V. FIELDS AND GALOIS THEORY

V.8. Cyclotomic Extensions.

- 2. Establish the following properties of the Euler function φ .
 - a) If p is prime and n > 0, then $\varphi(p^n) = p^n \left(1 \frac{1}{p}\right) = p^{n-1} (p-1)$.

p prime $\implies \varphi(p) = p - 1$, so we enumerate those numbers which are not relatively prime to p^n :

Since there are p^{n-1} elements in the list above, there must be

$$p^{n} - p^{n-1} = p^{n-1} (p-1)$$

numbers which are less than p^n and relatively prime to it, i.e.,

$$\varphi(p^n) = p^{n-1} (p-1).$$

b) If (m, n) = 1, then $\varphi(mn) = \varphi(m)\varphi(n)$.

Note that $\varphi(m) = |\mathbb{Z}_m^{\times}|$ and $\varphi(n) = |\mathbb{Z}_n^{\times}|$. Define an isomorphism

$$\gamma: \mathbb{Z}_{mn}^{\times} \to \mathbb{Z}_{m}^{\times} \oplus \mathbb{Z}_{n}^{\times}$$
 by $\gamma: x \mapsto (x \mod m, x \mod n)$ to get $\mathbb{Z}_{mn}^{\times} \cong \mathbb{Z}_{m}^{\times} \oplus \mathbb{Z}_{n}^{\times}$, so $\varphi(m, n) = |\mathbb{Z}_{mn}^{\times}|$.

c) If $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ (p_i are distinct primes, $k_i \in \mathbb{N}$), then

$$\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_r}\right).$$

Since powers of distinct primes are always relatively prime, we have

$$\varphi(n) = \varphi\left(p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}\right) = \varphi\left(p_1^{k_1}\right) \varphi\left(p_2^{k_2}\right) \cdots \varphi\left(p_r^{k_r}\right) \quad \text{by (b)}$$

But then

$$\varphi\left(p_i^{k_i}\right) = p_i^{k_i} \left(1 - \frac{1}{p_i}\right)$$
 by (a)

shows that

$$\varphi(n) = p_1^{k_1} \left(1 - \frac{1}{p_1} \right) \cdot p_2^{k_2} \left(1 - \frac{1}{p_2} \right) \cdots p_r^{k_r} \left(1 - \frac{1}{p_r} \right)$$

$$= p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r} \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_r} \right)$$

$$= n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_r} \right)$$

2

d) Prove that
$$\sum_{d|n} \varphi(d) = n$$
.
$$n = \deg(x^n - 1)$$

$$= \deg\left(\prod_{d|n} g_d(x)\right)$$

$$= \sum_{d|n} \deg(g_d(x))$$
 by III.6.1

$$= \sum_{d|n} \varphi(d)$$
 by 8.2(iii)

e) Show that $\varphi(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) d$, where μ is the Moebius function defined by

$$\mu(n) = \begin{cases} 1 & \text{if n=1} \\ (-1)^t & \text{if n is the product of } t \text{ distinct primes} \\ 0 & \text{otherwise.} \end{cases}$$

First, we use the simple identity $n = \frac{n}{d}d$ to note that $d|n \iff \frac{n}{d}|n$, which allows us to simplify the given formula by substituting d for $\frac{n}{d}$:

$$\varphi\left(n\right) = \sum\nolimits_{\frac{n}{d}\mid n} \mu\left(d\right) \tfrac{n}{d} = \sum\nolimits_{d\mid n} \mu\left(d\right) \tfrac{n}{d} = n \sum\nolimits_{d\mid n} \tfrac{\mu\left(d\right)}{d}$$

We break apart the latter sum as follows:

$$n \sum_{d|n} \frac{\mu(d)}{d} = n \left(\frac{\mu(1)}{1} + \sum_{i} \frac{\mu(p_i)}{p_i} + \sum_{i < j} \frac{\mu(p_i p_j)}{p_i p_j} + \dots + \frac{\mu(p_1 p_2 \cdots p_k)}{p_1 p_2 \cdots p_k} \right)$$

$$= n \left(1 - \sum_{i} \frac{1}{p_i} + \sum_{i < j} \frac{1}{p_i p_j} - \dots + \frac{(-1)^k}{p_1 p_2 \cdots p_k} \right)$$

$$= n \left(\prod_{i=1}^k \left(1 - \frac{1}{p_i} \right) \right)$$
 by (c)
$$= \varphi(n)$$

_

- 3. Let φ be the Euler-phi function.
 - a) $\varphi(n)$ is even for n > 2.

First consider the primes p. $\varphi(2) = 1$ and since every prime p > 2 is odd, p odd $\implies p - 1 = \varphi(p)$ is even, $\forall p > 2$.

Now consider powers of primes p^r . $\varphi(p^r) = p^{r-1}(p-1)$, as shown in 2(a), and (p-1) is even, as mentioned above, so $\varphi(p^r)$ is even.

Now consider the general case, where $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$, so

$$\varphi(n) = \varphi\left(\prod_{i=1}^{k} p_i^{r_i}\right)$$

$$= \prod_{i=1}^{k} \varphi\left(p_i^{r_i}\right)$$
 by 2(b)

where the second equality follows because powers of distinct primes are always relatively prime. Since each factor on the right is even by the previous remarks, the entire product $\varphi(n)$ contains factors of 2 and is hence even.

b) Find all n > 0 such that $\varphi(n) = 2$.

First note that 3 is the smallest $n \in \mathbb{N}$ for which $\varphi(n) = 2$, by inspection. Now considering powers of primes, we know $\varphi(p^r) = p^{r-1} (p-1)$ by 2(a), so $p^{r-1} (p-1) = 2$ would imply either p = 2, r = 2, or p > 2, r = 1. Any other options would force $p^{r-1} (p-1) > 2$. So the only powers of primes p^r with $\varphi(p^r) = 2$ are 4 and 3, respectively.

Now consider the general case, where $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$. Then

$$\varphi(n) = \varphi\left(\prod_{i=1}^{k} p_i^{r_i}\right) = \prod_{i=1}^{k} \varphi\left(p_i^{r_i}\right) = 2$$

only if $\varphi(p_i^{r_i}) = 2$ for exactly one i, and for all other factors, $\varphi(p_j^{r_j}) = 1$. Now note that the only number for which $\varphi(p_j^{r_j}) = 1$ is $p_j = 2$ (and in this case, $r_j = 1$). This leaves the possibilities

$$p_1^{r_1} = 2^2, p_2^{r_2} = 2^1$$
 or $p_1^{r_1} = 3^1, p_2^{r_2} = 2^1$

but note that the first is not a list of distinct primes.

Thus, only $\varphi(3), \varphi(4), \varphi(6) = 2$.

c) Find all pairs (n, p) where n, p > 0, p is prime, and $\varphi(n) = \frac{n}{p}$.

- 5. If $f(x) = \sum_{i=0}^{n} a_i x^i$, let $f(x^s)$ be the polynomial $f(x^s) = \sum_{i=0}^{n} a_i x^{is}$. Establish the following properties of the cyclotomic polynomials $q_n(x)$ over \mathbb{Q} .
 - a) If p is prime and $k \ge 1$, then $g_{p^k}(x) = g_p(x^{p^k-1})$.

Proceed by induction on k.

Consider g_{p^2} . We know that $x^n - 1 = \prod_{d|n} g_d(x)$ by 8.2(i), and the only numbers dividing p^2 are $p^2, p, 1$, so

$$x^{p^{2}} - 1 = \prod_{d|p^{2}} g_{d}(x)$$

$$= g_{p^{2}}(x)g_{p}(x)g_{1}(x)$$

$$= g_{p^{2}}(x)(x^{p} - 1),$$

which implies $g_{p^2}(x) = \frac{x^{p^2}-1}{x^p-1}$. Now make the substitution $u = x^p$ (so that $u^p = (x^p)^p = x^{p^2}$) to see that this expression becomes

$$g_{p^{2}}(x) = \frac{u^{p}-1}{u-1}$$

$$= 1 + u + u^{2} + \dots + u^{p-1}$$

$$= 1 + x^{p} + x^{2p} + \dots + x^{p^{2}-p}$$

$$= g_{p}(x^{p})$$

where the final equality follows from the definition of g_p as

$$g_p(x^p) = \frac{x^p - 1}{x - 1} = 1 + x + x^2 + \dots + x^{p-1}.$$

b) If $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ where the p_i are distinct primes and $k \in bN$, then

$$g_n(x) = g_{p_1 p_2 \cdots p_k} (x^{p_1^{r_1 - 1} p_2^{r_2 - 1} \cdots p_k^{r_k - 1}})$$

- 6. Let F_n be a cyclotomic extension of \mathbb{Q} of order n; i.e., F_n is a splitting field over \mathbb{Q} of $x^n 1$.
 - a) Determine $Aut_{\mathbb{O}}F_5$ and all intermediate fields.

5 is prime, so deg $g_5 = \deg (1 + x + x^2 + x^3 + x^4) \implies [F_5 : \mathbb{Q}] = 4$. Now $\operatorname{Aut}_{\mathbb{Q}}F_5 \cong \mathbb{Z}_5^{\times}$ by 8.3(iii), so $|\operatorname{Aut}_{\mathbb{Q}}F_5| = 4$, which implies that

$$\operatorname{Aut}_{\mathbb{Q}}F_5 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$$
 or $\operatorname{Aut}_{\mathbb{Q}}F_5 \cong \mathbb{Z}_4$

But $\operatorname{Aut}_{\mathbb{Q}}F_5$ is cyclic and Galois, by 5.10, so $\operatorname{Aut}_{\mathbb{Q}}F_5 \cong \mathbb{Z}_4$. We determine the intermediate fields of $F_5 : \mathbb{Q}$ by examining the subgroups of $\operatorname{Aut}_{\mathbb{Q}}F_5 : 1, \mathbb{Z}_2, \mathbb{Z}_4$. Since $\mathfrak{F}(\mathbb{Z}_4) = \mathbb{Q}$ and $\mathfrak{F}(\{1\}) = F_5$, it suffices to consider $\mathfrak{F}(\mathbb{Z}_2)$.

Take ζ to be a primitive 5th root of unity, so that $Z_2 \cong \{\sigma_0, \sigma_1\}$ where

$$\sigma_0: \mathbb{Q}(\zeta) \xrightarrow{id} \mathbb{Q}(\zeta)$$
 and $\sigma_1: \mathbb{Q}(\zeta) \longrightarrow \mathbb{Q}(\zeta)$ by $\sigma(\xi) = \xi^3$

$$\mathfrak{F}(\mathbb{Z}_2) = \{ u \in \mathbb{Q}(\zeta) : \sigma(u) = u \}, \text{ so pick a } u \in \mathbb{Q}(\zeta). \text{ If } u = 1 + q_1 \zeta + q_2 \zeta^2 + q_3 \zeta^3 + q_4 \zeta^4, \ q_i \in \mathbb{Q}$$

is in the fixed field, then

$$\sigma(u) = 1 + q_1 \zeta^3 + q_2 \zeta^1 + q_3 \zeta^4 + q_4 \zeta^2 = u$$

implies that $q_1 = q_2, q_2 = q_4, q_4 = q_3$, and $q_3 = q_1$. Thus, the fixed field is

$$\mathfrak{F}(\mathbb{Z}_2) = \{1 + q\left(\zeta + \zeta^2 + \zeta^3 + \zeta^4\right) : q \in Q\}.$$

b) Determine $Aut_{\mathbb{Q}}F_8$ and all intermediate fields.

Let ζ be a primitive 8th root of unity. Using 8.3(ii) and #2(a), we derive

$$[F_8 : \mathbb{Q}] = [\mathbb{Q}(\zeta) : \mathbb{Q}] = \varphi(8) = \varphi(2^3) = 2^2(2-1) = 4,$$

so we must have

$$\operatorname{Aut}_{\mathbb{Q}}F_8 \cong \mathbb{Z}_4$$
 or $\operatorname{Aut}_{\mathbb{Q}}F_8 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

We also have that $\operatorname{Aut}_{\mathbb{Q}}F_8 \leq \mathbb{Z}_8^{\times} = \{1, 3, 5, 7\}$. Noticing that

$$|3| = 2$$
 because $9 = 8 + 1 \equiv_8 1$
 $|5| = 2$ because $25 = 24 + 1 \equiv_8 1$
 $|7| = 2$ because $49 = 48 + 1 \equiv_8 1$

|9| = 2 because $81 = 80 + 1 \equiv_8 1$,

we see that $\operatorname{Aut}_{\mathbb{Q}}F_8$ has no elements of order 4, and hence $\operatorname{Aut}_{\mathbb{Q}}F_8 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Since $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ has two subgroups isomorphic to \mathbb{Z}_2 , the field extension $F_8 : \mathbb{Q}$ has two intermediate fields. Consider these two subgroups of $\operatorname{Aut}_{\mathbb{Q}}F_8$:

$$\mathbb{Z}_2 \cong \{1, \sigma\} = G_1$$
 where $\sigma(\xi) = \xi^3$
$$\mathbb{Z}_2 \cong \{1, \tau\} = G_2$$
 where $\tau(\xi) = \xi^5$

To determine $\mathcal{F}(G_1)$, consider that for $u = 1 + q_1\zeta + q_2\zeta^2 + q_3\zeta^3 \in \mathbb{Q}(\zeta)$,

$$\sigma(u) = 1 + q_1 \zeta^3 - q_2 \zeta^2 + q_3 \zeta^1$$

So $q_2 = -q_2 \implies q_2 = 0$, and we have

$$u \in \mathfrak{F}(G_1) \iff u = 1 + q(\zeta + \zeta^3) \text{ for some } q \in \mathbb{Q}.$$

To determine $\mathcal{F}(G_2)$, consider that for $u = 1 + q_1\zeta + q_2\zeta^2 + q_3\zeta^3 \in \mathbb{Q}(\zeta)$,

$$\tau(u) = 1 + q_1 \zeta^5 + q_2 \zeta^2 + q_3 \zeta^7$$

= 1 - q_1 \zeta^3 + q_2 \zeta^2 - q_3 \zeta

So
$$u \in \mathcal{F}(G_2) \iff u = 1 + q\zeta + r\zeta^2 - q\zeta^3$$
 for some $q, r \in \mathbb{Q}$.