
FRACTALS, DIMENSION, AND NONSMOOTH ANALYSIS

ERIN PEARSE

1. Fractional Dimension

“Fractal” = fractional dimension.

Intuition suggests dimension is an integer, e.g.,

• A line is 1-dimensional,
• a plane (or square) is 2-dimensional,
• a solid cube or ball is 3-dimensional, etc.

What does it mean to say something is 1.5-dimensional?

The example of a space-filling curve (e.g., BM, Peano): a curve so
jaggedy that it “shades in” area.

What is meant by dimension? Has something to do with:
how measurements of a set change when that set is scaled.

“Scale” means to dilate by some factor, i.e., if we scale a subset
A ⊆ R

n by 3, then any two points will now be three times further
apart than they used to be:

3A = {3x : x ∈ A}

• Scale a line segment L by 2 and its measure doubles:

m(2L) = m(L) × 21.

• Scale a square S by 2 and its measure increases by a factor of
four:

m(2S) = m(S) × 22.
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• Scale a cube Q by 2 and its measure increases by a factor of
eight:

m(2Q) = m(Q) × 23.

So dimension corresponds to some exponent. If A ⊆ R
n had di-

mension 1.5, then its measure would increase by a factor of 21.5 when
scaled by 2.

How is this useful?

2. Motivation

Most objects in nature are irregular: the way trees branch, the way
rivers fork, the way mud cracks, the structure of the venous system
in the human body, the kidneys, the lungs, the brain.

Any organ in the human body which performs exchange functions
tries to maximize surface area so that it can conduct more biological
processes (improve metabolic efficiency) in a confined region,
hence highly perforated or branched structure,
hence fractal.

Example: lungs. Say you have two horses A and B, and A is a
little larger. In fact, A = 1.2B.
Suppose you have measured the metabolic rate of the lungs of B to
be 10 liters of air per minute.
The metabolic rate of A’s lungs will be

10 × 1.2d,

where d is the effective dimension of the lungs of a horse.

Studying fractals allows for nonsmooth analysis.
Instead of approximating by something smoother, approximate by
something rougher.
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3. Discovery

I first became interested in the subject when I read James Gleick’s
“Chaos”. Then, Dr. Lapidus suggested “Chaos and Fractals” by
Peitgens, Jurgen, Saupe.

4. Getting more technical: measure theory

Earlier, I mentioned the “measure” of a line segment and the “mea-
sure” of a square.
Measure of a line segment: length.
Measure of a square: area.
Measure of a 1.5-dimensional set: ?

Note: there is not much useful information in the sentence “The
area of this line segment is 0.” or the sentence “The length of this
square is infinite.”

When you measure a set, you want to use the appropriate “mea-
sure” for the job.
So what is a measure?

In Analysis, you learn measure/Lebesgue theory.
How does one measure the following set:

(

1

2
, 1

)

∪
(

1

4
,
1

3

)

∪ . . .

(

1

2n
,

1

2n − 1

)

. . .?

Length of A = (a, b) is given by `(A) = b− a, and this extends to
finite unions.
Lebesgue came up with a generalization that extends to infinite
unions. It’s called “Lebesgue measure”, but it just means length
like you’re used to thinking about it.
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For A ⊆ R,

m(A) = inf

{ ∞
∑

n=0

`(An) : A ⊆
⋃

n=0

An

}

.

The inf here is taken over all coverings of A by intervals {An}.
Actually, this is 1-dimensional Lebesgue measure. It can be ex-

tended to higher dimensions by covering the set with n-balls. For
A ⊆ R

n,

m(A) = inf

{ ∞
∑

n=0

voln(An) : A ⊆
⋃

n=0

An

}

.

voln(An) is n-dimensional volume of the ball An.

Lebesgue measure allows for a more robust theory of integration
than Riemann’s, but there are some things it can’t really deal with.
For example, the Koch curve.

What is the measure of this curve?
It has infinite length/Lebesgue measure, but
it has area/2-dim Lebesgue measure 0.

The Koch snowflake is a finite region with an infinitely long bound-
ary!
The infinite length is because the curve is nowhere differentiable, i.e.,
every point on the curve is a corner/cusp.
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Figure 1. The Koch curve K (left) and the Koch snowflake Ω (right).
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Hausdorff figured out a way to make sense of this: he realized that
you can’t meaningfully take the s-dimensional measure of an object
that isn’t of dimension s. You have to measure with respect to the
appropriate dimension.

The s-dimensional Hausdorff measure is defined for any s ∈ R.
Suppose we want to measure a set F ⊆ R

n. For δ > 0,

Hs
δ (F ) = inf

{ ∞
∑

n=0

|An|s : A ⊆
⋃

n=0

An, |An| < δ

}

Three differences:

(1) the exponent s,
(2) the limit δ on the size of the covering sets,
(3) instead of m(B), use the diameter

|B| = sup{|x − y| : x, y ∈ B}.
Then

Hs(F ) = lim
δ→0

Hs
δ (F ).

Can be shown: for any F , there is a unique s at which H s(F )
jumps from ∞ to 0. This s is the Hausdorff dimension of F . It is
not hard to construct sets of any dimension s ∈ R.

Example: Koch curve has Hausdorff dimension D = log 4
log 3.

Hausdorff measure turns out to be Lebesgue measure when s is an
integer.

Hausdorff dimension is the most widely used notion of fractional
dimension, but there are several others; there is no universally agreed
upon “fractal dimension”. I use Minkowski dimension most of the
time because it has a couple of properties more suited to what I’m
studying.
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Figure 2. A graph of Hausdorff dimension Hs(F ) as a function of s. D is
the Hausdorff dimension of the set F .

A fractal string is any bounded open subset of R

L := {lj}∞j=1, with

∞
∑

j=1

lj < ∞.

l1 ≥ l2 ≥ l3 ≥ . . . ,

or distinctly (with multiplicity):

l1 > l2 > l3 > . . . .

Idea/origin: comes from studying fractal subsets

∂L ⊆ R.

Figure 3. The Cantor Set
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Figure 4. The Cantor String

l1=
1/3

l2=1/9

l3=
1/27

The Cantor String example has lengths

{

3−(n+1)
}

with multiplicities

w3−(n+1) = 2n.

CS =
{

1
3,

1
9,

1
9,

1
27,

1
27,

1
27,

1
27, . . .

}

The geometric zeta function of a string

ζL (s) =
∞

∑

j=1

lsj =
∑

l

wll
s

encodes all this information.

Example:

ζCS(s) =
∞

∑

n=0

2n3−(n+1)s =
3−s

1 − 2 · 3−s
.
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Three key things about ζL:

(1) Relates to the dimension of ∂L.

ζ
L
(s) 

holomorphic

ζ
L
(s) 

meromorphic

C

D

Figure 5. D = dim ∂L is the abscissa of convergence of ζL.

D∂L = inf{σ ≥ 0 : ζL(σ) < ∞}

Generalize and define the complex dimensions :

D = {ω ∈ C : ζL has a pole at ω}

If the poles are periodic, then the underlying fractal is not
measurable.
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(2) Connects spectral and geometric properties.
Spectral properties: studying the spectrum, i.e, the distribu-

tion of the eigenvalues, of the Laplacian.

Consider the string to be vibrating, fixed at the endpoints.
What are its fundamental modes?
A frequency of L is

f =
√

λ/π =
k

lj
.

The spectral zeta function of L is

ζν(s) =

∞
∑

j,k=1

(k · l−1
j )−s =

∑

f

wff
−s

Also,

ζν(s) = ζL(s)ζ(s),

where ζ is the Riemann zeta function

ζ(s) =
∞

∑

n=0

n−s.

(3) Gives an explicit formula for V (ε).

V (ε) = voln{x ∈ Ω : d(x, ∂Ω) < ε}

=
∑

ω∈DL

res (ζL; ω)

(

21−ω

ω(1 − ω)

)

ε1−ω + R(ε).

My goal: higher-dimensional analogues of these results.
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Figure 6. The ε-neighborhood of the Koch curve, for two different values of ε.

5. How this relates to different fields of

mathematics

• Analysis: obviously, a bunch of measure theory is involved; lots
of work with infinite series, distributions & integral transforms,
geometric arguments.

• Complex analysis: much depends on the study of zeta func-
tions, their poles and zeros. The explicit formulae are derived
via a combination of complex contour integration and distribu-
tional arguments.

• Number theory: relations between the lengths of the strings
are critical. Whether or not the lj are rationally independent
is critical.

• Analytical number theory: clearly, the study of zeta functions is
crucial. Diophantine approximation and the search for solutions
to Moran-type equations

rs
1 + · · · + rs

k = 1.
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The context gives a geometric interpretation of the Riemann
hypothesis.

• Dynamical systems: all of this has an interpretation in terms of
dynamical systems (iteration of one or more functions) giving
new proofs of prime and periodic orbit theorems, etc.

• Mathematical physics: spectral asymptotics are important when
considering waves or diffusions on the fractal set.

Fractals tend to have interesting lacunarity, connectivity, branch-
ing properties. Hence waves and diffusions can behave pecu-
liarly.

• Quasicrystals, Penrose tilings: the set of complex dimensions
shares features with these.

• Cohomology: a very deep analogy connecting self-similar ge-
ometries with finite (arithmetic or algebraic) geometries has
been speculated.

Relates varieties over finite fields, etale cohomology, to lattice-
type strings. Possibly giving information about the structure
of the space of zeta functions.

• Quantum mechanics and noncommutative geometry: building
a ground for the development of noncommutative fractal ge-
ometry, connected to the role of noncommutative geometry in
string theory.
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