[. QUALIFIER: SEPTEMBER 1999

1. Show that a (scalar-valued) continuous function on the interval [0, 1] is
necessarily uniformly continuous.

See Baby Rudin, Theorem 4.19, p.90.

2. Give an example where the integral and sum of an infinite sequence of
continuous functions cannot be interchanged. State (without proof) a
theorem guaranteeing that this interchange can be carried out.

Define f,,(z) = ae™"* —be~""*. Then {f,} are obviously continuous.
For simplicity, we’ll use a = 1,b = 2. Then
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e’ +1
where the rearrangement in line (I.1) follows by absolute convergence
of the sum. This shows that

/Oooni:fn(x) = [ e

= [—log|1 _'_e—x”go
= — (log0 — log 2)
= log 2.

(ae‘”ij — be_bm) = log (g) dx.

o0

In general, fooo >y

As for a theorem, the Beppo-Levi theorem states that this inter-
change can be carried out if

i/oooﬁn(xﬂdx < 0.

Note that this doesn’t hold for this example, since
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3. Describe the Cantor ternary set C via “removing middle thirds” and
show that C is uncountable and has measure 0.

To see C is uncountable,

a) Note that every element of C has a ternary expansion consisting
entirely of 0’s and 2’s, and that every number in [0, 1] with ternary
expansion consisting entirely of 0’s and 2’s is an element of C. This
“address” is not unique — any rational point of C has two equiv-
alent expansions. However, if we just take the set of expansions
which do not terminate, there is still an uncountable number of
them by Cantor’s diagonalization argument.

b) Show that C is perfect. As an intersection of closed sets, it is clearly
closed, so it suffices to show that it has no isolated points. Pick any
point of C and fix € > 0. Use the construction of C to find another
point within e. This shows C is perfect. Then by Baby Rudin Thm
2.43 (p.41), every nonempty perfect set is uncountable.

To see C has measure zero, take the measure of the unit interval and
subtract the measures of all the intervals removed during its construc-
tion:

plC)=1—(3+25+45+...)

on
:1_20311—#1
o 2\ "
-1-13(5)
n=0

Qo=

1_%<1—12/3):1_

4. Prove or disprove the following statement:
A real-valued continuous function on the interval [0, 1] that is differen-
tial with derivative = 0 everywhere but on a set of (one-dimensional)
measure 0 is necessarily constant.



REAL ANALYSIS QUALIFIERS

This is false: the standard counterexample is the Cantor-Lebesgue
function or “Devil’s Staircase”. Define f(z) in the successive intervals
removed during the construction of C by

f(z) =3 for § <z <2

f(z) =1 for g <z<?2 flz)=3 for i <z <$

f(z) =% for - <z< %  f(z)=1% for £ <z < £
f(a:)z% for%—?<x<g—(7) f(x):% for%<a:<%

This function is differential with derivative 0 everywhere except on C.
It is clearly not constant. Use the construction of C to show that it is
continuous.

This function motivates the definition of absolute continuity (it is not
absolutely continuous).

5. Given a Banach space X, denote by £(X) the space of bounded linear
operators from X to itself, equipped with its usual norm, and let G
denote the set of invertible elements in £(X).

a) Show that if A € £(X) and ||A|| < 1, then [ — A € G; further,
compute (I — A)~L

The request to compute (I — A)~! is actually a hint. Do this first.
Like many results in analysis, first figure out what it must be alge-
braically, then use analysis to prove it makes sense.

We have
(I — A)(z) =z — Az,
So do the obvious thing and consider (I + A):
(I+A)(zx—Az) =z — Az + Az — A’z =2 — A%
That didn’t work; we need to get rid of the A? terms. Try (I + A+
A?):
(I4+ A)(z — Az) =1 — Az + Az — A’z + A%z — A’

—x— Az,
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Hmm ... guess where this is going. Try Y > A™

Az — Ax) =2 — Az + Az — A’z + A%z —
>

...:a’/’.
n=0

Bingo! And the other way:

r)=rx+Ar +Ar+ Ax+ ...,
) A" (x) Az + A%z + A3
n=0
SO
(I —A)(x+ Az + A%z + A’z +...)
= (z+ Az + A%z + APz 4 ..))

—(Az + Azx? + APz + Atz 4+ ...)
= z.

So we have the candidate for the inverse. Then

(=)= 11 A

<o lAp
n=0

< oo  because ||A] < 1, (geom series)

Thus >, A" is a well-defined operator and
(I-A)'=> A"eL(X)
n=0
shows [ — A € G.

b) Show that G is an open subset of £(X) and that themap ¢ : G — G
defined by ¢(Q) = Q7! is continuous.

6. Sketch the proof of the Hahn-Banach Theorem.

The idea of the proof is to first show that if x € X but z ¢ S, then
we can extend f to a functional having all the right properties on the
space spanned by x and S. We then use a Zorn’s Lemma / Hausdorff



REAL ANALYSIS QUALIFIERS

Maximality argument to show that this process can be continued to
extend f to the whole space X.
1. Consider the family

G:={g9:D — R:gislinear; g(z) < p(x), Yz € D; g(s) = f(s), Vs € S},

where D is any subspace of X which contains S. So G is roughly
the collection of “all linear extensions of f which are bounded by

7

p’.
Now G is a poset under

g1 <92 <= Dom(g1) € Dom(gs) and g2 L} = g1.

om(g1)

2. Use Hausdorff maximality Principle (or Zorn) to get a maximal
linearly ordered subset {g,} C G which contains f. Define F' on the
union of the domains of the {g,} by F(z) = go(z) for € Dom(g,).

3. Show that this makes F' into a well-defined linear functional which
extends f, and that F' is maximal in that F < G — F = (G.

4. Show F' is defined on all of X using the fact that F' is maximal.
Do this by showing that a linear functional defined on a proper
subspace has a proper extension. (Hence F must be defined on all
of X or it wouldn’t be maximal.)

5. State and prove the Baire Category Theorem. Moreover, give at least
one significant application of this theorem in real or functional analysis.
Proof of Baire’s Theorem:

6. If { f,} is a sequence of pointwise bounded functions on [a, b], show that
there exists a subsequence of {f,} which converges on a dense subset
of [a,b]. Assume that the functions are RF-valued.
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7. Let X be any compact subset of R containing an interval (of positive
length). Is it possible that
D:={feC(X):|f(z)] <1, Vze X}

is a compact subset of C'(X)? Prove your assertion.

X contains an interval of positive length, so wlog let X contain the
interval [0, 1]. Compactness implies limit point compactness, so if D is
compact, any Cauchy sequence in D should converge to a limit point in
D. We will construct a Cauchy sequence of D which does not converge.

Note: the topology of C(X) is that of uniform convergence, i.e., lim-
its are considered with respect to the sup norm.

Define f,(z) = max{0,1—n|z — |} so that f, looks like a peak at 3
with sides of slope |n|, and f, vanishes elsewhere. l.e.,

fn(%) =1, Vn, and for z # %, fo(z) — 0.

Thus sup|fn(z) — fi(x)|
respect to t he sup norm.

But

n,M—00

0, Vz, and {f,} is Cauchy with

0 :)375%
1 z=1

fala) == f(z) = {

and f ¢ O(X) = f ¢ D.

I

NO|

8. State Fatou’s Lemma. Prove the Lebesgue Dominated Convergence
Theorem using Fatou’s Lemma.

9. State the Fundamental Theorem of Calculus (FTOC) (relating a func-
tion F' to the integral of its derivative) in its most general form, stating
the necessary and sufficient condition (C) that F' must satisfy in order
that the theorem hold. Finally, consider F(z) = |z| on R. Illustrate
the truth or falsity of the FTOC in this case; i.e., show that F'(x) either
does or does not satisfy the statement of the FTOC.
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Let L' be the Banach space of Lebesgue integrable functions on [0, 1].
Let F' be a bounded linear functional on L1 Prove that there is a
bounded measurable function g so that F(f fo z)dz, f € L.
(You may use properties of absolutely contmuous functlons den51ty of
step functions, etc. You may NOT use the fact that the dual space of
LYis L™.)

Let f : R — R be a differential function that is homogeneous of
order k (i.e., f(Azy,...,  \x,) = )\kf(xl, .oy Tp), YA € R). Show that

migl +- +:l:naf —kf (ie., Z- f/(F) = kf(T)).

Let f : R* — R be a differential function. Define the directional
derivative of f (at Z) in the direction of the unit vector ¥ € R". Show

that this derivative has maximum modulus when v is in the direction
of the gradient (f’) of f.

Let f(x) be a continuous function from [a, b] to itself.

a) Prove from basic principles that f(zg) = z( for some z( € [a, b].

b) Assume in addition that the derivative f’ exists on (a,b) and that
|f'(z)| < a, for some 0 < a < 1. Prove that the fixed point z is
unique and state and prove an algorithm for finding z.



