
Math 201C - Algebra Erin Pearse

V. Fields and Galois Theory

V.1. Field Extensions.

7. If v is algebraic over K(u) for some u ∈ F and v is transcendental over K, then u is
algebraic over K(v).

If v is algebraic over K(u), then ∃f(x) ∈ K(u)[x] such that f(v) = 0. Let

f(x) =
∑n

i=0

gi(u)
hi(u)

xi

where gi(x) =
∑m

j=0 aijx
j, for aij ∈ K, ∀i, j. Then

f(v) = 0 =⇒
∑

gi(u)vi = 0 =⇒ gi(u) = 0, ∀i
because the vi are linearly independent. Then

0 =
∑n

i=0
gi(u)vi

=
∑n

i=0

∑m

j=0
aiju

jvi

=
∑m

j=0

∑n

i=0
aiju

jvi

=
∑m

j=0
φj(v)uj

where φj(v) =
∑n

i=0 aijv
i, where aij ∈ k. We know that φj(v) 6= 0 because v is

transcendental over K. This tells us that

ψ(x) =
∑m

j=0
φj(v)xj ∈ K(v)[x]

is a nonzero polynomial. Since ψ(u) = 0, u is algebraic over K(v). ¥

8. If u ∈ F is algebraic of odd degree over K, then so is u2 and K(u) = K(u2).

Was this one even assigned?

9. If f(x) = xn − a ∈ K[x] is irreducible and u ∈ F is a root of f and m|n, then prove
that the degree of um over K is n

m
. What is the irreducible polynomial for um over

K?

Since n|m,

h(x) = xn/m − a

is a polynomial in K[x]. Then

h(um) = (um)n/m − a = un − a = 0
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shows that um is a root of h. If h were reducible, then

h1(x
m)h2(x

m) = h(xm) = xn − a

shows that xn − a is reducible <↙ hypothesis. Thus, h is the irreducible polynomial
of um, and

[K(um) : K] = deg h = n
m

¥

12. If d > 0 is an integer that is not a square, describe the field Q(
√

d) and find a set of
elements that generate the whole field.

d is not a square =⇒
√

d /∈ Q, so the minimal polynomial of d over Q is
f(x) = x2 − d. It is clear that f is irreducible because it can only have factors of
degree 1, and we know that f factors linearly as (x− d)(x + d) and neither factor is
in Q[x]. Then [

Q(
√

d) : Q
]

= deg f = 2,

so {1, d} is a basis for Q(
√

d) over Q. Thus,

Q(
√

d) = {a + b
√

d
... a, b ∈ Q}

¥

13. Note: this was done in lecture, but not assigned.

a) Consider the extension Q(u) of Q generated by a real root of f(x) = x3− 6x2 +
9x + 3. Express each of the following in terms of the basis {1, u, u2}: u4, u5. To

see that f is irreducible over Q, it suffices to show that f is irreducible over Z,
by III.6.13. But f is irreducible over Z, by Eisenstein’s Criterion with p = 3.
Now u3 = 6u2 − 9u− 3 by construction, so

u4 = 6u3 − 9u2 − 3u

= 6
(
6u2 − 9u− 3

)− 9u2 − 3u

= 36u2 − 45u− 18− 9u2 − 3u

= 27u2 − 48u− 18

Then

u5 = 27u3 − 48u2 − 18u

= 27
(
6u2 − 9u− 3

)− 48u2 − 18u

= 162u2 − 243u− 81− 48u2 − 18u

= 114u2 − 261u− 81
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14. Note: this was done in lecture, but not assigned.

a) If F = Q(
√

2,
√

3), find [F : Q] and a basis of F over Q.

The irreducible polynomial of
√

3 over Q is x2−3, so
[
Q(
√

3) : Q
]

= 2. Then the

irreducible polynomial of
√

2 over Q(
√

3) is x−2, so
[
Q(
√

2,
√

3) : Q(
√

3)
]

= 2.

To see that
√

2 /∈ Q(
√

3), suppose it were: then
√

2 = a+b
√

3, for some a, b ∈ Q.
Then √

2 = a + b
√

3 ⇒ 2 = a2 + 2b
√

3 + 3b2,

which is clearly impossible. Hence,[
Q(
√

2,
√

3) : Q
]

=
[
Q(
√

2,
√

3) : Q(
√

3)
]
·
[
Q(
√

3) : Q
]

= 2 · 2 = 4

b) If F = Q(i,
√

3, ω), where i =
√−1 and ω is a nonreal cube root of 1, find [F : Q]

and a basis of F over Q.

i has irreducible polynomial x2+1 over Q, so [Q(i) : Q] = 2. Then the irreducible
polynomial of

√
3 over Q(i) is x2 − 3 ∈ Q(i)[x], so[

Q(i,
√

3) : Q(i)
]

=
[
Q(i,

√
3) : Q(i)

]
· [Q(i) : Q] = 2 · 2 = 4

Since i and
√

3 are linearly independent,
{
1, i,

√
3
}

is a basis of Q(i,
√

3) over

Q. Now notice that ω = −1
2

+
√

3
2

i ∈ Q(i,
√

3), so Q(i,
√

3, ω) = Q(i,
√

3).

15. In the field K(x), let u = x3

x+1
. Show that K(x) is a simple extension of the field

K(u). What is [K(x) : K(u)]?

Let
f (y) = y3 − x3

x+1
(y + 1) = y3 − x3

x+1
y − x3

x+1
∈ K(u)[y]

so that x is a root of f . Then f is irreducible by Eisenstein’s Criterion, with p =
x3

x+1
∈ K(u). Then

[K(x) : K(u)] = deg f = 3

and {1, x, x2} is a basis of K(x) over K(u). Also note that

K(x) = K(x, x3

x+1
) = K

(
x3

x+1

)
(x),

so K(x) is a simple extension of K(u). ¥
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17. Find an irreducible polynomial f of degree 2 over the field Z2? Adjoin a root u of f
to Z2 to obtain a field Z2(u) of order 4. Use the same method to construct a field of
order 8.

Let u be a root of f(x) = x2 + x + 11. f is irreducible because f(0) = 1 and
f(1) = 3 ≡2 1, so f has no linear factors in Z2[x]. Hence, Z2(u) = {0, 1, u, 1 + u}.

+ 0 1 u 1 + u
0 0 1 u 1 + u
1 1 0 1 + u u
u u 1 + u 0 1

1 + u 1 + u u 1 0

× 0 1 u 1 + u
0 0 0 0 0
1 0 1 u 1 + u
u 0 u 1 + u 1

1 + u 0 1 + u 1 u

To construct a field of order 8, we need to adjoin the root of an irreducible cubic.
Define g(x) = x3 + x + 1. Then g is irreducible because g(0) = 1 and g(1) = 3 ≡2 1,
so g has no linear factors in Z2[x].

1This polynomial was found by trial and error / exhaustion
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22. F is an algebraic ⇐⇒ for every intermediate field E, every monomorphism σ : E →
E which is the identity on K is in fact an automorphism of E.

⇒ Let E be an intermediate field of the extension F : K, and let σ : E → E
be a monomorphism fixing K. We need to show that σ is surjective, so pick u ∈
E\K and find its preimage under σ. Since F : K is algebraic and u ∈ E ⊂ F ,
u must be algebraic over K. Then let f be the irreducible polynomial of u. Now
f(u) =

∑n
i=0 aiu

i = 0 implies that

σf(u) = σ
(∑n

i=0
aiu

i
)

=
∑n

i=0
σ

(
aiu

i
)

=
∑n

i=0
σ (ai) σ

(
ui

)

=
∑n

i=0
aiσ (u)i

= 0,

showing that σ(u) is also a root of f , by the ring-homomorphism properties of σ.
Since f can only have finitely many roots,∣∣∣∣{σk (u)

... k ∈ N}
∣∣∣∣ = n < ∞.

Since σ : E → E, we know σk(u) ∈ E, ∀k. Hence, σn−1(u) ∈ E. Then

σ
(
σn−1 (u)

)
= σn (u) = u

shows that σn−1(u) is in the preimage of u. Since this is true for any u ∈ E, σ must
be surjective.
⇐ Strategy: suppose F : K is not algebraic and find a σ which is not surjective.
If F : K is transcendental, then there is some u ∈ F\K which is not the root of

any polynomial in K[x]. K(u) has basis {1, u, u2, . . .} over K, so the action of any σ
fixing K is completely determined by its action on u2. Define σ : K(u) → K(u) by
σ(u) = u2. Then u can have no preimage under σ. If it did, then ∃v ∈ K(u) such
that σ(v) = u. Then

v = a0 + a1u + . . . + anu
n =

∑n

i=0
aiu

i, ai ∈ K

because v ∈ K(u). Also,

σ(v) =
∑n

i=0
σ

(
aiu

i
)

=
∑n

i=0
aiσ(u)i =

∑n

i=0
aiu

2i

But this would imply that u is a root of

f(x) =
(∑n

i=0
aix

2i
)
− x ∈ K[x]

<↙ u is transcendental.

2All other ui will be determined by the image of u under σ: σ(ui) = σi(u)
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Alternative ⇐ proof for 23: Pick u ∈ E, where E is any intermediate field of

the extension F : K. Let σ : K
id−−−−→ K be the identity. Then we can extend this

to a homomorphism σ : K(u) −→ K(u) by defining σ(f(u)
g(u)

) = f(u2)
g(u2)

for any element

v = f(u)
g(u)

∈ E\K. Now

σ
(

f1(u)
g1(u)

+ f2(u)
g2(u)

)
= σ

(
f1(u)g2(u)+f2(u)g1(u)

g1(u)g2(u)

)
= f1(u2)g2(u2)+f2(u2)g1(u2)

g1(u2)g2(u2)

σ
(

f1(u)
g1(u)

)
+ σ

(
f2(u)
g2(u)

)
= f1(u2)

g1(u2)
+ f2(u2)

g2(u2)
= f1(u2)g2(u2)+f2(u2)g1(u2)

g1(u2)g2(u2)

σ
(

f1(u)f2(u)
g1(u)g2(u)

)
= f1(u2)f2(u2)

g1(u2)g2(u2)
= f1(u2)

g1(u2)
· f2(u2)

g2(u2)
= σ

(
f1(u)
g1(u)

)
· σ

(
f2(u)
g2(u)

)

shows that σ is a homomorphism.

case i) σ is not injective. Then ∃f(u)
g(u)

∈ ker σ, i.e., σ
(

f(u)
g(u)

)
= 0, where f(u) 6= 0.

So f(u2) = 0 shows that u is algebraic over K.

case ii) σ is injective. Then the hypotheses give that σ is also surjective, so there is

some f(u)
g(u)

∈ E such that σ
(

f(u)
g(u)

)
= f(u2)

g(u2)
= u. Then f(u2) − ug(u2) = 0 shows

that u is algebraic over K, because u is a root of

h(x) = f(x2)− xg(x2) ∈ K[x].

¥

23. If u ∈ F is algebraic over K(U) for some U ⊂ F , then there exists a finite subset
U ′ ⊂ U such that u is algebraic over U ′.

If u is algebraic over K(U), then u is the root of some irreducible polynomial

ϕ(x) =
∑n

i=0

fi(u1,...,um)
gi(u1,...,um)

xi

= f0(u1,...,um)
g0(u1,...,um)

+ f1(u1,...,um)
g1(u1,...,um)

x + . . . + fn(u1,...,um)
gn(u1,...,um)

xn ∈ K (U) [x]

Let U ′ = {u1, . . . , um}. Then U ′ is clearly finite, and u is algebraic over K(U ′) by
construction.


