
Curvature and Convexity I

Erin Pearse — 1-26-06

1. Introduction

For smooth surfaces (at least C2, anyway), understood by generalizing

d2

dt2
=

[

d
dt

]′

to higher dimensions. Three perspectives on curvature:

1. How does a curve/surface “bend away” from a tangent line/plane?

2. How does the measure of a curve/surface change when it is dis-
torted in a normal direction?

3. Consider a small disk around a point, and its image under normal
distortion by some distance ε. How does the volume of the region
between these two surfaces change, as a function of ε?

Today: look at (1) & (2); no convexity ’til next week!
This part follows [Morg] closely; some sections are direct quotes.

2. Curvature

2.1. 1 dimension.

Let x : R → R
2 be a smooth curve with velocity v = ẋ.

The curvature of x(t) is the change in the unit tangent vector T = v
|v|

.

The curvature vector κ points in the direction in which a unit tangent
T is turning.

κ =
dT

ds
=

dT/dt

ds/dt
=

1

|v|
Ṫ .

The scalar curvature is the rate of turning

κ = |κ| = |dn/ds|.

When parametrized by arc length, curvature is

κ =
d2x

ds2
.
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Figure 1. Tangents and curvatures. The radius of curvature at t1 is 1/κ(t1).

If the curve is the graph of a function f : R → R
n−1 tangent to the

x-axis at the origin 0, then

κ(0) = f ′′(0) ∈ R
n−1.

Without tangency hypothesis, scalar curvature is

κ =
|f ′′|

√

1 + |f ′|2 sin θ

(1 + |f ′|2)3/2
,

where θ is the angle between f ′ and f ′′. In R
2, f : R → R and θ = 0,

so

κ =
|f ′′|

(1 + |f ′|2)3/2
.
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“Curvature tells how the length of a curve changes as the curve is
deformed. If an infinitesimal piece of a planar curve ds is pushed a
distance du in the direction of κ, the length changes by a factor of
1−κdu. Indeed, the original arc lies to second order on a circle of radius
1/κ, and the new one on a circle of radius 1/κ− du = (1/κ)(1−κdu).”
[Morg]

1/κ

1/κ−du

(1−κdu)ds

du

ds

Figure 2. Change in an infinitesimal curve.

In Fig. 2, κ is pointing upward (opposite to 1/κ).
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2.2. 2 dimensions.

A surface can curve different amounts in different directions, possibly
even with different signs, e.g., a saddle. The principal curvatures are

κ1 = most upward, κ2 = most downward,

Note: κ1, κ2 always occur orthogonally.

mean curvature: H = κ1 + κ2

Gauss curvature: G = κ1κ2

κ
1 
= ¼

κ
2  
= −1

Figure 3. At the origin, this saddle has principal curvatures κ1 =
1

4
, κ = −1, mean curvature H = −3

4
, and Gauss curvature G = −1

4
.

Note: Gauss curvature is negative iff κ1, κ2 have different signs.
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Figure 4. The curvature of a surface S at a point p is measured by
the curvature of its slices by planes.

The curvature at (p, v) is given by the second fundamental form

II(p, v) = (D2f)p(v, v) := v>





∂2f
∂x2 (p) ∂2f

∂x∂y
(p)

∂2f
∂x∂y (p) ∂2f

∂y2 (p)



 v.

So if v = [ 1
0 ], for example, then κ = ∂2f

∂x2 .
II is symmetric. When diagonalized (e.g., by choosing good coordi-

nates),

II =





∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2



 =

[

κ1 0
0 κ2

]

,

so that mean curvature is trace II.

Theorem (Euler). Curvature in direction v = (cos θ, sin θ) is

κ = II(p, v) = κ1 cos2 θ + κ2 sin2 θ,

a weighted average of the principal curvatures.
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Analogy:

(a) Rate of change of a function is directional derivative and depends on
direction.

(b) Rate of change of area of a surface is first variation and depends on
a vector field V .

Theorem. The first variation S with respect to a compactly supported
vector field V on S is

δ1(S) = d
dt area (S + tV )

∣

∣

t=0
= −

∫

S

V · Hn.

Sketch of proof. Since formula is linear in V , consider normal and tan-
gential variations separately. For tangential variations, the surface slides
along itself, and δ1(S) = 0. Let V n be a small normal variation. In-
finitesimally, to first order we have

(1 − V κ1)dx · (1 − V κ2)dy ≈ (1 − V H)dx dy

= (1 − V · Hn)dx dy. �

Consequence of Theorem: an area-minimizing surface must have van-
ishing mean curvature.

Definition. S is a minimal surface iff

∂S = ∂T =⇒ area(S) ≤ area(T ).
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2.3. Higher dimensions.

No more boldfaced vector notation (too many vectors!)

2.3.1. 2-dimensional surfaces in R
n.

The tangent plane TpS to S at p is the x1x2-plane and the orthogonal
complement TpS

⊥ is the x3 . . . xn-plane, and S is locally the graph of a
function

f : TpS → TpS
⊥.

The second fundamental tensor

II =







∂2f

∂x2
1

∂2f
∂x1∂x2

∂2f
∂x1∂x2

∂2f

∂x2
2






=

[

a11 a12

a12 a22

]

,

where now the entries are vectors aij ∈ TpS
⊥.

The mean curvature vector is

H = trace II = a11 + a22 ∈ TpS
⊥.

The Gauss curvature is the scalar

G = det II = a11 · a22 − a12 · a12.

And again, it is a theorem that

δ1(S) = −

∫

S

V · H.

Note: for R
3, second fundamental tensor is second fundamental form

times n.
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2.3.2. m-dimensional surfaces in R
n.

S is still locally the graph of a function

f : TpS → TpS
⊥,

but now TpS is the x1 . . . xm-plane.
The second fundamental tensor is a symmetric m × m matrix

II =









∂2f
∂x2

1

. . . ∂2f
∂x1∂xm

... . . . ...
∂2f

∂x1∂xm
. . . ∂2f

∂x2
m









,

with entries in TpS
⊥.

For hypersurfaces (n = m + 1), second fundamental tensor is second
fundamental form (a scalar matrix) times n and for some coordinates

II =





κ1
. . .

κm



 .

Then

H = trace II = κ1 + · · · + κm.

And again, it follows that

δ1(S) = −

∫

S

V · H

by considering the infinitesimal displacement

(1 − |V |κ1) dx1 . . . (1 − |V |κm) dxm ≈ (1 − V · H) dx1 . . . dxm
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2.4. Conclusions. Consider the case of an immersion

f : Mn → Nn+1.

• Then f(M) ⊆ N is a hypersurface.
• II is a real symmetric scalar matrix (times n)
• II has an orthonormal basis of eigenvectors with real eigenvalues

κ1, . . . , κm.

• The symmetric functions of κ1, . . . , κm are the invariants of the
immersion f .

In other words,

• κi gives 1-dimensional curvature information
• κ1 + · · · + κm gives 2-dimensional curvature information
•

∑

mj<mk
κmj

κmk
gives 3-dimensional info

• G = κ1 . . . κm gives n-dimensional info.

Note: Gauss’ Theorema Egregium shows that G is intrinsic.

Moral:
Curvatures are the coefficients in some polynomial that expresses change

in volume under small deviations.
Let εn be a normal variation of small magnitude ε. Then

(1 − εκ1)dx · (1 − εκ2)dy = 1 − (κ1 + κ2)ε + κ1κ2ε
2 dx dy
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2.5. Application to tubes.

From [Gray].
Suppose γ : [a, b] → R

2 is smooth plane curve.
Define J(x, y) := (−y, x) (in C, this is z 7→ iz).
Then the curvature is the function κ(u) such that

γ ′′(u) = κ(u)Jγ ′(u).

Put T := γ ′ and N := Jγ ′, so that

T ′ = κN

N ′ = −κT.

Now for

Xt(u) = γ(u) + tN(u),

the curve t 7→ Xt(u) traces out a parallel curve to γ at distance |t|, for
small t.

X ′
t(u) = T (u) + tN ′(u) = (1 − κ(u)t)T (u)

Length(Xt) =

∫ b

a

‖X ′
t(u)‖ du =

∫ b

a

(1 − κ(u)t) du

Then

Vγ(ε) =

∫ ε

−ε

Length(Xt) dt

=

∫ b

a

∫ ε

−ε

(1 − κ(u)t) dt du

=

∫ b

a

2εdu

= 2ε Length(γ)

This is valid for small ε (no self-intersections).
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Now suppose γ : [a, b] → R
3 is smooth curve in R

3, and

T ′ = κN,

N ′ = −κT + τB,

B′ = −τN,

where τ is the torsion of γ. The tube at distance t is parametrized by

X t(u, v) = γ(u) + t cos vN(u) + t sin vB(u)

with partial derivatives

X t
u(u, v) = (1 − tκ(u) cos v)T (u) − tτ (u) sin vN(u)

+ tτ (u) cos vB(u),

X t
v(u, v) = −t sin vN(u) + t cos vB(u),

Then for small t ≥ 0,

X t
u(u, v) × X t

v(u, v) = −t sin v(1 − tκ(u) cos(v))B(u)

− t cos v(1 − tκ(u) cos v)N(u),

‖X t
u(u, v) × X t

v(u, v)‖ = t(1 − κ(u)t cos v).

∫ 2π

0

‖X t
u(u, v) × X t

v(u, v)‖ = 2πt.

vol2(Pt) =

∫ b

a

∫ 2π

0

‖X t
u × X t

v‖ dv du =

∫ b

a

2πt du = 2πtLength(γ)

So for small ε,

Vγ(ε) =

∫ ε

0

vol2(Pt) dt = πε2Length(γ).
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(a) (b)

Figure 5. (a) A tubular surface about the helix t 7→ (cos t, sin t, t/4).
(b) A tube about a twisted cubic. [Gray]
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