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1. (10/7) Find the eigenvalues and eigenfunctions of

L[u] = v" + w?u, weR"T
with u(a) = u(b) =0 on I = (a,b).

This equation is regular and already in normal form. We obtain the eigenvalues
from the characteristic equation:

This gives {e¥™“*} as eigenfunctions. However, since the original equation has real co-
efficients, we would like a basis of real-valued eigenfunctions. Since Re(e™) = coswz
and Im(e™) = sinwx, we take {coswz, sinwx} as a basis. Thus the eigenfunctions of
(x1) are all of the form

u(z) = ¢y coswr + o sinw.
Now we use the initial conditions:

u(a) = ¢; coswa + ¢y sinwa = 0

u(b) = ¢1 coswb + casinwb = 0

From the first equation above,

sinwa

1=~ coswa *

Substituting into the second,

. sinwa : —
Co T co8 wb + cysinwb =0

—¢Cg Sin wa coswb + ¢ cos wasinwb = 0

cosinw(b—a) = 0.

Thus we must have w(b—a) = 27k for some k € Z, and the eigenfunctions must look
like
2k 2k

{cos 2w, sin 72w}
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. (10/12) The DE with constant coefficients

Liu) = u™ + ayu™ Y + au™? + ... 4 q,u, (a; € R)

is stable iff no root « of its characteristic polynomial has positive real part and all
multiple roots have strictly negative real part.

We know from 146 that we can find a basis for the solution space which consists of
functions of the form {t*e®'} where k € N = {0,1,2,...}. So every solution to (%)
can be written

u(t) = Z cjthi et
=0

(=) Assume that (%) is stable, i.e., all solutions remain bounded as ¢ — oo. If
Re(a) were strictly positive, t*¢® would blow up as t — oo, for any k, and hence so
would u. This contradiction shows Re(a)) < 0 for every root « of the characteristic
polynomial. Consider the case when « is a repeated root. Then there is a term in
(1) of the form t*e** for k > 1. In this situation, Re(a) = 0 would imply that this

term is of the form t*e™. Since [tFe | 2%, 50 but u does not blow up, it must not

be the case that Re(a) = 0.
(<) Assume that no roots « of the characteristic polynomial of (%2) have positive
real part and all multiple roots have strictly negative real part. Then we have

n
S Z }C]tk7 ea]'t‘

J=0

n

E Cjtkjeajt

Jj=0

u(t)] =

by the triangle inequality. If o; is not a multiple root, then k; = 0 and we have
’Cjtkjeajt} = ’Cj@ajt’ S ‘Cj‘ .
Equality holds iff Re(a;) = 0. Otherwise,

Re(a;) <0 = |¢e™'| = 0.
If a; is a multiple root, then k; > 1 and the hypothesis gives Re(c;) < 0. In this
case we still have
’cjtkjeajt} e
because e ** goes to zero faster than any polynomial for y = —a; > 0. Returning
to (2), we see that the worst case scenario is when there are no multiple roots and
Re(a;) = 0. In this case, the largest u can get is

n n
()] < festhiet| = eyl
=0 =0

which is clearly bounded. Hence w is stable.
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. (10/14) For solutions u, v of

Liu] = u" + p(x)u' + q(z)u =0 P, ¢ continuous on I,

{u,v} are linearly independent solutions of (x3) iff {u,v} is a fundamental set of
solutions.

(=) Assume {u, v} are linearly independent solutions. The solution space of a 2nd
order DE will be 2-dimensional, so two linearly independent solutions will span the
entire space. Hence {u, v} is a basis and thus also a fundamental set of solutions.

(<) Assume {u,v} is a fundamental set of solutions. Then it is a basis, and hence
its elements are linearly independent by definition.

. (10/14) Consider the equation

' +q(x)y=0 q is piecewise continuous on R.

Define a “soln” of (%4) to be a function y = f(z) which is C' (but not C?) and
satisfies the DE (x4) at all points where ¢ is continuous.

(a) Describe explicitly a basis of solutions of (x4) where

1, x>0

Q(x):{—l z<0’

For x > 0, a basis of solutions would be {cosx,sinz}, and for z < 0 a basis of
solutions would be {e®,e*}. Thus, a general solution would be

acosx + bsinx, x>0
u(z) = - .
ae® + Be ™ x <0

This is clearly C'! on (—o0,0) and (0, c0); we only need to worry about 0. To be
C' at 0, we require

(acosz + bsinz)|,—o = (ae” 4+ Be™)| =0 and
(acosz + bsinz) |,—o = (ae” + Be™™) | s=0-
In other words,
(acos0+bsin0) =a=a+ 3= (ae’ + Be) and
(asin0+bcos0) =b=a— 3 = (ae’ — Be?).
Thus, solve this system for a and (3 and get
o= “TH’ and (= “T*b,
and note that

ae” + et = Hlet 4 ELeTF = (T 4 7F) 4 L — ).
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We can write the basis of solutions as {uy, us} where

ete™ 7 eT_e—

—— <0 x <0

uy(z) = 27 and  wug(x) =< % 7 :
cosx, x>0 sin x, x>0

State & prove an existence and uniqueness theorem for the corresponding IVP
and examine the DE satisfied by the Wronskian, if any.

Given any initial conditions y(zo) = yo, ¥’ (x¢) = vo, there exists a unique solution
to equation (%4). This follows essentially from the more basic case when ¢ is
continuous. For example, take xq < 0. Then

y" —y=0, y(l“o) = Yo, y,(ifo) = Vo

has a unique solution u(x) on (—oo,0) by the basic theory. However, this deter-
mines u(0),«'(0) by continuity, which may then be used as the initial conds for
the other half interval. Now

y'+y =0, y(0)=u(0),y'(0) = u(0)

has a unique solution on R*. Combining, we obtain a unique solution on R.
Examining the Wronskian of this system, we have

W (z) = ujuly — ujus.
Differentiating gives

- — = <0
W/(x) = Ulug - U/{UQ = ul( u2) ( ul)u2a x ’
uy (ug) — (u1)ug, >0

which is 0 in either case. The central equality follows because the given ¢ makes

(%4) into
y// — -y, r< 0
Y, >0

Hence, the Wronskian satisfies W' = 0, i.e., W is constant.

Relate this to
(i) the Laplace transform method for solving such equations, and

(ii) the distributional approach to ODEs.

5. (10/19)

(*5)

Lluf=u"+u=f  (f € L)

Show that if u is a classical solution (i.e., u € C?) of Lu] = f, then u is a distribu-
tional solution also.
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Take a solution u € C? of (x3) and fix ¢ € C>°(R). Then

/L[w]uz/(so”ﬂo)u
— [ [
= (—1)2/<pu”+/<pu ibp twice
— [+ u

:/gof u is a soln

shows [ L{plu= [ fe, Le., uis also a distributional solution.

6. (10/29) The Bessel DE:
(%6) Liu) = z*u" + zu' + (2* = n*)u =0

Show that the self-adjoint form of this equation is
(3) 4 [zu] + <x — %) u = 0.

We obtain (xg) from (3):

%[mu']—l—(m—”)u:()

N

[¥]

xT

au” +u + <x - "—) u=0 product rule
2" + ou + ($2 — n2) u=0. mult through by z
Then note that (3) is self-adjoint by the theorem which states that the 2nd order DE
Llu] = po(z)u” + pr(z)u’ + pa(w)u = 0
is self-adjoint iff it is of the form

4 [p(x)%] + g(z)u = 0.

7. (10/29) The Legendre DE of order n, self-adjoint form:
(%7) LI(1—2*)%] + =0 r e R.
Show that for A = n(n + 1),n € N, this DE has polynomial solutions.
By differentiating the first term and plugging in A, we have the equation

(1 —2®)u” — 2zu’ +n(n + 1)u = 0.
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Two linearly independent solutions of this equation are

D=1+ 0 ([ %)) (HW ! “’”) (gr:);

k=0 k=0

0o . m— m x2m+1
x) x—i—mzﬂ( 1) H (n—1 2k> (k;l_[()(n—f—Zk)) @m T D

While these are ostensibly 1nﬁn1te series, n € N may result in the disappearance of
many terms. For example, suppose n is even and consider u;. For m > 5 + 1, the
coefficient will contain a factor (n — 2(%)) = 0, and will hence vanish. So for n even,
uy(z) is a polynomial solution of degree n.

Alternatively, suppose n is odd and consider us. For m > %=1 4+ 1, the coefficient
will contain a factor (n — 1 — 2(%2)) = 0, and will hence vamsh So for n odd, us(x)
is a polynomial solution of degree n.

Either way, (x7) has a polynomial solution for n € N,

. (10/29) Show that the third order linear homogeneous DE

po(z)u” + pr(z)u” + pa(x)u’ + ps(z)u =0

"

is “exact” iff its coefficients satisfy pj’ — pi + py —p3 = 0.

We define a DE of the form (xg) to be ezact iff
po(@)u” + pr(@)u” + pa(@)u’ + ps(w)u = £ [Al@)u” + B(a)u' + C(a)u]
for some A, B,C € C*. Differentiating the right-hand side above,
pou” + pru” + pott + psu = Au” + A" + Bu" + B'v' + Cu' + C'u.
Matching coefficients,
p=A p=A+DB, p,=B+C, andp;=C".
Then using these equations we expand p3 as

ps=C"=(p,— B

=ph— (p1 — A')"
= p2 p1 +pg,
. (10/29)
n
d -
n(7) (1 + n?x?)

Show that d,, > 0, [, d,(x)dz = 1. Sketch the graph of d,,n = 1,2,... and argue
that d,, is a d-sequence, i.e., d,, — 9.
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FIGURE 1. An sketch of d,, forn =1,2,3,4,5.

Clearly, d,, > 0 as both the numerator and denominator are positive for any real x
and n=1,2,.... We compute the integral and find

n
dp(z)dr = | ————<d
/]R (w)de /RW(1+HQ$2) ’
1
o R
1+ (nx)?

[— arctan nx ]
n

203

[e.o]

—00

(arctan(oco) — arctan(—o0))

(3-(2))

= 8= = 33

—~
=~

~—
I

for any n =1,2,.... A sketch of d,, is depicted in Figure 1.
Note that

(5) d, (v) = m =nd(zn) for d(z):= m

hm (dn, p) = lim /dn(x)go(x) dx

= ¢(0) + lim [ dn(z) [p(x) — ¢(0)] dz,

n—oo

Thus,
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and we just need to show that the latter integral goes to 0. Fix € > 0. Then

(/%@Mwm—¢mﬂm
d,(z T) — dx d,(x T) — dx
g/ () lo(x) — 9(0)] +/ (2) lp(x) - (0)

z|<r z|>r

< max{lp(z) —p(0)[} - [ dn(z)dz

|z|<r lz|<r

+ fgg;ﬂ@(x) —p(0)[} - [ du(z)dx

|z|=r

< max{fp(z) = @(O)} - 14+ M- | du(z)de,

|z|=r

where M := max|y>,{|¢(x) — ¢(0)|}, and the last equality follows by (4). Now for
sufficiently small r, the continuity of ¢ gives

l‘fﬁ%{ls@(w) —e(0)[} <3

Note that we don’t let r go to 0, just pick » > 0 small enough that the inequality will
hold. Then deal with the second term as follows:

/'QC'ZZ@) " /Imlzr rtne) e = /|m|zm () du

where the first equality comes by (5) and the second comes by the change of variables

u = nz. Then since
/ du)du =1
R

by (4) again, it must be possible to pick n so large that

€
d(u) du < —.
/|ac|zm () 2M

This is sufficient to get

y/%unwm—wmﬂm

< E.

(11/02) We saw for f(z) = 1,7 :=||z|, that f € L} .(R?). Extend this to d > 2.

loc

We want to show
f(z) = ||m||1_d € Llloc(]Rd) for d > 2.

Since this function is clearly in Ly, (R*\{0}), we only really need to check f in a
neighborhood of the origin. Let B = B(0, 1) be the ball of radius 1 centered at the
origin of R
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We convert to spherical coordinates with

d 1/2
= ol = (z)
k=1

so that
fla) ==t

The rectangular coordinates i, xs, ..., x4 are related to the spherical coordinates
T, Q1. .., Pq—1 by the equations:!

zr = rS*¥ e,
zq = 1S4t

r= (@ ag o)

()
Y = arctan { —
Tk

k

STI;; = H sin @,

j=m

where

Cm = COS Oy
Sm = SIN ©p,

Re=(r?—22—.. . —22)/2 =rgk

Although we do not wish to work it out explicitly, the Jacobian for this change of
coordinates will be of the form

2 (rS0) 8%1(7“5001) . 8@3_1 (rS%;)
)= %(TSICQ) 8%1(7“5102) o —W(Z_l (rStey)
%(rSdilcg) a%l(rsdflcd) . 8@271 (rS?1tcy)

As the determinant is expanded by cofactors and each cofactor is evaluated recur-
sively, a factor of r will emerge for each term that does not stem from a %. Thus,
there will be a common factor of 771 in the final computed Jacobian |J| = r¢~!|K].

IThanks to Andrew Snowden of the University of Maryland for these conversion formulas.
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Thus,

/fdx:/Tl_d|J|d¢d_1...d¢1dr
B B

= / r K | dpg_y . .. dpydr
B

_ / K| dgar ... dprdr
B
d)2

B(ED)
the volume of the unit ball in RY. Since this is finite, f € L, (R%).

11. (11/02) Prove that for any regular distributions T, T,,

First we note that T': D — D’ by f +— T} is a linear map. Since
(T + Ty, 0) = (Tt ) + (T, )

:/fgodx—i—/g(pdx

= /(f+g)<pd:v

= (Tfsg, )
for every ¢ € D, we have Ty + T, = Ty, Thus it suffices to show that
Ty =0 = f=40.
Let p.(x) be the standard mollifier, i.e.,
(i) p. € C*,
(ii) spt(pe) = [~5. 2]
(iil) [ pedz =1, Ve > 0.
Then

(f * pn)(z /f Y)pn(z —y

= Tf peV),

where v(y) = « — y for any fixed . Since Ty = 0, this shows f * p, = 0 for any n.
Then by Proposition 1,

frp, ——=0 = f=0,ae



MATH 211B - HOMEWORK

Proposition 1. If p, is the standard mollifer and f € LP, then
lim (f % p,) = f, in LP.

Proof. [Al-G, Example 2.23]
CY is dense in L?, so we can choose ¢ € C? such that || f — ¢||, < . Then

1f 5 pn = @ % pullp = 10 — @) % pully < If = @llp <,

where the central inequality comes by Lemma 2. Hence it suffices to prove
LP
Yk Pp — p.

Since ¢ * p, SLLLEN @ on K :=spty by Lemma 3, we can write
1/p
o+ n =l = | [ (o)) — ol a]
1/p
< supfl pu)(a) = (@)l | [
K

zeK

<€

if n is large enough. Thus

1f % o= fllp S NIf % o0 — 0% pullp + [l * pn — @llp + [l — fll, < 3e.

Lemma 2. For f € L? and 1 < p < oo, we have ||f * py|l, < || f|l,-

Proof. [Al-G, Example 2.23]
Forp =1,

1 *pull < //my) f@— )| dy da

= [ o) | [ 1160 =l aa] a
£l

Otherwise, for 1 < p < 00,

I£50ully= [ | [ nt)ste =) dy
To use Holder’s inequality, we split the mollifier as

fon = (F/") (o),
where % + % = 1. Then the inequality gives

/pn(y) |f(z —y)|dy < Upn(y) \f(fc—y)!pdy} " Uf)n(y) dy} Uq-

p

dz.

11
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Since [ pn(y) dy = 1, we have

Hfum@s//kawvm—deym

~ [ o) UU’ I”dw} dy
= [ mw) 13y

= [Jull}.

Thus || f * pnll, < || fl, for all 1 < p < oo. O

Lemma 3. If f € C°, then f * p, ——— f uniformly on every compact subset.

Proof. [Al-G, Theorem 2.28(iii)]
Since f is continuous, it is uniformly continuous on any compact set E. l.e., given
e > 0, there is a 0 > 0 such that

[f(x—y) = flz)] <e
for all z € E and for all y € B(0,6). Then

(F  p)(a mﬂ/ v~ ) — 1(@)] puly) dy
x—vy)— f(z)] pnly)d
< [, M@= = @)y

B(0,1/n)
<e€

if we take n large enough that % < 9. O

(11/04) Define T € D'(R) by T(¢) = ¢™(0). Prove T is a distribution.

(i) well-defined. Since ¢ is C'*° and has compact support, ¢ and all its derivatives
are bounded.

(ii) linearity. 7T is just composition of the evaluation operator and the differentiation
operator, both of which are linear. Since evaluation is a functional, this shows
T is a linear functional.

(ili) continuity. Let ¢y —2, 0. Part of the definition of convergence in D is that all

derivatives of the yy also converge to 0. In particular,

and hence i
T(or) = o} (0) == 0.
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13. (11/04) Verify, via abstract nonsense, that if 7' : D(2) — C is a distribution, then
VK C Q compact, the restriction of T' to Di(2) = {¢ € D(Q) : spt(¢) C K} is

continuous.

Define T'|k to be the restriction of T" to a compact set K C €, i.e.,
T|k(p) :=T(p), V¢ € Dk(9).

Abstract nonsense approach: T'|f is the composition of 7" with the inclusion map
t: Dk () — D(Q), both of which are continuous.
k—o0

Definitional approach: let {¢x} C Dg(2) with ¢, ——— 0. Then

k—o0

Tk (pr) =T (px) — 0.

14. (11/09)
(a) Show D*AT = D*(DPT) for o, 3 € N, N = {0,1,2,...}.
The equality of mixed partials gives the central equality in the following:

olal ol
otbig, . QratBag, ~ 9 Ty ...0%x0% ... 0Py -

DA = D*(DPT).

(b) For an open set Q C R? and T € D'(R), show that DT(p) = (—1)lIT(D%p).
Define D; := D% = %. Having already established the basis case
DiT(p) = =T(D;p)
in the notes, we induct on |a| by assuming D*T'(¢) = (—1)'0“T(Do‘g0) for |a| = n.
Now consider |a| = n+1 by taking 8 = « +e; where e; = [07] has a 1 in the j*
spot and Os elsewhere. Then

DIT(g) = D,D T(y) by ()
= D;(=1)l*l (D) by inductive hypothesis
= (—=1)(=1) T(D;D*p) by basis case
= (=) T(D%). 18] = laf +1
15. (11/09)

(a) Let fe C™(2) and T € D'(2). Then show fT € D'(12) is well-defined by
(fT.0) = (T, fe),Ve € D(Q).

(i) The right-hand side shows (fT, ) is well-defined, since fy € D.



14 ERIN PEARSE
(ii) Also, the right-hand side shows that (T, ¢) is a linear functional.
(ili) Let oy —2 0. Then clearly
for —=0,

since f € C*(Q) and spt(fer) C spt(pg). By the continuity of 7' (which
was given), this gives

k—oo

(b) Moreover, state and prove an analogue of Leibnitz’ rule for D*(fT).

We will use induction to show that

o _
(6) D(fT) =) ( ) (D7f) (D),
V<« v
where (f:) = ﬁlv)" and the factorial of a multiindex is defined by a! =
ap!. . agl. Also, ¥ < o means that ; < «j for j =1,...,d.
The basis case is a straightforward calculation:

D;(fT)(¢) = —fT(Djy) def of T"
=-T(fD;p) def of fT
=-T(D;(fe) —¥D;f) product rule
= —T(D;(f¢)) + T(¢D;f) linearity
=D;T(fe)+T(¢D;f) def of T"

— FDT(9) + (D; )T () def of T

shows D;(fT) = fD;T + (D;f)T.
Now we assume that (6) holds for |a| = n and let § = a +e¢; as in Problem 14b.

D(fT) = D;D*({T)

a
=D, D7 DT inductive hypothesi
];(7)( £)( ) inductive hypothesis
= (,O; D; <(D7f) (DaﬂT)> linearity
v<a
= Z (a (D) D; (D*T) 4 (D*T) D; (D f) basis case
v<a

(DY f) (D*ST) 4+ (D*T) D; (D% f)  Problem 14a

(DY f)(DPT) reordering

I
IA
=
/7~
= @
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16. (11/09) With {a,} C R and

1, >0
0, z<a’

Hy(z):=H(z—a)= {
we have seen that the step function
k
fr(x) = Z w,H(x — ay)
n=1

is in L .(R) by the vector space properties of L; . (R). Thus it induces a regular
distribution T which has derivative

k k
4T, = an%H(x —a,) = ané(x — ap).
n=1 n=1

Hence, the distributional derivative of f; is

dfe <
—_— = o, .
dl’ ; wn an

Assuming that any bounded interval contains finitely many a,’s, extend this to the
case when f(z) =3 "" w,H(x — a,).

Denote the regular distribution associated with f by 7. Since f T fin
g y Ly

Llloc (R), the continuity of the derivative allows us to say
k o0
T}, =Y wad(x — ay) 2N wb(e - a,) = T
n=1 n=1

Note that the right-hand side makes sense, since for any ¢ € D, there can only be
finitely many a,, in spt(y). If we denote them by {a,,}, we have

This makes it easy to see that T]’c is continuous. If ¢, 2, 0, then

q—00

T],”(QDQ) = anj¢Q(anj) - O’
j=1

because ¢4 (an,) %, 0 for each j.
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17. (11/16)
(a) Let T € D'(R). Then

dT T —T
E Clim T (limit in D),
dx h—0

where 7, T € D' is defined by (7_,T, ) = (T, ) for (th)(x) = p(x + h).

The action of the right-hand side against a test function ¢ is given by

. T_hT—T T T_hT—T . .
<}1L1£% — g0> = }ILE% <T, <p> continuity of (-, )
1
= }lLin% 7 ((T,hT, o) — (T, g0>> linearity of (-, )
1
= }lllir(l) 5 ((T, ) — (T, (,0}) defn of 7
L Thep — @ o N
= }ILIL% <T, . > linearity of (-, )
= (T, —¢") continuity of (-, )
= —(T, 90/>
=(T", ¢)

(b) Extend this to higher dimensions.

Let e; be the standard basis vector with 1 in the j™ slot and 0 elsewhere.
Define 7_p,, T € D' by (1_4,T, 0) = (T, 7, ) for (m,,0)(x) = ¢(x + he;). Then

T p T =T
%fﬁﬂlﬁf—‘ (limit in D).
. T—th =T T Th; P — P . .
<1111£r(1) — <p> = }ILILI%) <T, — linearity of (-, )
=(T,—Djyp) continuity of (-, )
= <DjT7 §0>
via the same arguments as in (a), where we are using D; 1= D% = ;-

14(b) extends this to the more general case of DT
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18. (11/16) If the series ) T, converges in D', then it can be differentiated term by

term:
More generally, D* (> T,) = > D*T,, for every multiindex a.

We have

[e'S) / k
< (Z Tn> ,<p> =— <khm T, ¢ > defn of 7", %
n=0 _)OOn 0

k
— 1 T 1 . . f L.
Jim <ZO s > continuity of (-, )

_ . ! . . L.
= klljglo ZO (T, ¢") linearity of (-, -)
k
= — lim —{T), ) defn of T”
k—o0 —
k
— 7 / 1 . f L.
l}l_)rgo <ZOT ,g0> inearity of (-,-)
k
= <khm 1), g0> continuity of (-, -)
e n=0

To extend this to the general case,

00 k
<DO‘ (Z Tn> ,g0> = (—1)l <;}5§o Tn,Do‘g0> defn of DT
n=0 n=0

Dol lim Z To, ') as in (a)

k—oo

\Ol| |a\ @ @
]}LIEOZ (DT, @) defn of DT
k
- <k11m DT, cp> as in (a)
e n=0

= <i DT, <p>
n=0
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(11/16) Suppose T, € D’ is such that
T(p) := lim T,(p)

n—o0o

exists in C, Vo € D(2). Show T € D'.

Since T' is clearly a linear functional, it just remains to check the continuity of 7'
Recall the Principle of Uniform Boundedness (for Fréchet spaces):

Theorem. [Ru, Theorem 2.6]: If {T,} is a sequence of continuous linear mappings
from D to C and if the sets

L(p) == {ITnp| : n € N}

are bounded in C for each ¢ € D, then I' is equicontinuous.

This shows that {7},} is equicontinuous, i.e., to every neighborhood W of 0 in C,
there corresponds a neighborhood V' of 0 in D such that

(V)W

for all n [Ru, Definition 2.3]. Note that the concept of neighborhood makes sense
here: although a locally convex space need not be metrizable in general, every Fréchet
space comes with a topology induced by a complete metric.

Let {¢x}i2y € D with ¢, — 0. To see that T is continuous, we must show

k—oo

(T, pr) ——— 0. Fix € > 0 and consider B := B(0,¢) C C. By the above remarks,
there must be some ¢ > 0 such that T,,(¢x) € B for all ¢, € A := B(0,0), Vn € N.
Since

(T’ ox) = <n1LH;OTn7§0k> = lim (75, ),
we can pick N such that k > N = ¢, € A, and be sure that
|<T7 (Pk>| <Eé&.

(11/16) Let I = (a,b) C R, and T' € D(I). Show that
dT
— =0 = T is constant.
dx

If 4€ = 0, we have (1", ) = —(T,¢') = 0, Yy € D. This just means, ) = ¢/ —>
dx ¥ ¥ 2

(T, ) = 0. Since test functions are C*°, they are clearly absolute continuous, and
may thus be represented

o) = /z Q' (t)dt + o(a).

In particular, for ¢ € D, we can define ¢(z) = [" @(t)dt + ¢, so that ¢’ = . In
other words, every test function can be represented as the derivative of some other
test function, and we have (T, ¢) = 0, V.
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21. (11/18) Show that W'?() is separable for 1 < p < co.

22.

23.

Because of the isometric embedding Z : W"?(Q) — L?(Q), we may think of W"*(Q)
as a closed subspace of LP(€2).

(11/18) @ = I = (—1,1) C R. Show that u(z) = 1(|u| + u) belongs to W"(I), for
1 < p < oo, and that ' = H. More generally, a continuous function on I=1[-1,1]
that is piecewise C! belongs to W'*(I), V1 < p < oo.

u is clearly in L”:

/udx—/ Od:L'—l—/ rdr = 3,
(—1,0) (0,1)

so it just remains to show u’ € LP(I).

<u,<,0> :_<u790>

= —/ugp’dx
I
— M

< 00

where M := sup; ¢'(z).

(11/18) Prove that

WP (]) = {u € LP(I) : 3g € LP(I) such that/ugp’ = —/g(p, Yy € C’Cl(])}
I

1

Also, for u € W'P(I) we have v/ = g. Note: g is ae-unique.

By definition,
ueWH(I) <= wuel?andu €2,

where v/ € L means that v’ = T, for some unique g € L”.

24. (11/18)

(a) Define a(z) = [, v/(t)dt for w € W"P(I). Show @ is absolutely continuous on /.

(b) Using (a), show
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