MATH 211A - FINAL EXAM

ERIN PEARSE

1. Consider the pendulum equation z” = — sin z.
(a) Prove it is a Hamiltonian system.

First make the standard transformation into a system of first-order equations:
let y = 2’ so that y' = 2" and the system becomes

=y
y = —sinx

Then take H(z,y) = 3/2—9 — cosx. Then
OH

_9H _

Sy =Y and = —sinuz,

B
so we have

(b) Find the general solution (in integral form) and sketch the phase plane.

We proceed by integrating each side of 7 = — sin x to obtain

2'(t) = xo — /t sin z(s) ds.

to

Then, considering F'(t) := xq — ftz sin z(s) ds, we integrate again and obtain

x(t) =1 + /tF(u) du

to

:x1+/tt (xg—/usinx(s)ds> du

0 uo
t t U
:a:1+/ xo du — / sin x(s) ds du
t to Juo

0

t u
=21 + xo(t — to) — / / sin x(s) ds du
to Jug

This is verified to be correct by differentiating twice with respect to ¢ and ap-
plying the Fundamental Theorem of Calculus each time.
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FIGURE 1. 2" = sinz.
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2. For f € C'(R") and each zy € R", prove the initial value problem
1 _f(z)
T Ty
z(0) = xg

has a unique solution for all £ € R.

It would be nice to use Gronwall’s inequality, but this is not possible as we have
neither the continuity of 1/(1 4 f(x) nor a relation between x(t) and f(x) or 1/(1 +
f(z), so we will have to use the autonomy of the system instead.

Define

F(t,z) = F(x) := % and E:={(t,x): f(z(t)) # -1}
so that F' has continuous partial derivatives
oOF  Hi(x)

Ozi (14 f(x))”
throughout E. If E = & then the system is degenerate, so let 2y € E. Then if the
complement of F is dense in R*, £ = @ by continuity, so we can find some open
connected domain B such that 2o € B C E.
Note that F'(¢, ) is defined and continuous in B. By the Existence and Uniqueness
Theorem, there is a solution x = (t) satisfying the system

' = F(t, x)
z(0) = zg
and defined in some neighbourhood of (0, zy). Now note that 2’ = F(t,z) = F(x) is

an autonomous equation! This fact may be exploited. Let s € R. Then

Ri+s)| = O = F(p(t) = Fle(t+s))

=t t=to+s t=to+s t=tg

We have just shown that if p(t) is a solution to the autonomous system, then ¢ (t+ s)
will also be a solution, for any s € R. This makes it clear that the solution ¢(¢) must
exist for all time. Otherwise, if it had some bounded maximal interval of existence
(t1,12), we would have a contradiction: for g € (t1,12),

Iy

57 o) = F(0(to)).

by definition of interval of existence. But then letting s = (t3 — #g), the previous
argument shows that

0 0

Srlt2) = So(to+5) = F (ot + 9)) = F (p(t2))
contradicting the maximality of the interval. Indeed, taking s = a(ty — () for any
a > 0 shows that ¢(t) is a valid solution for all positive time. A symmetric argument

shows ¢(t) is also a valid solution for all negative time.
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3. Use Liapunov’s method to determine the stability of the critical point (0,0,0) of the
system

/

T = =21y + zow3 — 13,
I 3

Ty = T1 — T1X3 — To,

Th = xT9 — T3

We try the Liapunov candidate
V(z) = ax] + bas + cx3.
Then
V= 2ax1%1 + 2bxoxo + 2cx323
= —4dazr 19 + 20717973 — anlll + 2bx1 19 — 2bT 11973 — 2bm§ + 2cx 11903 — 2cx§
= —2 (az] 4 by + cx3) +2(a — b+ ¢)z12205 — 2(2a — b)z125
To make things simpler, let b = 2a to make the last term vanish. Then make ¢ = a
to make the second term vanish. For definiteness, use a = ¢ = 1, b = 2. Thus, the
Liapunov function
V(z,y) = 2% + 2232 + 23
is positive definite and
V(z,y) = -2 (v} + 225 +3) <0, and V(0,0) =0,

shows that V is negative definite. This is enough to show that (0,0, 0) is stable, but
we can go even further and define

v (1) = v2]|a].

Then for ||z|| < 1 we have

v (ll2ll) = V2l

= V/2y/22 + 22 + 22

= \/233% + 223 + 223
> 227 + 223 + 273
> 2% + 203 + 75
= V(z),
so that V' is descrescent. Therefore, (0,0, 0) is asymptotically stable, by Thm 5.4.2.
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FIGURE 2. A phase portrait for the system in Problem 3.
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4. Consider the linear system
"+ p(t)z' + q(t)z =0,

where p and q are real-valued and continuous. Let 3y, 35 be a real-valued fundamental
pair of solutions. Show that 7 must vanish between any two consecutive zeroes of

Y1-

Let t1,t5 be consecutive zeroes of y;. Then

1t 2(1 / /
Wi =| B 20 | = ko - ko

is continuous, as a sum of products of continuous functions. Then

W(t) = —yi(t)ye(t) and  W(ta) = —y/(t2)ya(ta).

So none of y}(t1), y2(t1), y1(t2), y2(t2) can be 0, or else W would be 0, and then y;, yo
couldn’t be linearly independent, by Thm 2.3.2.

Suppose that W (t;) > 0 and that yo(t;) > 0. Then yi(¢t;) < 0, that is, y1(¢) is
decreasing as it passes through ¢;. Then, since y;(¢) is continuous and has no zeroes
between ¢; and t5, y;(¢) must be increasing as it passes through ¢, by basic calculus.
Le., y’l(tg) > 0.

Note that we cannot have W (ty) < 0: since W (t) is continuous, the Intermediate
Value Theorem would imply the existence of some ty € (¢4, t2) for which W (t,) = 0,
which would be a contradiction as described above. Thus we have

W(t2) = =11 (t2)ya(t2) > 0.
Since yi (to) > 0, this implies y5(¢;) < 0. So y2(t) has changed sign somewhere between
t1 and ty; by the IVT again, there must be a ty € (1, 1) for which y5(¢y) = 0.

This argument has given the desired result for the case when W(¢;) > 0 and
yo(t1) > 0, but it is clear that a similar argument works just as well if we take
yo(t1) < 0, and for the two cases when W (1) < 0. So in any case, we can find a zero
of y5 between any two consecutive zeroes of ;.



