
Math 201C - Algebra Erin Pearse

V. Fields and Galois Theory

V.8. Cyclotomic Extensions.

2. Establish the following properties of the Euler function ϕ.

a) If p is prime and n > 0, then ϕ(pn) = pn
(
1− 1

p

)
= pn−1 (p− 1).

p prime =⇒ ϕ(p) = p − 1, so we enumerate those numbers which are not
relatively prime to pn:

p 2p 3p . . . (p− 1)p p · p
(p + 1)p (p + 2)p (p + 3)p . . . (p2 − 1)p p2 · p
(p2 + 1)p (p2 + 2)p (p2 + 3)p . . . (p3 − 1)p p3 · p

...
(pn−2 + 1)p (pn−2 + 2)p (pn−2 + 3)p . . . (pn−1 − 1)p (pn−1)p

Since there are pn−1 elements in the list above, there must be

pn − pn−1 = pn−1 (p− 1)

numbers which are less than pn and relatively prime to it, i.e.,

ϕ(pn) = pn−1 (p− 1) .

b) If (m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n).

Note that ϕ(m) = |Z×m| and ϕ(n) = |Z×n |. Define an isomorphism

γ : Z×mn → Z×m ⊕ Z×n by γ : x 7→ (x mod m,x mod n)

to get Z×mn
∼= Z×m ⊕ Z×n , so ϕ(m,n) = |Z×mn|.

c) If n = pk1
1 pk2

2 · · · pkr
r (pi are distinct primes, ki ∈ N), then

ϕ(n) = n
(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
.

Since powers of distinct primes are always relatively prime, we have

ϕ (n) = ϕ
(
pk1

1 pk2
2 · · · pkr

r

)
= ϕ

(
pk1

1

)
ϕ

(
pk2

2

) · · ·ϕ (
pkr

r

)
by (b)

But then
ϕ

(
pki

i

)
= pki

i

(
1− 1

pi

)
by (a)

shows that

ϕ (n) = pk1
1

(
1− 1

p1

)
· pk2

2

(
1− 1

p2

)
· · · pkr

r

(
1− 1

pr

)

= pk1
1 pk2

2 · · · pkr
r

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)

= n
(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
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d) Prove that
∑

d|n
ϕ (d) = n.

n = deg (xn − 1)

= deg

(∏
d|n

gd(x)

)
by 8.2(i)

=
∑

d|n
deg (gd(x)) by III.6.1

=
∑

d|n
ϕ(d) by 8.2(iii)

¥

e) Show that ϕ (n) =
∑

d|n
µ

(
n
d

)
d, where µ is the Moebius function defined by

µ(n) =





1 if n=1

(−1)t if n is the product of t distinct primes

0 otherwise.

First, we use the simple identity n = n
d
d to note that d|n ⇐⇒ n

d
|n, which

allows us to simplify the given formula by substituting d for n
d
:

ϕ (n) =
∑

n
d
|n

µ (d) n
d

=
∑

d|n
µ (d) n

d
= n

∑
d|n

µ(d)
d

We break apart the latter sum as follows:

n
∑

d|n
µ(d)

d
= n

(
µ(1)

1
+

∑
i

µ(pi)
pi

+
∑

i<j

µ(pipj)

pipj
+ . . . + µ(p1p2···pk)

p1p2···pk

)

= n
(
1−

∑
i

1
pi

+
∑

i<j

1
pipj

− . . . + (−1)k

p1p2···pk

)

= n
(∏k

i=1

(
1− 1

pi

))
by (c)

= ϕ (n)

¥
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3. Let ϕ be the Euler-phi function.

a) ϕ(n) is even for n > 2.

First consider the primes p. ϕ(2) = 1 and since every prime p > 2 is odd,
p odd =⇒ p− 1 = ϕ(p) is even, ∀p > 2.
Now consider powers of primes pr. ϕ(pr) = pr−1 (p− 1), as shown in 2(a), and
(p− 1) is even, as mentioned above, so ϕ(pr) is even.
Now consider the general case, where n = pr1

1 pr2
2 · · · prk

k , so

ϕ(n) = ϕ
(∏k

i=1
pri

i

)

=
∏k

i=1
ϕ (pri

i ) by 2(b)

where the second equality follows because powers of distinct primes are always
relatively prime. Since each factor on the right is even by the previous remarks,
the entire product ϕ(n) contains factors of 2 and is hence even. ¥

b) Find all n > 0 such that ϕ(n) = 2.

First note that 3 is the smallest n ∈ N for which ϕ(n) = 2, by inspection.
Now considering powers of primes, we know ϕ(pr) = pr−1 (p− 1) by 2(a), so
pr−1 (p− 1) = 2 would imply either p = 2, r = 2, or p > 2, r = 1. Any other
options would force pr−1 (p− 1) > 2. So the only powers of primes pr with
ϕ(pr) = 2 are 4 and 3, respectively.
Now consider the general case, where n = pr1

1 pr2
2 · · · prk

k . Then

ϕ(n) = ϕ
(∏k

i=1
pri

i

)
=

∏k

i=1
ϕ (pri

i ) = 2

only if ϕ (pri
i ) = 2 for exactly one i, and for all other factors, ϕ

(
p

rj

j

)
= 1. Now

note that the only number for which ϕ
(
p

rj

j

)
= 1 is pj = 2 (and in this case,

rj = 1). This leaves the possibilities

pr1
1 = 22, pr2

2 = 21 or pr1
1 = 31, pr2

2 = 21

but note that the first is not a list of distinct primes.
Thus, only ϕ(3), ϕ(4), ϕ(6) = 2. ¥

c) Find all pairs (n, p) where n, p > 0, p is prime, and ϕ(n) = n
p
.
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5. If f(x) =
∑n

i=0
aix

i, let f(xs) be the polynomial f(xs) =
∑n

i=0
aix

is.

Establish the following properties of the cyclotomic polynomials gn(x) over Q.

a) If p is prime and k > 1, then gpk(x) = gp(x
pk−1).

Proceed by induction on k.
Consider gp2 . We know that xn−1 =

∏
d|n gd(x) by 8.2(i), and the only numbers

dividing p2 are p2, p, 1, so

xp2 − 1 =
∏

d|p2
gd(x)

= gp2(x)gp(x)g1(x)

= gp2(x) (xp − 1) ,

which implies gp2(x) = xp2−1
xp−1

. Now make the substitution u = xp (so that

up = (xp)p = xp2
) to see that this expression becomes

gp2(x) = up−1
u−1

= 1 + u + u2 + . . . + up−1

= 1 + xp + x2p + . . . + xp2−p

= gp(x
p)

where the final equality follows from the definition of gp as

gp(x
p) = xp−1

x−1
= 1 + x + x2 + . . . + xp−1.

¥

b) If n = pr1
1 pr2

2 · · · prk
k where the pi are distinct primes and k ∈ bN , then

gn(x) = gp1p2···pk
(xp

r1−1
1 p

r2−1
2 ··· prk−1

k )

6. Let Fn be a cyclotomic extension of Q of order n; i.e.,
Fn is a splitting field over Q of xn − 1.

a) Determine AutQF5 and all intermediate fields.

5 is prime, so deg g5 = deg (1 + x + x2 + x3 + x4) =⇒ [F5 : Q] = 4.
Now AutQF5

∼= Z×5 by 8.3(iii), so |AutQF5| = 4, which implies that

AutQF5
∼= Z2 ⊕ Z2 or AutQF5

∼= Z4

But AutQF5 is cyclic and Galois, by 5.10, so AutQF5
∼= Z4. We determine the

intermediate fields of F5 : Q by examining the subgroups of AutQF5: 1,Z2,Z4.
Since F (Z4) = Q and F ({1}) = F5, it suffices to consider F (Z2).
Take ζ to be a primitive 5th root of unity, so that Z2

∼= {σ0, σ1} where

σ0 : Q (ζ)
id−−−−→ Q (ζ) and σ1 : Q (ζ) −→ Q (ζ) by σ(ξ) = ξ3
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F (Z2) = {u ∈ Q (ζ)
... σ(u) = u}, so pick a u ∈ Q (ζ). If

u = 1 + q1ζ + q2ζ
2 + q3ζ

3 + q4ζ
4, qi ∈ Q

is in the fixed field, then

σ (u) = 1 + q1ζ
3 + q2ζ

1 + q3ζ
4 + q4ζ

2 = u

implies that q1 = q2, q2 = q4, q4 = q3, and q3 = q1. Thus, the fixed field is

F (Z2) = {1 + q
(
ζ + ζ2 + ζ3 + ζ4

) ... q ∈ Q}.
¥

b) Determine AutQF8 and all intermediate fields.

Let ζ be a primitive 8th root of unity. Using 8.3(ii) and #2(a), we derive

[F8 : Q] = [Q(ζ) : Q] = ϕ (8) = ϕ
(
23

)
= 22 (2− 1) = 4,

so we must have

AutQF8
∼= Z4 or AutQF8

∼= Z2 ⊕ Z2.

We also have that AutQF8 6 Z×8 = {1, 3, 5, 7}. Noticing that

|3| = 2 because 9 = 8 + 1 ≡8 1

|5| = 2 because 25 = 24 + 1 ≡8 1

|7| = 2 because 49 = 48 + 1 ≡8 1

|9| = 2 because 81 = 80 + 1 ≡8 1,

we see that AutQF8 has no elements of order 4, and hence AutQF8
∼= Z2 ⊕ Z2.

Since Z2 ⊕ Z2 has two subgroups isomorphic to Z2, the field extension F8 : Q
has two intermediate fields. Consider these two subgroups of AutQF8:

Z2
∼= {1, σ} = G1 where σ(ξ) = ξ3

Z2
∼= {1, τ} = G2 where τ(ξ) = ξ5

To determine F (G1), consider that for u = 1 + q1ζ + q2ζ
2 + q3ζ

3 ∈ Q(ζ),

σ (u) = 1 + q1ζ
3 − q2ζ

2 + q3ζ
1

So q2 = −q2 =⇒ q2 = 0, and we have

u ∈ F (G1) ⇐⇒ u = 1 + q(ζ + ζ3) for some q ∈ Q.

To determine F (G2), consider that for u = 1 + q1ζ + q2ζ
2 + q3ζ

3 ∈ Q(ζ),

τ (u) = 1 + q1ζ
5 + q2ζ

2 + q3ζ
7

= 1− q1ζ
3 + q2ζ

2 − q3ζ

So u ∈ F (G2) ⇐⇒ u = 1 + qζ + rζ2 − qζ3 for some q, r ∈ Q. ¥


