MATH 217A - HOMEWORK

ERIN PEARSE

- 1. (Chap. 1, Problem 2).
 - (a) Let (Ω, Σ, P) be a probability space and $\{A_i, 1 \leq i \leq n\} \subseteq \Sigma, n \geq 2$. Prove that

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i} \cap A_{j} \cap A_{k})$$
$$- \dots + (-1)^{n-1} P\left(\bigcap_{i=1}^{n} A_{i}\right)$$
$$\geq \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j}).$$

First, the basis case. We make a union disjoint as follows:

$$A \cup B = A \sqcup (A^c \cap B).$$

Thus

$$P(A \cup B) = P(A) + P(A^c \cap B). \tag{1}$$

Similarly, we can write

$$B = (A \cap B) \sqcup (A^c \cap B)$$
$$P(B) = P(A \cap B) + P(A^c \cap B)$$
$$P(B) - P(A \cap B) = P(A^c \cap B),$$

which we plug into (1) to get

$$P(A \cup B) = P(A) + P(A^c \cap B)$$

= $P(A) + P(B) - P(A \cap B)$.

Now we proceed by induction. Assume

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i} \cap A_{j} \cap A_{k})$$
$$- \dots + (-1)^{n-1} P\left(\bigcap_{i=1}^{n} A_{i}\right).$$

Using the basis case and then the inductive hypothesis gives

$$P\left(\bigcup_{i=1}^{n+1} A_{i}\right) = P\left(\bigcup_{i=1}^{n} A_{i} \cup A_{n+1}\right)$$

$$= P\left(\bigcup_{i=1}^{n} A_{i}\right) + P\left(A_{n+1}\right) - P\left(\bigcup_{i=1}^{n} A_{i} \cap A_{n+1}\right)$$

$$= \sum_{i=1}^{n+1} P(A_{i}) - \sum_{1 \le i < j \le n} P(A_{i} \cap A_{j}) + \sum_{1 \le i < j < k \le n} P(A_{i} \cap A_{j} \cap A_{k})$$

$$- \dots + (-1)^{n-1} P\left(\bigcap_{i=1}^{n} A_{i}\right) - P\left(\bigcup_{i=1}^{n} A_{i} \cap A_{n+1}\right). \tag{2}$$

Using the inductive hypothesis again, the last term in (2) becomes

$$P\left(\bigcup_{i=1}^{n} A_{i} \cap A_{n+1}\right) = P\left(\bigcup_{i=1}^{n} (A_{i} \cap A_{n+1})\right)$$
by distribution
$$= \sum_{i=1}^{n+1} P(A_{i} \cap A_{n+1}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j} \cap A_{n+1})$$
$$+ \sum_{1 \leq i < j < k \leq n} P(A_{i} \cap A_{j} \cap A_{k} \cap A_{n+1}) - \dots + (-1)^{n-1} P\left(\bigcap_{i=1}^{n} A_{i} \cap A_{n+1}\right)$$

We plug this back into (2), and get, for example,

$$-\sum_{1 \le i < j \le n} P(A_i \cap A_j) - \sum_{i=1}^{n+1} P(A_i \cap A_{n+1}) = -\sum_{1 \le i < j \le n+1} P(A_i \cap A_j).$$

Similarly, collecting like terms in the other sums (i.e., terms with the same number of A_j 's getting unioned together) and rearranging gives

$$P\left(\bigcup_{i=1}^{n+1} A_i\right) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \sum_{1 \le i < j < k \le n} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n-1} P\left(\bigcap_{i=1}^{n} A_i\right),$$

as desired.

- 2. (Chap. 1, Problem 3).
 - (a) Let $\{X_n, n \geq 1\}$ be a sequence of random variables on a probability space (Ω, Σ, P) . Show that

$$X_n \xrightarrow{P} X \iff E\left(\frac{|X_n - X|}{1 + |X_n - X|}\right) \xrightarrow{n \to \infty} 0.$$

$$(\Rightarrow)$$
 Let $X_n \xrightarrow{P} X$, i.e., $P[|X_n - X| \ge \varepsilon] \xrightarrow{n \to \infty} 0$. Now if we define $A_{n,\varepsilon} := \{|X_n - X| < \varepsilon\},$

we can say

$$\begin{split} E\left(\frac{|X_n-X|}{1+|X_n-X|}\right) &= \int_{\Omega} \frac{|X_n-X|}{1+|X_n-X|} dP \\ &= \int_{A_{n,\varepsilon}} \frac{|X_n-X|}{1+|X_n-X|} dP + \int_{A_{n,\varepsilon}^C} \frac{|X_n-X|}{1+|X_n-X|} dP \\ &< \int_{A_{n,\varepsilon}} \frac{\varepsilon}{1+\varepsilon} dP + \int_{A_{n,\varepsilon}^C} 1 dP \\ &= \int_{A_{n,\varepsilon}} \frac{\varepsilon}{1+\varepsilon} dP + P[|X_n-X| \ge \varepsilon] \\ &\xrightarrow{n\to\infty} \int_{\Omega \setminus N} \frac{\varepsilon}{1+\varepsilon} dP + 0 \end{split}$$

where P(N) = 0. But then

$$\lim_{n \to \infty} E\left(\frac{|X_n - X|}{1 + |X_n - X|}\right) \le \int_{\Omega} \frac{\varepsilon}{1 + \varepsilon} dP$$

$$\le \int_{\Omega} \varepsilon dP$$

$$\le \varepsilon \int_{\Omega} dP$$

$$\le \varepsilon$$

for any $\varepsilon > 0$, which shows $\lim_{n \to \infty} E\left(\frac{|X_n - X|}{1 + |X_n - X|}\right) = 0$.

 (\Leftarrow) Now assume $\lim_{n\to\infty} E\left(\frac{|X_n-X|}{1+|X_n-X|}\right) = 0$. Define

$$A_n := \{|X_n - X| \ge \varepsilon\}.$$

Now

$$P[|X_n - X| \ge \varepsilon] = \int_{\Omega} \chi_{A_n} dP$$

$$= \int_{\Omega} \lim_{n \to \infty} \frac{|X_n - X|}{1 + |X_n - X|} \chi_{A_n} dP$$

$$= \lim_{n \to \infty} \int_{\Omega} \frac{|X_n - X|}{1 + |X_n - X|} \chi_{A_n} dP$$

$$\leq \lim_{n \to \infty} \int_{\Omega} \frac{|X_n - X|}{1 + |X_n - X|} dP$$

$$= \lim_{n \to \infty} E\left(\frac{|X_n - X|}{1 + |X_n - X|}\right)$$

$$\xrightarrow{n \to \infty} 0.$$

(b) Verify that

$$d(X,Y) := E\left(\frac{|X-Y|}{1+|X-Y|}\right)$$

defines a metric on the space of random variables \mathcal{L}^0 , and that \mathcal{L}^0 is an algebra.

(i) Positivity. Clearly, $d(X,X) = E\left(\frac{|X-X|}{1+|X-X|}\right) = E(0) = 0$. So let $X \neq Y$. Then define

$$A = \{X \neq Y\}$$
 and $A_n = \{|X - Y| \ge \frac{1}{n}\}.$

Now we have

$$d(X,Y) = \int_{A} \frac{|X - Y|}{1 + |X - Y|} dP$$

$$\geq \int_{A_n} \frac{|X - Y|}{1 + |X - Y|} dP$$

$$\geq \int_{A_n} \frac{1/n}{1 + 1/n} dP$$

$$= \frac{n}{n+1} P(A_n)$$

$$\geq 0 \text{ for } P(A_n) > 0.$$

So $X \neq Y$ implies there is some n for which $P(A_n) > 0$, in which case d(X,Y) > 0.

- (ii) Symmetry. $d(X,Y) = E\left(\frac{|X-Y|}{1+|X-Y|}\right) = E\left(\frac{|Y-X|}{1+|Y-X|}\right) = d(Y,X)$.
- (iii) Triangle inequality. Consider the function $f: \mathbb{R}^+ \to [0,1]$ by $f(x) = \frac{x}{1+x}$. Taking derivatives of this function shows that it is concave increasing with slope less than 1 for all x > 0. Alternatively, see Lemma 1 in Problem 2. This gives $f(a+b) \leq f(a) + f(b)$ immediately, for $a, b \geq 0$. Using a = |X Y| and b = |Y Z|,

$$f(a+b) = \frac{|X-Y| + |Y-Z|}{1 + |X-Y| + |Y-Z|}$$

$$\leq \frac{|X - Y|}{1 + |X - Y|} + \frac{|Y - Z|}{1 + |Y - Z|}$$
$$= f(a) + f(b).$$

Since

$$\frac{|X - Z|}{1 + |X - Z|} \le \frac{|X - Y| + |Y - Z|}{1 + |X - Y| + |Y - Z|}$$

by the triangle inequality,

$$d(X,Z) = \int_{\Omega} \frac{|X - Z|}{1 + |X - Z|} dP$$

$$\leq \int_{\Omega} \frac{|X - Y|}{1 + |X - Y|} dP + \int_{\Omega} \frac{|Y - Z|}{1 + |Y - Z|} dP$$

$$= d(X,Y) + d(Y,Z).$$

To see that \mathcal{L}^0 is an algebra, we make some basic observations, namely:

- (i) A sum of measurable functions is again measurable.
- (ii) The pointwise product of measurable functions is again measurable.
- (iii) Any scalar multiple of a measurable function is again measurable.

Pointwise multiplication is associative, even commutative. Also, we have the identity $f(x) \equiv 0$ and unit $g(x) \equiv 1$.

- 3. (Chap. 2, Problem 2).
 - (a) Let $\phi: \mathbb{R} \to \mathbb{R}^+$ be a continuous function such that ϕ is increasing and convex on \mathbb{R}^+ , and with $\phi(0) = 0$ and $\phi(-x) = x$. Also, assume ϕ satisfies $\phi(2x) \leq c\phi(x)$ for $x \geq 0$, for some $0 < c < \infty$. Let $X_i: \Omega \to \mathbb{R}, i = 1, 2$ be two random variables on (Ω, Σ, P) . If $E(\phi(X_i)) < \infty, i = 1, 2$, then verify $E(\phi(X_1 + X_2)) < \infty$. Show the converse is also true if the X_i are independent.
 - (\Rightarrow) Since ϕ increasing implies ϕ is order-preserving, we bound $E(\phi(X_1 + X_2))$ as follows:

$$E(\phi(X_1 + X_2)) = \int_{\Omega} \phi(X_1 + X_2) dP$$

$$\leq \int_{\{X_1 \geq X_2\}} \phi(2X_1) dP + \int_{\{X_2 > X_1\}} \phi(2X_2) dP \qquad \phi \text{ increasing}$$

$$\leq E(\phi(2X_1)) + E(\phi(2X_1)) \qquad P \text{ is monotone}$$

$$\leq cE(\phi(2X_1)) + cE(\phi(X_1)) \qquad \text{given}$$

$$< \infty$$

 (\Leftarrow) Now we take X_1, X_2 to be independent. Then with $A_n = \{|X_2| \leq n\},$

$$\begin{split} E(\phi(X_1 + X_2)) &= E(\phi(|X_1 + X_2|)) & \phi(-x) = \phi(x) \\ &\geq E\left(\phi\left(||X_1| - |X_2||\right)\right) & |a + b| \geq ||a| - |b|| \\ &= E\left(\phi\left(|X_1| - |X_2|\right)\right) & \phi(-x) = \phi(x) \\ &= \int_{\Omega} \phi\left(|X_1| - |X_2|\right) \, dP & \text{def of } E \\ &= \int_{A_n} \phi\left(|X_1| - |X_2|\right) \, dP & \Omega = A_n \sqcup A_n^c \\ &\geq \int_{A_n} \phi\left(|X_1| - n\right) \, dP + 0 & \text{def of } A_n \\ &= E\left(\phi\left(|X_1| - n\right) \chi_{A_n}\right) & \text{def of } E \\ &= E\left(\phi\left(|X_1| - n\right) P\left(A_n\right). & \text{independence} \end{split}$$

Now we take note of two things. First,

$$A_n \nearrow \Omega \implies P(A_n) \nearrow 1$$
,

so we may assume $0 < P(A_n) \le 1$ and concern ourselves just with the other factor. Second,

$$E\left(\phi\left(|X_1| - n\right)\right) = \int_{\mathbb{R}} \phi\left(|x_1| - n\right) dF_X(x)$$
$$= \int_{\mathbb{R}} \phi\left(|x_1|\right) dF_X(x)$$
$$= E\left(\phi\left(|X_1|\right)\right)$$

by FLoP. (Translation doesn't matter when we integrate over all of \mathbb{R} .) Thus

$$E(\phi(X_1 + X_2)) \ge E(\phi(|X_1|)) P(A_n)$$

$$\xrightarrow{n \to \infty} E(\phi(|X_1|)) = E(\phi(X_1))$$

Since a similar procedure may be used to bound $E(\phi(X_2))$, we have

$$E(\phi(X_1)), E(\phi(X_2)) < \infty.$$

- (b) Let $\phi : \mathbb{R} \to \mathbb{R}^+$ be a continuous function such that ϕ is increasing and concave on \mathbb{R}^+ , and with $\phi(0) = 0$ and $\phi(-x) = x$. Let $X_i : \Omega \to \mathbb{R}, i = 1, 2$ be two random variables on (Ω, Σ, P) . If $E(\phi(X_i)) < \infty, i = 1, 2$, then verify $E(\phi(X_1 + X_2)) < \infty$. Show the converse is also true if the X_i are independent.
 - (\Rightarrow) First we prove the following lemma.

Lemma 1. If ϕ is concave on \mathbb{R}^+ , then for any x, y > 0 we have $\phi(x + y) \leq \phi(x) + \phi(y)$.

Proof. Method 1. Since ϕ is concave, it is absolutely continuous on any open interval and hence may be represented as the integral of its derivative. Thus we may write

$$\phi(x+y) = \int_0^{x+y} \phi'(t) dt$$

$$= \int_0^x \phi'(t) dt + \int_x^{x+y} \phi'(t) dt$$

$$= \phi(x) + \int_0^y \phi'(t+x) dt \qquad \text{CoV}$$

$$\leq \phi(x) + \int_0^y \phi'(t) dt \qquad \phi' \text{ decreasing}$$

$$= \phi(x) + \phi(y), \qquad \text{FToC}$$

where the inequality is due to the fact that ϕ' is decreasing whenever ϕ is concave.

Proof. Method 2. Wlog, take 0 < x < y. Then x < y < x + y, so $y = \alpha x + (1 - \alpha)(x + y)$ for $\alpha = \frac{x}{y} \in (0, 1)$.

Then concavity means

$$\phi(y) = \phi(\alpha x + (1 - \alpha)(x + y))$$

$$\geq \alpha \phi(x) + (1 - \alpha)\phi(x + y)$$

$$\phi(x) + \phi(y) \geq \phi(x) + \alpha \phi(x) + \phi(x + y) - \alpha \phi(x + y).$$

So it remains to show

$$\phi(x) + \alpha\phi(x) - \alpha\phi(x+y) \ge 0.$$

But this is just equivalent to

$$\phi(x) + \alpha\phi(x) \ge \alpha\phi(x+y)$$

$$\phi(x) + \frac{x}{y}\phi(x) \ge \frac{x}{y}\phi(x+y)$$

$$(x+y)\phi(x) \ge x\phi(x+y)$$

$$\frac{\phi(x)}{x} \ge \frac{\phi(x+y)}{(x+y)},$$

which is another form of the definition of concavity; the decreasing secants:

$$s < t < u \implies \frac{f(t) - f(s)}{t - s} \ge \frac{f(u) - f(s)}{u - s} \ge \frac{f(u) - f(t)}{u - t},$$

with
$$s = 0, t = x, u = x + y$$
.

Hence,

$$E(\phi(X_1 + X_2)) = E(\phi(|X_1 + X_2|)) \qquad \phi(-x) = \phi(x)$$

$$\leq E(\phi(|X_1| + |X_2|)) \qquad \triangle\text{-ineq}$$

$$\leq E(\phi(|X_1|) + \phi(|X_2|)) \qquad \text{by Lemma}$$

$$= E(\phi(|X_1|)) + E(\phi(|X_2|)) \qquad \text{linearity}$$

$$= E(\phi(X_1)) + E(\phi(X_2)) \qquad \phi(-x) = \phi(x)$$

$$\leq \infty$$

- (\Leftarrow) The converse here goes through exactly as it did in the previous case.
- 4. (Chap. 2, Problem 3).

Let $X_1, X_2 : \Omega \to \mathbb{R}$ be independent with $E(X_1) = 0$. Again, take $\phi : \mathbb{R} \to \mathbb{R}^+$ to be a continuous function which is increasing and convex on \mathbb{R}^+ , and satisfies $\phi(0) = 0$ and $\phi(-x) = x$. Prove that $E(\phi(X_1 + X_2)) < \infty$ implies $E(\phi(X_2)) \le E(\phi(X_1 + X_2))$. If $E(X_2) = 0$ is also assumed, prove $E(\phi(X_1)) \le E(\phi(X_1 + X_2))$.

We write

$$\phi(x_2) = \phi(0 + x_2) = \phi(E(X_1) + x_2)$$

$$= \phi(E(X_1 + x_2))$$

$$\leq E(\phi(X_1 + x_2))$$

$$= \int_{\mathbb{T}} \phi(x_1 + x_2) dF_{X_1}.$$

$$E(X_1) = 0$$
linearity
$$\text{Jensen's ineq}$$

$$\text{FLoP}$$

Now we integrate both side with respect to dF_{X_2} , as follows:

$$\int_{\mathbb{R}} \phi(x_2) \, dF_{X_2} \le \int_{\mathbb{R}} \int_{\mathbb{R}} \phi(x_1 + x_2) \, dF_{X_1} dF_{X_2}
E(\phi(X_2)) \le \int_{\mathbb{R}} \int_{\mathbb{R}} \phi(x_1 + x_2) \, dF_{X_1 + X_2}$$
 independence
$$E(\phi(X_2)) \le E(\phi(X_1 + X_2)).$$

For the case $E(X_2) = 0$, the identical technique may be applied.

If $X_1, X_2 \ge 0$, the problem becomes easy. first we note that the Lemma proven in the previous problem will also work for convex functions, with the inequality reversed: $\phi(x+y) \ge \phi(x) + \phi(y)$. Then

$$E(\phi(X_1 + X_2) \ge E(\phi(X_1) + \phi(X_2))$$
 Lemma

$$= E(\phi(X_1)) + E(\phi(X_2))$$
 linearity

$$\ge \phi(E(X_1)) + E(\phi(X_2))$$
 Jensen's

$$= \phi(0) + E(\phi(X_2))$$

$$E(X_1) = 0$$

$$= E(\phi(X_2)).$$
 $\phi(0) = 0$

The other case follows similarly.