x + \dots + \frac{f_n(u_1, \dots, u_m)}{g_n(u_1, \dots, u_m)} x^n \in K(U)[x]$

Let $U' = \{u_1, \ldots, u_m\}$. Then U' is clearly finite, and u is algebraic over K(U') by construction.