
I. Introduction & Motivation

I.1. Physical motivation.

What can you really measure? (Realistically)

T (x) vs.
∫

T (x)ϕ(x) dx.

I.2. Mathematical motivation.

How to “differentiate” nondifferentiable functions?

IBP:
∫ b

a

T ′(x)ϕ(x) dx = −
∫ b

a

T (x)ϕ′(x) dx,

(*) provided ϕ is nice, and the boundary terms vanish.

→ Heaviside’s operational calculus (c. 1900)
→ Sobolev (1930s): continuous linear functionals over
some space of test functions
→ Schwartz (1950s): duality of certain topological vector
spaces
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Consider the DE
u′ = H,

where H(x) is the Heaviside function:

H(x) =

{

1, x > 0

0, x ≤ 0

H(x)

Figure 1. The Heaviside function H(x).

We would like to say that the soln is

x+ =

{

x, x > 0

0, x ≤ 0,

but this function is not a classical soln: it is not differential
at 0.

x
+

Figure 2. The piecewise continuous function x+.
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II. Basics of the theory

Let us not require T to have a specific value at x. T is
no longer a function— call it a generalized function.

Think of T as acting on a “weighted open set” instead
of on a point x.

“T (x) 7→ T (ϕ)”
Formalize: T acts on “test functions” ϕ.

Denote: 〈T, ϕ〉 =

∫

T (x)ϕ(x) dx.

ϕ(x)

[ ]
a b

Figure 3. A test function ϕ.

Reqs for “nice” test functions ϕ :

(1) ϕ ∈ C∞, and
(2) boundary terms must vanish (ϕ(−∞) = ϕ(∞) = 0).

(a) ϕ ∈ Cc, i.e., ϕ has compact support, or

(b) ϕ(x)
|x|→∞−−−−−→ 0 quickly(with derivs)

Choosing (2a) leads to the theory of distributions à la
Laurent Schwartz.
Choosing (2b) leads to the theory of tempered distribu-
tions.
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Definition 1. The space of test functions is

D(Ω) := C∞
c (Ω)

Note: (2a) allows more distributions than (2b).
(larger class of test functions ⇒ fewer distributions.

Reqs for a distribution :

(1) 〈T, ϕ〉 must exist for ϕ ∈ D.
(2) Linearity: 〈T, a1ϕ1 +a2ϕ2〉 = a1〈T, ϕ1〉+a2〈T, ϕ2〉.

Taking a cue from Riesz1:

Definition 2. The space of distributions is the (topo-
logical) dual space

D
′(Ω) = {continuous linear functionals on D(Ω)}.

1Actually, D
′(Ω) is a larger class than the class of Borel measures on Ω.

4



Examples

1. Any f ∈ L1
loc(Ω).

〈Tf , ϕ〉 =

∫

f(x)ϕ(x) dx

“The distribution f” really means Tf .

2. Any regular Borel measure µ on Ω

〈Tµ, ϕ〉 =

∫

ϕ(x) dµ

T is regular iff T = Tf for f ∈ L1
loc(Ω). Otherwise, T

is singular.

The most famous singular distribution, Dirac-δ:

〈δ, ϕ〉 = ϕ(0) =

∫

δ(x)ϕ(x) dx =

∫

ϕ(x) dµ

so

“δ(x) =

{

∞, x = 0

0, x 6= 0
”

for

µ(E) =

{

1, 0 ∈ E

0, 0 /∈ E
.
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Some distributions do not even come from a measure.

Example.

〈δ′, ϕ〉 := −ϕ′(0).

Note: require smooth test functions ⇒ allow rough dis-
tributions; differentiability of a distribution relies on dif-
ferentiability of test functions.
To define 〈δ, ϕ〉, ϕ must be C0.
To define 〈δ′, ϕ〉, ϕ must be C1.
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III. Differentiation of Distributions.

Key point: how do we understand T ? Only by 〈T, ϕ〉.
So what does T ′ mean? Must understand 〈T ′, ϕ〉.

Working in Ω = R:

〈T ′, ϕ〉 =

∫ ∞

−∞
T ′(x)ϕ(x) dx

= [T (x)ϕ(x)]∞−∞ −
∫ ∞

−∞
T (x)ϕ′(x) dx

= −〈T, ϕ′〉

Definition 3. For any T ∈ D
′(Ω),

〈DkT, ϕ〉 := −〈T,Dkϕ〉, ϕ ∈ D.

More generally (induct):

〈DαT, ϕ〉 := (−1)|α|〈T,Dαϕ〉, ϕ ∈ D.

Note: this formula shows every distribution is (infin-
itely) differentiable.

Note: Dα+βT = Dα(DβT ).
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Recall that x+ is not differentiable in the classical sense.

x+ =

{

x, x > 0

0, x ≤ 0,

But x+ can be differentiated as a distribution:

〈x′+, ϕ〉 = −〈x+, ϕ
′〉

= −
∫ ∞

0

xϕ′(x) dx

= [−xϕ(x)]∞0 +

∫ ∞

0

ϕ(x) dx

= 0 +

∫ ∞

−∞
H(x)ϕ(x) dx

= 〈H,ϕ〉
So x′+ = H , as hoped. Similarly,

〈x′′+, ϕ〉 = 〈H ′, ϕ〉
= −〈H,ϕ′〉

= −
∫ ∞

0

ϕ′(x) dx

= ϕ(0)

So x′′+ = H ′ = δ, as hoped.

(Motivation for ϕ ∈ C∞.)
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IV. A Toolbox for Distribution Theory

Definition 4. For {ϕk}∞k=1 ⊆ D, ϕk → 0 iff

(i) ∃K ⊆ Ω compact s.t. sptϕk ⊆ K, ∀k, and

(ii) Dαϕk → 0 uniformly on K, ∀α.

Definition 5. For {Tk}∞k=1 ⊆ D
′,

Tk → 0 ⇐⇒ 〈Tk, ϕ〉 → 0 ∈ C, ∀ϕ ∈ D.

This is weak or distributional (or “pointwise”) conver-
gence.

Theorem 6. Differentiation is linear & continuous.

Proof. a)

〈(aT1 + bT2)
′, ϕ〉 = −〈aT1 + bT2, ϕ

′〉
= −a〈T1, ϕ

′〉 − b〈T2, ϕ
′〉

= a〈T ′
1, ϕ〉 + b〈T ′

2, ϕ〉
b) Let {Tn} ⊆ D

′ converge to T in D
′.

〈T ′
n, ϕ〉 = − 〈Tn, ϕ′〉
n→∞−−−−→− 〈T, ϕ′〉

=〈T ′, ϕ〉
�
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Theorem 7. D
′ is complete.

Theorem 8. D is dense in D
′.

(Given T ∈ D
′, ∃{ϕk} ⊆ D such that ϕk → T as

distributions.)

Proposition 9. If f has classical derivative f ′ and f ′ is
integrable on Ω, then

T ′
f = Tf ′ .

Theorem 10. {fk} ⊆ L1
loc, fk

ae−−→ f , and |fk| ≤ g ∈
L1
loc. Then fk

D
′

−−−→ f .

(i.e., Tfk
D
′

−−−→ Tf)

Definition 11. A sequence of functions {fk} such that

fk
D
′

−−−→ δ is a delta-convergent sequence , or δ-sequence.

Theorem 12. Let f ≥ 0 be integrable on Rn with
∫

f =
1. Define

fλ(x) = λ−nf
(

x
λ

)

= λ−nf
(

x1
λ , . . . ,

xn
λ

)
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for λ > 0. Then fλ
D
′

−−−→ δ as λ → 0.

Example.
∫

R

dx

1 + x2
= π =⇒ define f(x) =

1

π(1 + x2)
.

Then obtain the delta-sequence

fλ = 1
λ
· 1
π(1+(x/λ)2)

= λ
π(x2+λ2)

.

Example.
∫

R

e−x
2

= π1/2 =⇒ define f(x) = e−x
2

√
π
.

Then obtain the δ-sequence fλ = e−x
2/λ√
πλ
. Further,

∫

Rn
e−|x|2dx =

∫

Rn

n
∏

k=1

e−x
2
kdxk

=
n
∏

k=1

∫

Rn
e−x

2
kdxk

= πn/2

gives the n-dimensional δ-sequence

fλ(x) =
e−|x|2/λ

(πλ)n/2
. (1)

11



IV.1. Extension from test functions to distribu-

tions.

Approximation and adjoint identities

Approximation: For T ∈ D
′, and an operator S defined

on D, find arbitrary ϕn → T and define ST = limSϕn.

Example. (Translation)
Define S = τh on D by τh(ϕ) = 〈τh, ϕ〉 = ϕ(x− h).
To define τhT : find an arb sequence {ϕn} ⊆ D, with

ϕn
D
′

−−−→ T .
Then 〈T, ϕ〉 =

∫

T (x)ϕ(x) dx = lim
∫

ϕn(x)ϕ(x) dx, so

〈τhT, ϕ〉 = lim

∫

τhϕn(x)ϕ(x) dx

= lim

∫

ϕn(x− h)ϕ(x) dx

= lim

∫

ϕn(x)ϕ(x + h) dx

= lim

∫

ϕn(x)τ−hϕ(x) dx

= 〈T, τ−hϕ〉
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Example. (Differentiation)
Define S = d

dx on D(R).

Let I denote the identity, use τh
h→0−−−−→ I .

Then d
dx

= limh→0
1
h
(τh − I), so

〈 d
dx
T, ϕ〉 = lim

h→0

1
h

(〈τhT, ϕ〉 − 〈T, ϕ〉)

= lim
h→0

1
h (〈T, τ−hϕ〉 − 〈T, ϕ〉)

= lim
h→0

〈T, 1
h

(τ−hϕ− ϕ)〉

= 〈T, lim
h→0

1
h (τ−h − I)ϕ〉

= 〈T,− d
dx
ϕ〉

Adjoint Identities: Let T ∈ D
′ and let R be an operator

such that Rϕ ∈ D. Define S as the operator which
satisfies

〈ST, ϕ〉 = 〈T,Rϕ〉, i.e.
∫

ST (x)ϕ(x) dx =

∫

T (x)Rϕ(x) dx.

Definition 13. S is the adjoint of R.
If S = R, we say R is self-adjoint.
Example: The Laplacian ∆. 〈∆T, ϕ〉 = 〈T,∆ϕ〉.
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Example.

(Translation) Define S = τh by 〈Sψ,ϕ〉 := 〈ψ, τ−hϕ〉.
∫

τhψ(x)ϕ(x) dx =

∫

ψ(x)τ−hϕ(x) dx

Example.

(Differentiation) Define S = d
dx by 〈Sψ,ϕ〉 := −〈ψ, ddxϕ〉.

∫

(

d
dxψ(x)

)

ϕ(x) dx = −
∫

ψ(x)
(

d
dxϕ(x)

)

dx

Example.

(Multiplication) Define S by 〈Sψ,ϕ〉 := 〈ψ, f · ϕ〉.
∫

(f(x)ψ(x))ϕ(x) dx =

∫

ψ(x) (f(x)ϕ(x)) dx

Note: this only works when f · ϕ ∈ D! So require f ∈
C∞.
Example of trouble: let f(x) = sgn(x) so f is discon-

tinuous at 0. Then f · δ cannot be defined:

〈f · δ, ϕ〉 = 〈δ, f · ϕ〉 = f(0)ϕ(0)

but f(0) is undefined. Thus, the product of two arbitrary
distributions is undefined.
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IV.2. Multiplication. There is no way of defining the
product of two distributions as a natural extension of the
product of two functions. ©..a
Definition 14. For T ∈ D

′, f ∈ C∞, can define their
product fT as the linear functional

〈fT, ϕ〉 = 〈T, fϕ〉, ∀ϕ ∈ D.

When T is regular,

〈fTg, ϕ〉 = 〈Tg, fϕ〉

=

∫

gfϕ

= 〈fg, ϕ〉
since fg is also in L1

loc. Thus fTg = Tfg in this case.

Example. (Leibniz Rule)

〈Dk(fT ), ϕ〉 = −〈fT,Dkϕ〉
= −〈T, fDkϕ〉
= −〈T,Dk(fϕ) − (Dkf)ϕ〉
= −〈T,Dk(fϕ)〉 + 〈T, (Dkf)ϕ〉
= 〈fDkT, ϕ〉 + 〈(Dkf)T, ϕ〉

Thus,
Dk(fT ) = fDkT + (Dkf)T.
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V. Things from last time

A distribution is a continuous linear functional onC∞
c (Ω)

〈T, ϕ〉 = T (ϕ) :=

∫

T (x)ϕ(x) dx.

〈T ′, ϕ〉 = −〈T, ϕ′〉, 〈∂αT, ϕ〉 = (−1)|α|〈T, ∂αϕ〉.

〈δ, ϕ〉 = ϕ(0)

〈δ′, ϕ〉 = −ϕ′(0).

For x+ = max{0, x} and the Heaviside function H(x),

x′′+ = H ′ = δ.

The translation operator

〈τh, ϕ〉 = τh(ϕ) = ϕ(x− h)

〈τhT, ϕ〉 = 〈T, τ−hϕ〉.
The multiplication-by-a-smooth-function operator

〈f · T, ϕ〉 = 〈T, f · ϕ〉.
Adjoint Identities: Let T ∈ D

′ and let R be an operator
such that Rϕ ∈ D. Define S as the operator which
satisfies

〈ST, ϕ〉 = 〈T,Rϕ〉.
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VI. Convolutions

Convolution is a smoothing process: convolve anything
with a Cm function and the result is Cm, even if m = ∞.

Strategy: T may be nasty, but T ∗ ϕ is lovely (C∞), so
work with it instead.

Even better, find {ϕk} such that T ∗ ϕk → T and use
it to extend the usual rules of calculus & DEs.

Need ϕ(x−y) to discuss convolutions, so consider func-
tions of 2 variables for a moment:

ϕ(x, y) ∈ D(Ω1 × Ω2).

Let Ti be a distribution on Ωi (Ti ∈ D(Ωi)).
For fixed y ∈ Ω2, the function ϕ(·, y) is in D(Ω1), and T1

maps ϕ(·, y) to the number

〈T1, ϕ(·, y)〉 = T1(ϕ)(y).

Theorem 15. For ϕ, Ti as above, T1(ϕ) ∈ D(Ω2) and
∂βyT1(ϕ) = T1

(

∂βyϕ
)

.

So Ti : ϕ 7→ Ti(ϕ) preserves the smoothness of ϕ ∈ D.
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Corollary 16. If ϕ ∈ C∞(Ω1×Ω2) has compact support
as a function of x and y separately, then T1(ϕ) ∈ C∞(Ω2)
for every T1 ∈ D

′(Ω1).

x

y

(-1,0)

(0,-1)

(1,0)

(0,1)

spt ϕ(x+y)

R
2

Figure 4. For ϕ ∈ D(R) with support spt(ϕ) = [−1, 1], the function ϕ(x + y) is defined on
R2 and does not have compact support.

Definition 17. Convolution of a C∞
c function ϕ with

an L1
loc function f is

(ϕ ∗ f)(x) :=

∫

ϕ(x− y)f(y) dy =

∫

ϕ(y)f(x− y) dy.

Now extend convolution to distributions:

(T1∗T2)(ϕ) = 〈T1∗T2, ϕ〉 := T1(T2(ϕ(x+y)), ϕ ∈ D(Rn).
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Suppose Ti are regular, and defined by fi ∈ L1
loc(R

n),
where at least one of the fi has compact support. Then

(T1 ∗ T2)(ϕ) = 〈T1 ∗ T2, ϕ〉
=
〈

T1, 〈T2, ϕ(x + y)〉
〉

=

∫

f1(x)

∫

f2(y)ϕ(x + y) dy dx

=

∫ ∫

f1(x− y)f2(y)ϕ(x) dy dx x 7→ x− y

= 〈f1 ∗ f2, ϕ〉
with f1 ∗ f2 as above.
Note: f1 ∗ f2 = f2 ∗ f1 =⇒ T1 ∗ T2 = T2 ∗ T1.

VI.1. Properties of the convolution.

Let T ∈ D
′(Rn) and ϕ ∈ D(Rn). Then

〈δ ∗ T, ϕ〉 = 〈T ∗ δ, ϕ〉
=
〈

T, 〈δ, ϕ(x + y)〉
〉

= 〈T, ϕ(y)〉
shows δ ∗ T = T ∗ δ = T .
Additionally,

〈(Dαδ) ∗ T, ϕ〉 =
〈

T, 〈(Dαδ), ϕ(x + y)〉
〉

= 〈T, (−1)|α|Dαϕ(y)〉
= 〈DαT, ϕ〉

19



The Magic Property:

(Dαδ) ∗ T = DαT = Dα(δ ∗ T ) = δ ∗DαT.

Further properties of ∗:2

1. spt(T1 ∗ T2) ⊆ sptT1 + sptT2.

2. T1 ∗ (T2 ∗ T3) = (T1 ∗ T2) ∗ T3 = T1 ∗ T2 ∗ T3.

3. Dα(T1 ∗ T2) = (Dαδ) ∗ T1 ∗ T2

= (DαT1) ∗ T2 = T1 ∗ (DαT2).

4. τh(T1 ∗ T2) = δh ∗ T1 ∗ T2

= (τhT1) ∗ T2 = T1 ∗ (τhT2).

To see the last, note that τhδ = δh by

〈τhδ, ϕ〉 = 〈δ, τ−hϕ〉
= 〈δ, ϕ(x + h)〉
= ϕ(h)

= 〈δh, ϕ〉,

2Assuming one of the Ti has compact support.
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so δh ∗ T = τhT by

〈δh ∗ T, ϕ〉 =
〈

T, 〈δh, ϕ(x + y)〉
〉

= 〈T, ϕ(x + h)〉
= 〈T, τ−hϕ〉
= 〈τhT, ϕ〉.

Conclusion:
(D′,+, ∗) is a commutative algebra with unit δ.

Example. Let S ∗H = δ. Then

δ′ = (S ∗H)′ = S ∗H ′ = S ∗ δ = S,

shows H−1 = δ′. Similarly, (δ′)−1 = H .

Definition 18. For f on Rn, its reflection in 0 is f̃(x) =
f(−x). For distributions, we extend the defn by

〈T̃ , ϕ〉 = 〈T, ϕ̃〉.

Theorem 19. The convolution (T ∗ ψ)(x) = T (τxψ̃) is
in C∞(Rn).

Proof. For any ϕ ∈ D(R), we have

〈T ∗ ψ,ϕ〉 =
〈

T, 〈ψ(y), ϕ(x + y)
〉

.
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Thus

〈ψ(y), ϕ(x + y)〉 =

∫

ψ(y)ϕ(x + y) dy

=

∫

ψ(ξ − x)ϕ(ξ) dξ

= 〈ψ(ξ − x), ϕ(ξ)〉
= 〈ψ̃(x− ξ), ϕ(ξ)〉
= 〈τξψ̃(ξ), ϕ(ξ)〉

shows

〈T ∗ ψ,ϕ〉 =
〈

T, 〈τξψ̃(x), ϕ(ξ)
〉

= 〈T (τξψ̃), ϕ(ξ)〉
= 〈T (τxψ̃), ϕ〉.

Finally, note that

(T ∗ ψ)(x) = T (τxψ̃) = T (ψ(x− y))

is smooth by Cor. 16. �

Corollary 20. T (ϕ) = (T ∗ ϕ̃)(0).
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VI.2. Applications of the convolution.

The C∞ function

α(x) =

{

exp
(

− 1
1−|x|2

)

, |x| < 1

0, |x| ≥ 1

has support in the closed unit ball B = B(0, 1) .

β(x) = α(x)

[∫

α(y) dy

]−1

is another C∞ function with support in the closed unit
ball B which satisfies

∫

β = 1. Then take the δ-sequence

βλ(x) =
1

λn
β
(x

λ

)

.

Theorem 21. TheC∞ function T∗βλ converges strongly3

to T as λ→ 0.

Definition 22. The convolution of f (or T ) with βλ is
called a regularization of f (or T ).

T ∗ β1/k = T ∗ γk
is a regularizing sequence for the distribution T ∈ D

′.
3〈T ∗ βλ, ϕ〉

unif
−−−−−→ 〈T, ϕ〉 on every bounded subset of D.
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Proposition 23. Suppose T ′ = 0. Then T =
ae
c ∈ R.

Proof. Let γk be a regularizing sequence for δ. Then

(T ∗ γk)′ = T ′ ∗ γk = 0

for every k, so T ∗ γk = ck.

ck = T ∗ γk D
′

−−−→ T , but still must show {ck} converges
in C.
Pick ϕ ∈ D with

∫

ϕ = 1. Then ck = 〈ck, ϕ〉 converges
in C; hence its limit c = lim ck coincides with T . �

Note: in general, fk
D
′

−−−→ f does not imply fk
pw−−−→ f

(it doesn’t even imply f is a function!). fk = constant is
a special case.

Proposition 24. Suppose T ′′ = 0. Then T is linear a.e.

Proof. For ϕ ∈ D, T ∗ ϕ ∈ C∞, and

(T ∗ ϕ)′′ = T ′′ ∗ ϕ = 0.

Thus T ∗ ϕ is a linear function of the form (T ∗ ϕ)(x) =
ax + b.
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Let h(x) = ax+ b. Then

(h ∗ β)(x) =

∫

h(x− y)β(y) dy

=

∫

[a(x− y) + b]β(y) dy

= ax + b

since
∫

yβ(y) dy = 0. Thus h ∗ β = h, so

(T ∗ β) ∗ γk = (T ∗ γk) ∗ β = T ∗ γk.
As k → ∞, this gives T ∗ β =

ae
T . �

Note: this generalizes immediately to

T (n) = 0 =⇒ T =
ae
P (x) = a0 + a1x+ · · · + amx

m,

for m < n.

Definition 25. For T ∈ D
′, a distribution S satisfying

DkS(ϕ) = T (ϕ) for all ϕ ∈ D is called a primitive

(antiderivative) of T .

Theorem 26. Any distribution in D
′(R) has a primitive

which is unique up to an additive constant.
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Another notion of regularization.

Definition 27. If f has a pole at x0, the Cauchy prin-

cipal value of the divergent integral
∫

f(x) dx is

pv

∫

f(x) dx = lim
ε→0

∫

|x−x0|≥ε
f(x) dx.

Definition 28. Obtaining the distributional derivative
of f ∈ L1

loc from a divergent integral by taking the prin-
cipal value is called regularizing the integral. If f ∈ L1

loc

but Dαf /∈ L1
loc, then DαTf is a regularization of TDαf .

Example. The function

f(x) =

{

1/x, x > 0,

0, x ≤ 0

does not define a distribution on R However, f |R+ ∈ L1
loc

and so defines a regular distribution.

As classical derivatives,
d
dx log |x| = 1

x, x 6= 0

so what is the relation of the distributional derivative of
log |x| to 1/x?
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〈 ddx log |x|, ϕ〉 = −〈log |x|, ϕ′〉

= −
∫

R

log |x|ϕ′(x) dx (log |x| ∈ L1
loc)

= − lim
ε→0

∫

|x|≥ε
log |x|ϕ′(x) dx

= − lim
ε→0

[

[log |x|ϕ(x)]−εε −
∫

|x|≥ε

ϕ(x)

x
dx

]

= lim
ε→0

[

2ε log εϕ(ε)−ϕ(−ε)
2ε

+

∫

|x|≥ε

ϕ(x)

x
dx

]

= lim
ε→0

∫

|x|≥ε

ϕ(x)

x
dx

= pv

∫

ϕ(x)

x
dx

since ϕ is differentiable at x = 0. Hence, we say that

(log |x|)′ = pv 1/x.

is the distributional derivative of log |x|, and is not a func-
tion.
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VII. Solving Differential Equations with

Distributions

Consider a DE

Lu = f, (2)

where L is some linear4 differential operator of order m.

Definition 29. A classical solution to (2) is anm-times
differentiable u defined on Ω which satisfies the equation
in the sense of equality between functions. If u ∈ Cm(Ω)
(so Lu is continuous) then u is a strong solution .

Definition 30. A weak solution to (2) is u ∈ D
′(Ω)

which satisfies the equation in the sense of distributions:

〈Lu, ϕ〉 = 〈f, ϕ〉, ∀ϕ ∈ D(Ω).

Note: every strong soln is a weak soln, but converse is
false.

4Restr to linear is nec because we cannot define mult in D
′ as a natural extn of mult of functions.
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Example. For Ω = R, consider

xu′ = 0.

Strong soln: u = c1.
Weak soln: consider u = c2H .

u′ = c2δ

〈xu′, ϕ〉 = c2〈xδ, ϕ〉
= c2〈δ, xϕ〉
= 0 ∀ϕ ∈ D.

So u = c2H is also a weak soln, and

u = c1 + c2H.

is the (weak) general solution (but not a strong solution).

What else is odd about this example?

Example. Solve u′′ = δ on R.
We found the solution

x+ = xH(x).

Any other solution will satisfy the homogeneous equation

D2
x [u− xH(x)] = 0,

so will have the form

ζ(x) = xH(x) + ax+ b.
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Boundary conditions will determine the constants, e.g.,

ζ(0) = 0, ζ(1) = 1 =⇒ ζ(x) = xH(x).

↪→ We use ζ to denote the general solution of u′′ = δ.

Now use this to solve more general equations.

Example. For Ω = (0, 1), solve

u′′ = f. (3)

Consider f = 0 outside (0, 1) so f ∈ L1(R). Then

(f ∗ ζ)′′ = f ∗ ζ ′′
= f ∗ δ
= f.

So one solution to (3) is

u(x) = (f ∗ ζ)(x)

=

∫ 1

0

(x− ξ)H(x− ξ)f(ξ) dξ

=

∫ x

0

(x− ξ)f(ξ) dξ 0 ≤ x ≤ 1,

and the general solution is thus

u(x) =

∫ x

0

(x− ξ)f(ξ) dξ + ax+ b.

If we have initial conditions

u′(0) = a, u(0) = b,
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this becomes

u(x) =

∫ x

0

(x− ξ)f(ξ) dξ + u′(0)x + u(0).

Alternatively, boundary conditions at x = 0 and x = 1
can be expressed

u(0) = b

u(1) =

∫ 1

0

(1 − ξ)f(ξ) dξ + a+ b.

Definition 31. ζ is the fundamental solution of the
operator D2.
E ∈ D

′ is the fundamental solution of the differential
operator

L =
∑

|α|≤m
cα(x)Dα

iff LE = δ. Reason:

L(f ∗ E) = f ∗ LE
= f ∗ δ
= f

shows f ∗ E is a solution to Lu = f .
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Example. On R2, is log |x| a weak solution to

∆u = 0?

For x 6= 0,

∆ log |x| = D1

(

1

|x|D1|x|
)

+D2

(

1

|x|D2|x|
)

(4)

= D1

(

x1

|x|2
)

+D2

(

x2

|x|2
)

= 0,

so one might think so . . .

log |x| ∈ L1
loc(R

2
0), so compute the (dist) Laplacian ∆ log |x|.

〈∆ log |x|, ϕ〉 = 〈log |x|,∆ϕ〉

=

∫

R2
log |x|∆ϕ(x) dx

= lim
ε→0

∫

|x|≥ε
log |x|∆ϕ(x) dx

Now choose Ω to contain sptϕ and B(0, ε), for ε > 0.
Use Green’s formula5 on the open set

Ωε = Ω\B(0, ε) = {x ∈ Ω ... |x| > ε}

5 �
Ω(u∆v − v∆u) =

�
∂Ω(uDνv − vDνu).
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to get
∫

Ωε

log |x|∆ϕ(x) dx =

∫

Ωε

ϕ(x)∆ log |x| dx

+

∫

∂Ωε

[log |x|Dνϕ(x) − ϕ(x)Dν log |x|] dσ

where Dν is outward normal on ∂Ωε.

|x| = ε

∂Ω

Ωε

Dν

spt(ϕ)

Figure 5. The domains Ω and Ωε.

But ϕ and Dν ϕ vanish on (and outside) ∂Ω, so
∫

|x|≥ε
log |x|∆ϕ(x) dx =

∫

|x|≥ε
ϕ(x)∆ log |x| dx

+

∫

|x|=ε
[log |x|Dνϕ(x) − ϕ(x)Dν log |x|] dσ

By (4), the first integral on the right drops out.

With |x| =
(

x2
1 + x2

2

)1/2
= r, we have Dν = −Dr on the
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circle |x| = ε; and so
∫

|x|≥ε
log |x|∆ϕ(x) dx

=

∫

|x|=ε

[

− log εDrϕ(x) + ϕ(x)
ε

]

dσ

Since ϕ ∈ D(R2), |Drϕ| ≤M on R
2. Thus

∣

∣

∣

∣

∫

|x|=ε
log εDrϕ(x) dσ

∣

∣

∣

∣

≤| log ε| ·M · 2πε
ε→0−−−−→ 0.

The other integral is

1
ε

∫

|x|=ε
ϕ(x) dσ

=1
ε

∫

|x|=ε
(ϕ(x) − ϕ(0)) dσ + 1

ε

∫

|x|=ε
ϕ(0) dσ

ε→0−−−−→ 0 + 2πϕ(0),

since ϕ is continuous at 0. Conclusion:

〈∆ log |x|, ϕ〉 = 2πϕ(0), ∀ϕ ∈ D,

hence
∆ log |x| = 2πδ.

Thus, 1
2π

log |x| is a fundamental solution of ∆ in R2.
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VIII. Things from last time

Convolution

(ϕ ∗ f)(x) :=

∫

ϕ(x− y)f(y) dy =

∫

ϕ(y)f(x− y) dy.

(T1∗T2)(ϕ) = 〈T1∗T2, ϕ〉 := T1(T2(ϕ(x+y)), ϕ ∈ D(Rn).

Key properties:

δ ∗ T = T ∗ δ = T.

T1 ∗ T2 = T2 ∗ T1.

T1 ∗ (T2 ∗ T3) = (T1 ∗ T2) ∗ T3.

Dα(T1 ∗ T2) = (DαT1) ∗ T2 = T1 ∗ (DαT2).

T ∈ D
′(R) =⇒ ∃S ∈ D

′ s.t. DkS(ϕ) = T (ϕ), ∀ϕ

pv

∫

f(x) dx = lim
ε→0

∫

|x−x0|≥ε
f(x) dx.

Definition 32.E ∈ D
′ is the fundamental solution of

the differential operator L iff LE = δ. Reason:

L(f ∗ E) = f ∗ LE = f ∗ δ = f

shows f ∗ E is a solution to Lu = f .

1
2π log |x| is a fundamental solution of ∆ in R

2.

35



Example. On R3, is |x|−1 a weak solution to ∆u = 0?

∆|x|−1 = (D2
1 +D2

2 +D2
3)(x

2
1 + x2

2 + x2
3)

−1/2

=
3
∑

j=1

Dj
−xj

(x2
1 + x2

2 + x2
3)

3/2

=
3
∑

j=1

(

3x2
j

(x2
1 + x2

2 + x2
3)

5/2
− 1

(x2
1 + x2

2 + x2
3)

3/2

)

(5)

= 3
3
∑

j=1

x2
j

(x2
1 + x2

2 + x2
3)

5/2
−

3
∑

j=1

1

(x2
1 + x2

2 + x2
3)

3/2

= 0, for x 6= 0

so one might think so . . .

Since |x|−1 ∈ L1
loc(R

3),
〈

∆|x|−1, ϕ
〉

=
〈

|x|−1,∆ϕ
〉

= lim
ε→0

∫

|x|≥ε
|x|−1∆ϕ(x) dx

= lim
ε→0

[∫

|x|≥ε
∆|x|−1ϕ(x) dx

+

∫

|x|=ε

(

|x|−1Dνϕ(x) −Dν|x|−1ϕ(x)
)

dσ

]
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by Green’s formula. Again, the first integral vanishes by
(5). With Dν = −Dr,
∫

|x|≥ε
|x|−1∆ϕ(x) dx

= −1

ε

∫

|x|=ε
Drϕ(x) dσ − 1

ε2

∫

|x|=ε
ϕ(x) dσ.

Since |Drϕ| ≤M on R3,
∣

∣

∣

∣

1

ε

∫

|x|=ε
Drϕ(x) dσ

∣

∣

∣

∣

≤ M

ε

∫

|x|=ε
dσ = 4πεM

ε→0−−−−→ 0.

Finally,

1

ε2

∫

|x|=ε
ϕ(x) dσ

=
1

ε2

(∫

|x|=ε

(

ϕ(x) − ϕ(0)
)

dσ +
1

ε2

∫

|x|=ε
ϕ(0) dσ

)

=
1

ε2

∫

|x|=ε

(

ϕ(x) − ϕ(0)
)

dσ + 4πϕ(0)

ε→0−−−−→ 0 + 4πϕ(0)

Thus 〈∆|x|−1, ϕ〉 = −4πϕ(0) shows ∆ 1
|x| = −4πδ, and

hence − 1
4π|x| is a fundamental solution of ∆ on R

3.
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By the preceding results, the Poisson equation

∆u = f

has a solution given by

u = f ∗
(

− 1

4π|x|

)

when the conv is well-defined. Recall, this is because for
such a u,

∆u = ∆

(

f ∗
(

− 1

4π|x|

))

= f ∗ ∆

(

− 1

4π|x|

)

= f ∗ δ
= f

The solution may be interpreted physically as the po-
tential generated by f , e.g., gravitational potential due
to a mass density distribution f .
When f ∈ L1

K,

u(x) = − 1

4π

∫

R3

f(ξ)

|x− ξ|dξ.

38



Example. Temperature distribution on a slender, infi-
nite conducting bar is described by

{

ut = uxx
u(x, 0) = ϕ(x),

where ϕ(x) is the initial heat distribution at t = 0.

To get the general solution u = f ∗E, we must find the
fundamental solution E satisfying

(Dt −D2
x)E(x, t) = 0 (6)

on the upper half plane R × R+, and

E(x, 0) = δ(x,0) (7)

on the boundary t = 0, x ∈ R.

Such an E is given by Fourier theory:

E(x, t) =
1√
4πt

e−x
2/4t.

This satisfies (6) by direct computation.
In order to satisfy (7), it suffices to show E(x, t) is a
δ-sequence as t→ 0+, but we did this in (1).
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Example. The motion of an infinite vibrating string
solves

D2
tu = D2

xu, where x ∈ R, t > 0.

Suppose the string is released with initial shape u0 and
initial velocity u1.
Let

E0 = 1
2 [H(x + t) −H(x− t)]

E1 = DtE0 = 1
2 [δ(x + t) + δ(x− t)] .

Then

(D2
t −D2

x)E0 = 0

(D2
t −D2

x)E1 = 0

clearly hold in the upper half plane. When t = 0,

E0 = 0, E1 = δ,DtE1 = 0.

Consequently,

u = u0 ∗ E1 + u1 ∗ E0

satisfies the initial conditions:

u(x, 0) = u0 ∗ δ + u1 ∗ 0 = u0

ut(x, 0) = u0 ∗DtE1 + u1 ∗DtE0 = u0 ∗ 0 + u1 ∗ δ = u1
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When u0 ∈ C2 and u1 ∈ C1 ∩ L1,

u = 1
2
[u0(x− t) + u1(x + t)]

+ 1
2

∫

u1(ξ) [H(x + t− ξ) −H(x− t− ξ)] dξ

= 1
2 [u0(x− t) + u1(x + t)] + 1

2

∫ x+t

x−t
u1(ξ) dξ

−t

H(x+t) H(x+t)−H(x−t)

t

H(x−t)

t

Figure 6. Construction of H(x + t) − H(x − t), which is convolved against u1.

The more general wave equation

D2
tu = c2D2

xu

is solved from this one via change of coordinates:

u = 1
2 [u0(x− ct) + u1(x + ct)] + 1

2c

∫ x+ct

x−ct
u1(ξ) dξ.

If the string is released from rest (u1 = 0), the solution is
the average of two travelling waves u0(x−ct), u1(x−ct),
both having the same shape u0 but travelling in opposite
directions with velocity ±c.
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IX. The Descent Method

The “Descent Method” was so coined in [La-vF] and
is reminiscent of the method used by Schwartz to estab-
lish the convergence of the Fourier series associated to a
periodic distribution.

General idea of the Descent Method:

(1) Begin with a formula you would like to manipulate,
but cannot due to some issue of convergence.

(2) Prove that the pointwise manipulations hold under
some sufficiently restrictive conditions.

(3) Integrate multiple times (say q times), until these
conditions are met, so everything is sufficiently smooth
and converges nicely.

(4) Perform the desired manipulations.
(5) Differentiate distributionally (q times) until you ob-

tain the formula you need.

Resulting identity will hold distributionally, but may
not make sense pointwise.
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We will be using periodic distributions:

D
′(Rn)per := {T ∈ D

′(Rn) ... τκT = T, κ ∈ Z
n} = D

′(Tn),

where Tn = Rn/Zn. Properties true for Rn will remain
true on T

n when of a local nature; convolution product
has all the familiar properties.

Theorem 33. If T ∈ D
′ has compact support, then

there is a continuous function f and a multi-index α ∈ Nn

such that

〈T, ϕ〉 = 〈Dαf, ϕ〉, ∀ϕ ∈ D.

Theorem 34. (Dirichlet) If a periodic function f has a
point x0 for which both

f(x0−) = lim
x→x−0

f(x) and f(x0+) = lim
x→x+

0

f(x)

exist and are finite, then its Fourier series converges at x0

to the value
1
2[f(x0−) + f(x0+)].

In particular, if f is continuous on [a, b], then the Fourier
series converges pointwise to the value of the function on
[a, b].
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Theorem 35. The Fourier series associated to a peri-
odic distribution converges if and only if the Fourier co-
efficients are of slow growth6

Combining these results, we know that we will be able
to integrate any periodic distribution until it becomes a
continuous fn, whence we can integrate it until it is Cm.
This is the key that allows the descent method.

Example. Suppose you have the Fourier series of two
periodic distributions:

∑

α∈Z

Pα,
∑

β∈Z

Qβ.

What is the product
(

∑

α∈Z

Pα

)





∑

β∈Z

Qβ



?

The product will contain a coefficients Rα,β for each point
(α, β) ∈ Z2.
We’d like to say
(

∑

α∈Z

Pα

)





∑

β∈Z

Qβ



 =
∑

N∈N





∑

|α|+|β|=N
Rα,β



 .

6“Slow growth” means that they do not grow faster than polynomially, i.e., Dαϕ(x)| ≤ Cα(1 + |x|)N(α),∀α.
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Figure 7. Writing the Cauchy product of doubly infinite series.

If the series do not converge absolutely, this rearrange-
ment is not justified: need the Descent Method!

(1) Start with

(

∑

α∈Z

Pα

)





∑

β∈Z

Qβ



 =
∑

(α,β)∈Z2

Rα,β.

(2) We know that such rearrangements are valid when
the series is absolutely convergent.

(3) Integrate the series term-by-term, q times. For large
enough q, the series will converge absolutely, and even
normally.

(4) Rearrange the terms of the integrated series so that
they are indexed/ordered in the concentric form men-
tioned above.

(5) Differentiate the reordered series, term-by-term, q
times.
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We have just shown that as distributions,
(

∑

α∈Z

Pα

)





∑

β∈Z

Qβ



 =
∑

N∈N





∑

|α|+|β|=N
Rα,β



 ,

even though the sum on the right may not converge point-
wise.

Example. Suppose for x ∈ [0, y] you have an expression
of the form
∞
∑

m=0

(

am
∑

n∈N

(−1)f1(n,m)bn,mx
n − cm

∑

n∈N

(−1)f2(n,m)dn,mx
n

)

and you would like to factor out the powers of x.

Pointwise, such a manipulation would have no justifica-
tion unless we had some strong convergence conditions,
positivity of the terms, etc. However, we interpret the
series as a distribution and apply the descent method.
Then we get the series
∑

n∈N

[ ∞
∑

m=0

(

am(−1)f1(n,m)bn,m − cm(−1)f2(n,m)dn,m

)

]

xn

which is equal, as a distribution, to the original expres-
sion, and shows the coefficients of the xn much more
clearly.
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