
MATH 211B – HOMEWORK

ERIN PEARSE

1. (10/7) Find the eigenvalues and eigenfunctions of

(?1) L[u] = u′′ + ω2u, ω ∈ R
+

with u(a) = u(b) = 0 on I = (a, b).

This equation is regular and already in normal form. We obtain the eigenvalues
from the characteristic equation:

α2 + ω2 = 0

α2 = −ω2

α = ±iω

This gives {e±iωx} as eigenfunctions. However, since the original equation has real co-
efficients, we would like a basis of real-valued eigenfunctions. Since Re(eiω) = cosωx
and Im(eiω) = sinωx, we take {cosωx, sinωx} as a basis. Thus the eigenfunctions of
(?1) are all of the form

u(x) = c1 cosωx+ c2 sinωx.

Now we use the initial conditions:

u(a) = c1 cosωa+ c2 sinωa = 0

u(b) = c1 cosωb+ c2 sinωb = 0

From the first equation above,

c1 = −c2
sin ωa
cos ωa

.

Substituting into the second,

−c2
sinωa
cos ωa

cosωb+ c2 sinωb = 0

−c2 sinωa cosωb+ c2 cosωa sinωb = 0

c2 sinω(b− a) = 0.

Thus we must have ω(b−a) = 2πk for some k ∈ Z, and the eigenfunctions must look
like

{cos 2πk
b−a

x, sin 2πk
b−a

x}.
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2. (10/12) The DE with constant coefficients

(?2) L[u] = u(n) + a1u
(n−1) + a2u

(n−2) + · · ·+ anu, (ai ∈ R)

is stable iff no root α of its characteristic polynomial has positive real part and all
multiple roots have strictly negative real part.

We know from 146 that we can find a basis for the solution space which consists of
functions of the form {tkeαt} where k ∈ N = {0, 1, 2, . . .}. So every solution to (?2)
can be written

(1) u(t) =

n
∑

j=0

cjt
kjeαj t.

(⇒) Assume that (?2) is stable, i.e., all solutions remain bounded as t → ∞. If
Re(α) were strictly positive, tkeαt would blow up as t→ ∞, for any k, and hence so
would u. This contradiction shows Re(α) < 0 for every root α of the characteristic
polynomial. Consider the case when α is a repeated root. Then there is a term in
(1) of the form tkeαt for k ≥ 1. In this situation, Re(α) = 0 would imply that this

term is of the form tkeiν . Since |tkeiν |
t→∞

−−−−→ ∞ but u does not blow up, it must not
be the case that Re(α) = 0.

(⇐) Assume that no roots α of the characteristic polynomial of (?2) have positive
real part and all multiple roots have strictly negative real part. Then we have

(2) |u(t)| =

∣

∣

∣

∣

∣

n
∑

j=0

cjt
kjeαj t

∣

∣

∣

∣

∣

≤
n
∑

j=0

∣

∣cjt
kjeαj t

∣

∣

by the triangle inequality. If αj is not a multiple root, then kj = 0 and we have
∣

∣cjt
kjeαj t

∣

∣ =
∣

∣cje
αj t
∣

∣ ≤ |cj| .

Equality holds iff Re(αj) = 0. Otherwise,

Re(αj) < 0 =⇒
∣

∣cje
αj t
∣

∣

t→∞
−−−−→ 0.

If αj is a multiple root, then kj > 1 and the hypothesis gives Re(αj) < 0. In this
case we still have

∣

∣cjt
kjeαj t

∣

∣

t→∞
−−−−→ 0

because e−µt goes to zero faster than any polynomial for µ = −αj > 0. Returning
to (2), we see that the worst case scenario is when there are no multiple roots and
Re(αj) = 0. In this case, the largest u can get is

|u(t)| ≤
n
∑

j=0

∣

∣cjt
kjeαj t

∣

∣ =
n
∑

j=0

|cj| ,

which is clearly bounded. Hence u is stable.
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3. (10/14) For solutions u, v of

(?3) L[u] = u′′ + p(x)u′ + q(x)u = 0 p, q continuous on I,

{u, v} are linearly independent solutions of (?3) iff {u, v} is a fundamental set of
solutions.

(⇒) Assume {u, v} are linearly independent solutions. The solution space of a 2nd
order DE will be 2-dimensional, so two linearly independent solutions will span the
entire space. Hence {u, v} is a basis and thus also a fundamental set of solutions.

(⇐) Assume {u, v} is a fundamental set of solutions. Then it is a basis, and hence
its elements are linearly independent by definition.

4. (10/14) Consider the equation

(?4) y′′ + q(x)y = 0 q is piecewise continuous on R.

Define a “soln” of (?4) to be a function y = f(x) which is C1 (but not C2) and
satisfies the DE (?4) at all points where q is continuous.

(a) Describe explicitly a basis of solutions of (?4) where

q(x) =

{

1, x > 0

−1 x < 0
.

For x > 0, a basis of solutions would be {cos x, sin x}, and for x < 0 a basis of
solutions would be {ex, e−x}. Thus, a general solution would be

u(x) =

{

a cos x + b sin x, x > 0

αex + βe−x, x < 0
.

This is clearly C1 on (−∞, 0) and (0,∞); we only need to worry about 0. To be
C1 at 0, we require

(a cosx + b sin x)|x=0 = (αex + βe−x)|x=0 and

(a cos x + b sin x)′|x=0 = (αex + βe−x)′|x=0.

In other words,

(a cos 0 + b sin 0) = a = α + β = (αe0 + βe−0) and

(a sin 0 + b cos 0) = b = α− β = (αe0 − βe−0).

Thus, solve this system for α and β and get

α = a+b
2

and β = a−b
2
,

and note that

αex + βe−x = a+b
2
ex + a−b

2
e−x = a

2
(ex + e−x) + a

2
(ex − e−x).
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We can write the basis of solutions as {u1, u2} where

u1(x) =

{

ex+e−x

2
, x < 0

cos x, x > 0
and u2(x) =

{

ex−e−x

2
, x < 0

sin x, x > 0
.

(b) State & prove an existence and uniqueness theorem for the corresponding IVP
and examine the DE satisfied by the Wronskian, if any.

Given any initial conditions y(x0) = y0, y
′(x0) = v0, there exists a unique solution

to equation (?4). This follows essentially from the more basic case when q is
continuous. For example, take x0 < 0. Then

y′′ − y = 0, y(x0) = y0, y
′(x0) = v0

has a unique solution u(x) on (−∞, 0) by the basic theory. However, this deter-
mines u(0), u′(0) by continuity, which may then be used as the initial conds for
the other half interval. Now

y′′ + y = 0, y(0) = u(0), y′(0) = u(0)

has a unique solution on R+. Combining, we obtain a unique solution on R.
Examining the Wronskian of this system, we have

W (x) = u1u
′
2 − u′1u2.

Differentiating gives

W ′(x) = u1u
′′
2 − u′′1u2 =

{

u1(−u2) − (−u1)u2, x < 0

u1(u2) − (u1)u2, x > 0
,

which is 0 in either case. The central equality follows because the given q makes
(?4) into

y′′ =

{

−y, x < 0

y, x > 0
.

Hence, the Wronskian satisfies W ′ = 0, i.e., W is constant.

(c) Relate this to

(i) the Laplace transform method for solving such equations, and

(ii) the distributional approach to ODEs.

5. (10/19)

(?5) L[u] = u′′ + u = f (f ∈ L1
loc)

Show that if u is a classical solution (i.e., u ∈ C2) of L[u] = f , then u is a distribu-
tional solution also.
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Take a solution u ∈ C2 of (?5) and fix ϕ ∈ C∞
c (R). Then

∫

L[ϕ]u =

∫

(ϕ′′ + ϕ)u

=

∫

ϕ′′u+

∫

ϕu

= (−1)2

∫

ϕu′′ +

∫

ϕu ibp twice

=

∫

ϕ(u′′ + u)

=

∫

ϕf u is a soln

shows
∫

L[ϕ]u =
∫

fϕ, i.e., u is also a distributional solution.

6. (10/29) The Bessel DE:

(?6) L[u] = x2u′′ + xu′ + (x2 − n2)u = 0

Show that the self-adjoint form of this equation is

(3) d
dx

[xu′] +
(

x− n2

x

)

u = 0.

We obtain (?6) from (3):

d
dx

[xu′] +
(

x− n2

x

)

u = 0

xu′′ + u′ +
(

x− n2

x

)

u = 0 product rule

x2u′′ + xu′ +
(

x2 − n2
)

u = 0. mult through by x

Then note that (3) is self-adjoint by the theorem which states that the 2nd order DE

L[u] = p0(x)u
′′ + p1(x)u

′ + p2(x)u = 0

is self-adjoint iff it is of the form

d
dx

[

p(x)du
dx

]

+ q(x)u = 0.

7. (10/29) The Legendre DE of order n, self-adjoint form:

(?7)
d
dx

[

(1 − x2)du
dx

]

+ λu = 0 x ∈ R.

Show that for λ = n(n + 1), n ∈ N, this DE has polynomial solutions.

By differentiating the first term and plugging in λ, we have the equation

(1 − x2)u′′ − 2xu′ + n(n + 1)u = 0.
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Two linearly independent solutions of this equation are

u1(x) = 1 +

∞
∑

m=1

(−1)m

(

m−1
∏

k=0

(n− 2k)

)(

m−1
∏

k=0

(n+ 1 + 2k)

)

x2m

(2m)!

and

u2(x) = x+

∞
∑

m=1

(−1)m

(

m−1
∏

k=0

(n− 1 − 2k)

)(

m
∏

k=0

(n+ 2k)

)

x2m+1

(2m+ 1)!

While these are ostensibly infinite series, n ∈ N may result in the disappearance of
many terms. For example, suppose n is even and consider u1. For m ≥ n

2
+ 1, the

coefficient will contain a factor
(

n− 2(n
2
)
)

= 0, and will hence vanish. So for n even,
u1(x) is a polynomial solution of degree n.

Alternatively, suppose n is odd and consider u2. For m ≥ n−1
2

+ 1, the coefficient

will contain a factor
(

n− 1 − 2(n−1
2

)
)

= 0, and will hence vanish. So for n odd, u2(x)
is a polynomial solution of degree n.

Either way, (?7) has a polynomial solution for n ∈ N.

8. (10/29) Show that the third order linear homogeneous DE

(?8) p0(x)u
′′′ + p1(x)u

′′ + p2(x)u
′ + p3(x)u = 0

is “exact” iff its coefficients satisfy p′′′0 − p′′1 + p′2 − p3 = 0.

We define a DE of the form (?8) to be exact iff

p0(x)u
′′′ + p1(x)u

′′ + p2(x)u
′ + p3(x)u = d

dx
[A(x)u′′ +B(x)u′ + C(x)u]

for some A,B,C ∈ C1. Differentiating the right-hand side above,

p0u
′′′ + p1u

′′ + p2u
′ + p3u = Au′′′ + A′u′′ +Bu′′ +B′u′ + Cu′ + C ′u.

Matching coefficients,

p0 = A, p1 = A′ +B, p2 = B′ + C, and p3 = C ′.

Then using these equations we expand p3 as

p3 = C ′ = (p2 − B′)′

= p′2 − (p1 − A′)′′

= p′2 − p′′1 + p′′′0 .

9. (10/29)

dn(x) =
n

π(1 + n2x2)

Show that dn ≥ 0,
∫

R
dn(x)dx = 1. Sketch the graph of dn, n = 1, 2, . . . and argue

that dn is a δ-sequence, i.e., dn → δ.
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Figure 1. An sketch of dn for n = 1, 2, 3, 4, 5.

Clearly, dn ≥ 0 as both the numerator and denominator are positive for any real x
and n = 1, 2, . . . . We compute the integral and find

∫

R

dn(x)dx =

∫

R

n

π(1 + n2x2)
dx

=
n

π

∫

R

1

1 + (nx)2
dx

=
n

π

[

1

n
arctan(nx)

]∞

−∞

=
1

π
(arctan(∞) − arctan(−∞))

=
1

π

(π

2
−
(

−
π

2

))

= 1(4)

for any n = 1, 2, . . . . A sketch of dn is depicted in Figure 1.
Note that

(5) dn (x) =
n

π (1 + n2x2)
= nd(xn) for d(x) :=

1

π(1 + x2)
.

Thus,

lim
n→∞

〈dn, ϕ〉 = lim
n→∞

∫

dn(x)ϕ(x) dx

= ϕ(0) + lim
n→∞

∫

dn(x) [ϕ(x) − ϕ(0)] dx,
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and we just need to show that the latter integral goes to 0. Fix ε > 0. Then
∣

∣

∣

∣

∫

dn(x) [ϕ(x) − ϕ(0)] dx

∣

∣

∣

∣

≤

∫

|x|<r

dn(x) |ϕ(x) − ϕ(0)| dx+

∫

|x|≥r

dn(x) |ϕ(x) − ϕ(0)| dx

≤ max
|x|<r

{|ϕ(x) − ϕ(0)|} ·

∫

|x|<r

dn(x) dx

+ max
|x|≥r

{|ϕ(x) − ϕ(0)|} ·

∫

|x|≥r

dn(x) dx

≤ max
|x|<r

{|ϕ(x) − ϕ(0)|} · 1 +M ·

∫

|x|≥r

dn(x) dx,

where M := max|x|≥r{|ϕ(x) − ϕ(0)|}, and the last equality follows by (4). Now for
sufficiently small r, the continuity of ϕ gives

max
|x|<r

{|ϕ(x) − ϕ(0)|} < ε
2
.

Note that we don’t let r go to 0, just pick r > 0 small enough that the inequality will
hold. Then deal with the second term as follows:

∫

|x|≥r

dn(x) dx =

∫

|x|≥r

nd(nx) dx =

∫

|x|≥rn

d(u) du

where the first equality comes by (5) and the second comes by the change of variables
u = nx. Then since

∫

R

d(u) du = 1

by (4) again, it must be possible to pick n so large that
∫

|x|≥rn

d(u) du <
ε

2M
.

This is sufficient to get
∣

∣

∣

∣

∫

dn(x) [ϕ(x) − ϕ(0)] dx

∣

∣

∣

∣

< ε.

10. (11/02) We saw for f(x) = 1
r
, r := ‖x‖, that f ∈ L1

loc(R
2). Extend this to d ≥ 2.

We want to show

f(x) := ‖x‖1−d ∈ L1
loc(R

d) for d ≥ 2.

Since this function is clearly in L1
loc

(

Rd\{0}
)

, we only really need to check f in a
neighborhood of the origin. Let B = B(0, 1) be the ball of radius 1 centered at the
origin of Rd.
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We convert to spherical coordinates with

r = ‖x‖ =

(

d
∑

k=1

x2
k

)1/2

so that

f(x) = r1−d.

The rectangular coordinates x1, x2, . . . , xd are related to the spherical coordinates
r, ϕ1, . . . , ϕd−1 by the equations:1

xk = rSk−1ck

xd = rSd−1

r = (x2
1 + x2

2 + · · · + x2
d)

1/2

ϕk = arctan

(

Rk

xk

)

where

Sk
m =

k
∏

j=m

sinϕj

cm = cosϕm

sm = sinϕm

Rk = (r2 − x2
1 − · · · − x2

k)
1/2 = rSk

1

Although we do not wish to work it out explicitly, the Jacobian for this change of
coordinates will be of the form

|J | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂
∂r

(rS0c1)
∂

∂ϕ1

(rS0c1) . . . ∂
∂ϕd−1

(rS0c1)
∂
∂r

(rS1c2)
∂

∂ϕ1

(rS1c2) . . . ∂
∂ϕd−1

(rS1c2)
...

...
. . .

...
∂
∂r

(rSd−1c2)
∂

∂ϕ1

(rSd−1cd) . . . ∂
∂ϕd−1

(rSd−1cd)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

As the determinant is expanded by cofactors and each cofactor is evaluated recur-
sively, a factor of r will emerge for each term that does not stem from a ∂

∂r
. Thus,

there will be a common factor of rd−1 in the final computed Jacobian |J | = rd−1|K|.

1Thanks to Andrew Snowden of the University of Maryland for these conversion formulas.
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Thus,
∫

B

f dx =

∫

B

r1−d|J | dϕd−1 . . . dϕ1dr

=

∫

B

r1−drd−1|K| dϕd−1 . . . dϕ1dr

=

∫

B

|K| dϕd−1 . . . dϕ1dr

=
πd/2

Γ
(

d
2

+ 1
) ,

the volume of the unit ball in Rd. Since this is finite, f ∈ L1
loc(R

d).

11. (11/02) Prove that for any regular distributions Tf , Tg,

Tf = Tg =⇒ f =ae g.

First we note that T : D → D′ by f 7→ Tf is a linear map. Since

〈Tf + Tg, ϕ〉 = 〈Tf , ϕ〉 + 〈Tg, ϕ〉

=

∫

fϕ dx+

∫

gϕ dx

=

∫

(f + g)ϕdx

= 〈Tf+g, ϕ〉

for every ϕ ∈ D, we have Tf + Tg = Tf+g. Thus it suffices to show that

Tf = 0 =⇒ f =ae 0.

Let ρc(x) be the standard mollifier, i.e.,

(i) ρc ∈ C∞,

(ii) spt(ρc) = [−1
c
, 1

c
]

(iii)
∫

ρc dx = 1, ∀c > 0.

Then

(f ∗ ρn)(x) =

∫

f(y)ρn(x− y)dy

= Tf(ρn◦ ν),

where ν(y) = x − y for any fixed x. Since Tf = 0, this shows f ∗ ρn = 0 for any n.
Then by Proposition 1,

f ∗ ρn
n→∞

−−−−−→ 0 =⇒ f ≡ 0, ae.
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Proposition 1. If ρn is the standard mollifer and f ∈ Lp, then

lim
n→∞

(f ∗ ρn) = f, in Lp.

Proof. [Al-G, Example 2.23]
C0

c is dense in Lp, so we can choose ϕ ∈ C0
c such that ‖f − ϕ‖p < ε. Then

‖f ∗ ρn − ϕ ∗ ρn‖p = ‖(f − ϕ) ∗ ρn‖p ≤ ‖f − ϕ‖p < ε,

where the central inequality comes by Lemma 2. Hence it suffices to prove

ϕ ∗ ρn
Lp

−−−→ ϕ.

Since ϕ ∗ ρn
unif

−−−→ ϕ on K := sptϕ by Lemma 3, we can write

‖ϕ ∗ ρn − ϕ‖p =

[
∫

K

|(ϕ ∗ ρn)(x) − ϕ(x)|p dx

]1/p

≤ sup
x∈K

{|(ϕ ∗ ρn)(x) − ϕ(x)|}

[
∫

K

dx

]1/p

< ε

if n is large enough. Thus

‖f ∗ ρn − f‖p ≤ ‖f ∗ ρn − ϕ ∗ ρn‖p + ‖ϕ ∗ ρn − ϕ‖p + ‖ϕ− f‖p < 3ε.

�

Lemma 2. For f ∈ Lp and 1 ≤ p <∞, we have ‖f ∗ ρn‖p ≤ ‖f‖p.

Proof. [Al-G, Example 2.23]
For p = 1,

‖f ∗ ρn‖1 ≤

∫ ∫

ρn(y) |f(x− y)| dy dx

=

∫

ρn(y)

[
∫

|f(x− y)| dx

]

dy

= ‖f‖1.

Otherwise, for 1 < p <∞,

‖f ∗ ρn‖
p
p =

∫
∣

∣

∣

∣

∫

ρn(y)f(x− y) dy

∣

∣

∣

∣

p

dx.

To use Hölder’s inequality, we split the mollifier as

fρn = (fρ1/p
n )(ρ1/q

n ),

where 1
p

+ 1
q

= 1. Then the inequality gives

∫

ρn(y) |f(x− y)| dy ≤

[
∫

ρn(y) |f(x− y)|p dy

]1/p [∫

ρn(y) dy

]1/q

.
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Since
∫

ρn(y) dy = 1, we have

‖f ∗ ρn‖
p
p ≤

∫ ∫

ρn(y) |f(x− y)|p dy dx

=

∫

ρn(y)

[
∫

|f(x− y)|p dx

]

dy

=

∫

ρn(y)‖f‖p
p dy

= ‖u‖p
p.

Thus ‖f ∗ ρn‖p ≤ ‖f‖p for all 1 ≤ p <∞. �

Lemma 3. If f ∈ C0, then f ∗ ρn
n→∞

−−−−−→ f uniformly on every compact subset.

Proof. [Al-G, Theorem 2.28(iii)]
Since f is continuous, it is uniformly continuous on any compact set E. I.e., given
ε > 0, there is a δ > 0 such that

|f(x− y) − f(x)| < ε

for all x ∈ E and for all y ∈ B(0, δ). Then

|(f ∗ ρn)(x) − f(x)| =

∣

∣

∣

∣

∫

[f(x− y) − f(x)] ρn(y) dy

∣

∣

∣

∣

≤

∫

B(0,1/n)

|f(x− y) − f(x)| ρn(y) dy

< ε

if we take n large enough that 1
n
< δ. �

12. (11/04) Define T ∈ D′(R) by T (ϕ) = ϕ(n)(0). Prove T is a distribution.

(i) well-defined. Since ϕ is C∞ and has compact support, ϕ and all its derivatives
are bounded.

(ii) linearity. T is just composition of the evaluation operator and the differentiation
operator, both of which are linear. Since evaluation is a functional, this shows
T is a linear functional.

(iii) continuity. Let ϕk
D

−−→ 0. Part of the definition of convergence in D is that all
derivatives of the ϕk also converge to 0. In particular,

ϕ
(n)
k

k→∞
−−−−→ 0,

and hence
T (ϕk) = ϕ

(n)
k (0)

k→∞
−−−−→ 0.



MATH 211B – HOMEWORK 13

13. (11/04) Verify, via abstract nonsense, that if T : D(Ω) → C is a distribution, then

∀K ⊆ Ω compact, the restriction of T to Dk(Ω) = {ϕ ∈ D(Ω)
... spt(ϕ) ⊆ K} is

continuous.

Define T |K to be the restriction of T to a compact set K ⊆ Ω, i.e.,

T |K(ϕ) := T (ϕ), ∀ϕ ∈ DK(Ω).

Abstract nonsense approach: T |K is the composition of T with the inclusion map
ι : DK(Ω) → D(Ω), both of which are continuous.

Definitional approach: let {ϕk} ⊆ DK(Ω) with ϕk
k→∞

−−−−→ 0. Then

T |K(ϕk) = T (ϕk)
k→∞

−−−−→ 0.

14. (11/09)

(a) Show Dα+βT = Dα(DβT ) for α, β ∈ N
d, N = {0, 1, 2, . . .}.

The equality of mixed partials gives the central equality in the following:

Dα+βT =
∂|α|

∂α1+β1x1 . . . ∂αd+βdxd

=
∂|α|

∂α1x1 . . . ∂αdxd∂β1x1 . . . ∂βdxd

= Dα(DβT ).

(b) For an open set Ω ⊆ R
d and T ∈ D′(Ω), show that DαT (ϕ) = (−1)|α|T (Dαϕ).

Define Dj := Dej = ∂
∂xj

. Having already established the basis case

DjT (ϕ) = −T (Djϕ)

in the notes, we induct on |α| by assuming DαT (ϕ) = (−1)|α|T (Dαϕ) for |α| = n.
Now consider |α| = n+ 1 by taking β = α+ ej where ej = [δj

k] has a 1 in the jth

spot and 0s elsewhere. Then

DβT (ϕ) = DjD
α T (ϕ) by (a)

= Dj(−1)|α| T (Dαϕ) by inductive hypothesis

= (−1)|α|(−1)T (DjD
αϕ) by basis case

= (−1)|β| T (Dβϕ). |β| = |α| + 1

15. (11/09)

(a) Let f ∈ C∞(Ω) and T ∈ D′(Ω). Then show fT ∈ D′(Ω) is well-defined by

〈fT, ϕ〉 = 〈T, fϕ〉, ∀ϕ ∈ D(Ω).

(i) The right-hand side shows 〈fT, ϕ〉 is well-defined, since fϕ ∈ D.
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(ii) Also, the right-hand side shows that 〈fT, ϕ〉 is a linear functional.

(iii) Let ϕk
D

−−→ 0. Then clearly

fϕk
D

−−→ 0,

since f ∈ C∞(Ω) and spt(fϕk) ⊆ spt(ϕk). By the continuity of T (which
was given), this gives

〈fT, ϕk〉 = 〈T, fϕk〉
k→∞

−−−−→ 0.

(b) Moreover, state and prove an analogue of Leibnitz’ rule for Dα(fT ).

We will use induction to show that

(6) Dα(fT ) =
∑

γ≤α

(

α

γ

)

(Dγf)
(

Dα−γT
)

,

where
(

α
γ

)

:= α!
γ!(α−γ)!

, and the factorial of a multiindex is defined by α! =

α1! . . . αd!. Also, γ ≤ α means that γj ≤ αj for j = 1, . . . , d.
The basis case is a straightforward calculation:

Dj(fT )(ϕ) = −fT (Djϕ) def of T ′

= −T (fDjϕ) def of fT

= −T (Dj(fϕ) − ϕDjf) product rule

= −T (Dj(fϕ)) + T (ϕDjf) linearity

= DjT (fϕ) + T (ϕDjf) def of T ′

= fDjT (ϕ) + (Djf)T (ϕ) def of fT

shows Dj(fT ) = fDjT + (Djf)T .
Now we assume that (6) holds for |α| = n and let β = α+ ej as in Problem 14b.

Dβ(fT ) = DjD
α(fT )

= Dj

∑

γ≤α

(

α

γ

)

(Dγf)
(

Dα−γT
)

inductive hypothesis

=
∑

γ≤α

(

α

γ

)

Dj

(

(Dγf)
(

Dα−γT
)

)

linearity

=
∑

γ≤α

(

α

γ

)

(Dγf)Dj

(

Dα−γT
)

+
(

Dα−γT
)

Dj (Dγf) basis case

=
∑

γ≤α

(

α

γ

)

(Dγf)
(

Dα−γ+ejT
)

+
(

Dα−γT
)

Dj

(

Dγ+ejf
)

Problem 14a

=
∑

γ≤β

(

β

γ

)

(Dγf)(Dβ−γT ) reordering
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16. (11/09) With {an} ⊆ R and

Ha(x) := H(x− a) =

{

1, x ≥ 0

0, x < a
,

we have seen that the step function

fk(x) =
k
∑

n=1

wnH(x− an)

is in L1
loc(R) by the vector space properties of L1

loc (R). Thus it induces a regular
distribution Tf which has derivative

d
dx
Tfk

=

k
∑

n=1

wn
d
dx
H(x− an) =

k
∑

n=1

wnδ(x− an).

Hence, the distributional derivative of fk is

dfk

dx
=

k
∑

n=1

wnδan
.

Assuming that any bounded interval contains finitely many an’s, extend this to the
case when f(x) =

∑∞
n=1 wnH(x− an).

Denote the regular distribution associated with f by Tf . Since fk
k→∞

−−−−→ f in
L1

loc(R), the continuity of the derivative allows us to say

T ′
fk

=

k
∑

n=1

wnδ(x− an)
k→∞

−−−−→

∞
∑

n=1

wnδ(x− an) = T ′
f .

Note that the right-hand side makes sense, since for any ϕ ∈ D, there can only be
finitely many an in spt(ϕ). If we denote them by {anj

}, we have

T ′
f(ϕ) =

∫

R

(

m
∑

j=1

wnj
δ(x− anj

)

)

ϕ(x) dx

=
m
∑

j=1

∫

R

wnj
δ(x− anj

)ϕ(x) dx

=

m
∑

j=1

wnj
ϕ(anj

) <∞.

This makes it easy to see that T ′
f is continuous. If ϕq

D
−−→ 0, then

T ′
f(ϕq) =

m
∑

j=1

wnj
ϕq(anj

)
q→∞

−−−−→ 0,

because ϕq(anj
)

q→∞
−−−−→ 0 for each j.
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17. (11/16)

(a) Let T ∈ D′(R). Then

dT

dx
= lim

h→0

τ−hT − T

h
(limit in D′),

where τ−hT ∈ D′ is defined by 〈τ−hT, ϕ〉 = 〈T, τhϕ〉 for (τhϕ)(x) = ϕ(x+ h).

The action of the right-hand side against a test function ϕ is given by

〈

lim
h→0

τ−hT − T

h
, ϕ

〉

= lim
h→0

〈

τ−hT − T

h
, ϕ

〉

continuity of 〈·, ·〉

= lim
h→0

1

h

(

〈τ−hT, ϕ〉 − 〈T, ϕ〉
)

linearity of 〈·, ·〉

= lim
h→0

1

h

(

〈T, τhϕ〉 − 〈T, ϕ〉
)

defn of τ

= lim
h→0

〈

T,
τhϕ− ϕ

h

〉

linearity of 〈·, ·〉

= 〈T,−ϕ′〉 continuity of 〈·, ·〉

= −〈T, ϕ′〉

= 〈T ′, ϕ〉

(b) Extend this to higher dimensions.

Let ej be the standard basis vector with 1 in the jth slot and 0 elsewhere.
Define τ−hj

T ∈ D′ by 〈τ−hj
T, ϕ〉 = 〈T, τhj

ϕ〉 for (τhj
ϕ)(x) = ϕ(x + hej). Then

∂T

∂xj
= lim

h→0

τ−hj
T − T

h
(limit in D′).

〈

lim
h→0

τ−hj
T − T

h
, ϕ

〉

= lim
h→0

〈

T,
τhj
ϕ− ϕ

h

〉

linearity of 〈·, ·〉

= 〈T,−Djϕ〉 continuity of 〈·, ·〉

= 〈DjT, ϕ〉

via the same arguments as in (a), where we are using Dj := Dej = ∂
∂xj

.

14(b) extends this to the more general case of DαT .
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18. (11/16) If the series
∑

n Tn converges in D′, then it can be differentiated term by
term:

(
∑

n Tn)′ =
∑

n T
′
n.

More generally, Dα (
∑

n Tn) =
∑

nD
αTn, for every multiindex α.

We have
〈(

∞
∑

n=0

Tn

)′

, ϕ

〉

= −

〈

lim
k→∞

k
∑

n=0

Tn, ϕ
′

〉

defn ofT ′,Σ

= − lim
k→∞

〈

k
∑

n=0

Tn, ϕ
′

〉

continuity of 〈·, ·〉

= − lim
k→∞

k
∑

n=0

〈Tn, ϕ
′〉 linearity of 〈·, ·〉

= − lim
k→∞

k
∑

n=0

−〈T ′
n, ϕ〉 defn of T ′

= lim
k→∞

〈

k
∑

n=0

T ′
n, ϕ

〉

linearity of 〈·, ·〉

=

〈

lim
k→∞

k
∑

n=0

T ′
n, ϕ

〉

continuity of 〈·, ·〉

=

〈

∞
∑

n=0

T ′
n, ϕ

〉

To extend this to the general case,
〈

Dα

(

∞
∑

n=0

Tn

)

, ϕ

〉

= (−1)|α|

〈

lim
k→∞

k
∑

n=0

Tn, D
αϕ

〉

defn of DαT

= (−1)|α| lim
k→∞

k
∑

n=0

〈Tn, ϕ
′〉 as in (a)

= (−1)|α| lim
k→∞

k
∑

n=0

(−1)|α| 〈DαTn, ϕ〉 defn of DαT

=

〈

lim
k→∞

k
∑

n=0

DαTn, ϕ

〉

as in (a)

=

〈

∞
∑

n=0

DαTn, ϕ

〉
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19. (11/16) Suppose Tn ∈ D′ is such that

T (ϕ) := lim
n→∞

Tn(ϕ)

exists in C, ∀ϕ ∈ D(Ω). Show T ∈ D′.

Since T is clearly a linear functional, it just remains to check the continuity of T .
Recall the Principle of Uniform Boundedness (for Fréchet spaces):

Theorem. [Ru, Theorem 2.6]: If {Tn} is a sequence of continuous linear mappings
from D to C and if the sets

Γ(ϕ) := {|Tnϕ|
... n ∈ N}

are bounded in C for each ϕ ∈ D, then Γ is equicontinuous.

This shows that {Tn} is equicontinuous, i.e., to every neighborhood W of 0 in C,
there corresponds a neighborhood V of 0 in D such that

Tn(V ) ⊆ W,

for all n [Ru, Definition 2.3]. Note that the concept of neighborhood makes sense
here: although a locally convex space need not be metrizable in general, every Fréchet
space comes with a topology induced by a complete metric.

Let {ϕk}
∞
k=0 ⊆ D with ϕk → 0. To see that T is continuous, we must show

〈T, ϕk〉
k→∞

−−−−→ 0. Fix ε > 0 and consider B := B(0, ε) ⊆ C. By the above remarks,
there must be some δ > 0 such that Tn(ϕk) ∈ B for all ϕk ∈ A := B(0, δ), ∀n ∈ N.
Since

〈T, ϕk〉 =
〈

lim
n→∞

Tn, ϕk

〉

= lim
n→∞

〈Tn, ϕk〉,

we can pick N such that k > N =⇒ ϕk ∈ A, and be sure that

|〈T, ϕk〉| < ε.

20. (11/16) Let I = (a, b) ⊆ R, and T ∈ D(I). Show that

dT

dx
= 0 =⇒ T is constant.

If dT
dx

= 0, we have 〈T ′, ϕ〉 = −〈T, ϕ′〉 = 0, ∀ϕ ∈ D. This just means, ψ = ϕ′ =⇒
〈T, ψ〉 = 0. Since test functions are C∞, they are clearly absolute continuous, and
may thus be represented

ϕ(x) =

∫ x

a

ϕ′(t)dt+ ϕ(a).

In particular, for ϕ ∈ D, we can define ψ(x) =
∫ x

a
ϕ(t)dt + c, so that ϕ′ = ψ. In

other words, every test function can be represented as the derivative of some other
test function, and we have 〈T, ϕ〉 = 0, ∀ϕ.
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21. (11/18) Show that W1,p(Ω) is separable for 1 ≤ p <∞.

Because of the isometric embedding I : W1,p(Ω) → Lp(Ω), we may think of W1,p(Ω)
as a closed subspace of Lp(Ω).

22. (11/18) Ω = I = (−1, 1) ⊆ R. Show that u(x) = 1
2
(|u| + u) belongs to W1,p(I), for

1 ≤ p < ∞, and that u′ = H. More generally, a continuous function on I = [−1, 1]
that is piecewise C1 belongs to W1,p(I), ∀1 ≤ p <∞.

u is clearly in Lp:
∫

I

u dx =

∫

(−1,0)

0 dx+

∫

(0,1)

x dx = 1
2
,

so it just remains to show u′ ∈ Lp(I).

〈u′, ϕ〉 = −〈u, ϕ′〉

= −

∫

I

uϕ′ dx

= −M

<∞

where M := supI ϕ
′(x).

23. (11/18) Prove that

W1,p(I) =

{

u ∈ Lp(I)
... ∃g ∈ Lp(I) such that

∫

I

uϕ′ = −

∫

I

gϕ, ∀ϕ ∈ C1
c (I)

}

.

Also, for u ∈ W1,p(I) we have u′ = g. Note: g is ae-unique.

By definition,

u ∈ W1,p(I) ⇐⇒ u ∈ Lp and u′ ∈ Lp,

where u′ ∈ Lp means that u′ = Tg for some unique g ∈ Lp.

24. (11/18)

(a) Define ũ(x) =
∫ x

0
u′(t) dt for u ∈ W1,p(I). Show ũ is absolutely continuous on I.

(b) Using (a), show
T dũ

dx
= d

dx
Tũ.
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