MATH 217A — HOMEWORK

ERIN PEARSE

1. (Chap. 1, Problem 2).

(a) Let (2,3, P) be a probability space and {A4;,1 <i < n} C X, n > 2. Prove that

P(Oz‘h‘):ip(fli)— Z P(A;NAj) + Z P(A;NA;NA)

1<i<j<n 1<i<j<k<n
— L+ (-1)"P (ﬂ Ai>
=1

> P(A)— > PANA).
i=1 1<i<j<n
First, the basis case. We make a union disjoint as follows:
AUB=AU(A°NB).
Thus
P(AUB)=P(A)+ P(A°N B). (1)
Similarly, we can write
B=(ANB)U(A°NB)
P(B)=P(ANB)+ P(A°NB)
P(B) — P(ANnB) = P(A°N B),
which we plug into (1) to get
P(AUB) = P(A)+ P(A°N B)
= P(A)+ P(B) — P(AN B).
Now we proceed by induction. Assume

P (O Ai> = iP(AZ-) - Y P(ANA)+ > PANANA)

1<i<j<n 1<i<j<k<n

— A (=D)P ((n] AZ-) :
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Using the basis case and then the inductive hypothesis gives

Ao

i=1

o(0n) raear- e ({0

i=1 =1

n+1
=Y P(A)— Y PANA)+ > PANANA)
i=1 1<i<j<n 1<i<j<k<n

() r(Quna)

i=1

Using the inductive hypothesis again, the last term in (2) becomes

P <U A; N AW) =P (U (A; N Anﬂ)) by distribution
=1

i=1

n+1

i=1 1<i<j<n

+ > PANANANAy) — .+ (-1)"'P (ﬂAiﬂAnH)
1<i<j<k<n i=1

We plug this back into (2), and get, for example,

n+1
1<i<j<n i=1 1<i<j<n+1

Similarly, collecting like terms in the other sums (i.e., terms with the same
number of A;’s getting unioned together) and rearranging gives

P (@AZ) = iP(Ai) - Y PANA)+ > PANANA

1<i<j<n 1<i<j<k<n
— L+ (-D)"P <ﬂ Ai> ,
=1

as desired.
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2. (Chap. 1, Problem 3).

(a) Let {X,,n > 1} be a sequence of random variables on a probability space
(Q, %, P). Show that

X, — X <= E 0.
<1+|Xn_X|)

(=) Let X, L X, e, P[| X, — X| > ¢] == 0. Now if we define
A ={X,—X| <e},

we can say

X, — X X, — X
:/ Ldp_,_/ #dp
A L+ Xy = X| ag_ 1+ [X, — X|
</ < dP+/ 1dP
n61—|—€ AC
\/Ans

n—os / AP +0
O\N 1"—6

where P(N) = 0. But then

. IX Xl /
lim F
/edP
< 2

3

[ X, — X| > €]

| /\

IN

for any € > 0, which shows lim,, . F (%) = 0.

(<) Now assume lim,, .o, E <%> = 0. Define

Ay = {|X, — X| > <.

Now

P[X, - X]| zg]z/XAndP
Q

| X — X]
=/ 1 dP
/nl_{golﬂ)( — X[
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=1 - dP
oo Jo 1+ X, — X |
X, — X
< lim | | dP

n—oo Jo 1+ | X, — X|

= lim B [ ——2 1
s (1+|Xn—X|

(b) Verify that

defines a metric on the space of random variables £°, and that £° is an algebra.

(i) Positivity. Cleatly, d(X,X) = E (jjf);f)'q) — B(0) = 0. Solet X # Y.
Then define
A={X#Y} and A,={X-Y|>1}

Now we have

X - Y]
dX,Y)= | ————~_dP
(X.Y) /AlJr\X—Y\

Z/ &dp
A, L+ X =Y

Z/ 1/n JP
A, 1+1/n

n
= P(A,
n+1 ( )

> 0 for P(A,) > 0.

So X # Y implies there is some n for which P(A,) > 0, in which case
d(X,Y) > 0.

(ii) Symmetry. d(X,Y) = E (%) —F (%) = d(Y, X).

(iii) Triangle inequality. Consider the function f : R™ — [0,1] by f(z) = 5.
Taking derivatives of this function shows that it is concave increasing with
slope less than 1 for all z > 0. Alternatively, see Lemma 1 in Problem
2. This gives f(a +b) < f(a) + f(b) immediately, for a,b > 0. Using
a=|X—-Y]and b= 1Y — Z|,

X -Y|+ Y - Z|
+b) =
et = —vr v =7
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X Y| Y — Z|
14X —Y] T 1+|Y —Z]
= f(a) + f(b).

Since
| X — Z| < X -Y|+|Y - Z]
1+ X-Z] T 14+|X-Y|+|Y - Z]
by the triangle inequality,

X - 7]
dX,2)= | ——————_dP
(X, 2) /91+1X—Zy

(X - Y] / Y -2
< | o dP+ | ——— T dP
_/Ql—l—]X—Y] a1 +]Y —Z]

—d(X,Y) +d(Y, Z).

To see that £° is an algebra, we make some basic observations, namely:

(i) A sum of measurable functions is again measurable.
(ii) The pointwise product of measurable functions is again measurable.
(iii) Any scalar multiple of a measurable function is again measurable.

Pointwise multiplication is associative, even commutative. Also, we have the
identity f(x) =0 and unit g(z) = 1.

3. (Chap. 2, Problem 2).

(a) Let ¢ : R — R™ be a continuous function such that ¢ is increasing and convex on
R*, and with ¢(0) = 0 and ¢(—x) = z. Also, assume ¢ satisfies ¢(2z) < co(x)
for x > 0, for some 0 < ¢ < co. Let X; : Q — R, 7 = 1,2 be two random variables
on (Q,%, P). If E(¢(X;)) < 00,7 =1,2, then verify E(¢(X; + X3)) < oco. Show
the converse is also true if the X; are independent.

(=) Since ¢ increasing implies ¢ is order-preserving, we bound E(¢(X; + X3))
as follows:

E(6(X, + Xa)) = /Q 6(X) + Xo) dP

< [ ¢(2X1)dP + [ ¢(2X5)dP ¢ increasing
{X1> X5} {X2>X1}

< E(p(2X1)) + E(¢(2X4)) P is monotone

< cE(¢(2X7)) + cE(p(Xy)) given

< o0
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(<) Now we take X7, X5 to be independent. Then with A,, = {|X;3| < n},

E(o(X1 + X3)) = E(o(| X1 + Xa)) ¢(—x) = ¢(z)
> E (¢ (|| X1] = [Xa[]) |a+b| > [|a] — |b]]
= E (¢ (| X1] — [ X2])) ¢(—x) = ¢(z)
:/52¢(|X1|—|X2|)dP def of E

:/ b (%] = |X,]) dP
An

¢ (| X1| — [ Xa]) dP Q=A,UA;
Ag
2/ ¢ (| X1|—n) dP+0 def of A,
An
= E (¢ (|X1] = n) xa,) def of £
=E(¢(|X1|—n)) P(A,). independence

Now we take note of two things. First,
A,/ Q = P(A,) /1,

so we may assume 0 < P(A,) < 1 and concern ourselves just with the other
factor. Second,

B (X1 =) = [ 6(nl = n) dFs(a)
/¢ (lz1]) dFx(2)
@ (X))

by FLoP. (Translation doesn’t matter when we integrate over all of R.) Thus

E(¢(X1+X2)) = E (¢ (|X1]) P (An)
——— E(¢(]X1])) = BE(6(X1))

Since a similar procedure may be used to bound E(¢(X3)), we have

E(6(X1)), E(6(X2)) < o0
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(b) Let ¢ : R — R™ be a continuous function such that ¢ is increasing and concave
on R*, and with ¢(0) = 0 and ¢(—z) = z. Let X; : Q@ — R, = 1,2 be
two random variables on (2,%, P). If E(¢(X;)) < oo0,i = 1,2, then verify
E(¢(X1 + X2)) < co. Show the converse is also true if the X; are independent.

(=) First we prove the following lemma.

Lemma 1. If ¢ is concave on R*, then for any x,y > 0 we have ¢p(x + y) <
p(x) + o(y)-

Proof. Method 1. Since ¢ is concave, it is absolutely continuous on any open
interval and hence may be represented as the integral of its derivative. Thus we
may write

oty
R ROL
= /Ox &' (t) dt + /:+y o' (t) dt

y
+ / ' (t+x)dt CoV
0
y
+ / o' (t) dt @' decreasing
0
= o(x) + o(y), FToC
where the inequality is due to the fact that ¢’ is decreasing whenever ¢ is concave.

OJ
Proof. Method 2. Wlog, take 0 <z <y. Then z <y <z +y, so
y=ar+ (1 —a)(z+y) for a =% €(0,1).
Then concavity means
6(y) = dlaz + (1 a)(x + 1))
Z ag(x) + (1 —a)o(z +y)
o(x) + oy) = o(z) + ad(x) + d(x +y) — ad(x +y).
So it remains to show
6(x) + ad(z) — ag(z +y) > 0.

But this is just equivalent to

¢(x) + ag(z) > ag(z +y)

o(z) + Lo(x) = {o(z +y)
(z +y)o(r) > zd(z +y)
¢x)2¢@+y)

x (x+y)’
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which is another form of the definition of concavity; the decreasing secants:

s<t<u

—

with s =0t =z, u=2+y.

Hence,

fO) = f(s) o flw) = f(s) o flu) = fD)
t—s T u-—s u—t
O

¢ (| X1 + Xal)) ¢(—z) = ¢(x)
¢ (|Xq1] + | Xal)) A-ineq
¢ (| X1]) + & (| X2])) by Lemma
¢ (1X1])) + E (6 (| X2])) linearity
P(X1)) + E (¢(X2)) ¢(—z) = ¢(z)

(<) The converse here goes through exactly as it did in the previous case.

4. (Chap. 2, Problem 3).

Let X1, X5 : © — R be independent with E(X;) = 0. Again, take ¢ : R — R* to be
a continuous function which is increasing and convex on RT, and satisfies ¢(0) = 0

and ¢(—

If E(X3) =0 is also assumed, prove E(¢(X;))

We write

x) = x. Prove that E(¢(X;+ Xs)) < oo implies E(¢(X2)) < E(o(X1+X2)).
< E(¢(X1 + X3)).

E(X;)=0
linearity

Jensen’s ineq

FLoP

Now we integrate both side with respect to dF,, as follows:

/ b(22) dFy, < / / 6(x1 + 12) dFx. dFy,

#(X2)) //45371-1-1172 dFx, 1 x,

E(6(X2))

o(X1 + X3)).

independence

For the case F(X3) = 0, the identical technique may be applied.
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If X1, X5 > 0, the problem becomes easy. first we note that the Lemma proven in
the previous problem will also work for convex functions, with the inequality reversed:
¢(z +y) = ¢(x) + ¢(y). Then

E((b(Xl + X2) > E( ( ) ¢(X2)) Lemma
E(¢(X1)) + E(o(X2)) linearity
P(E(X1)) + E((X2)) Jensen’s
( )+ E(o(X2)) E(X;) =0
E(p(X)). $(0) =0

The other case follows similarly.



