Curvature and Convexity I
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1. INTRODUCTION

For smooth surfaces (at least C?, anyway ), understood by generalizing
> _ rdy’
= L]
to higher dimensions. Three perspectives on curvature:
1. How does a curve/surface “bend away” from a tangent line/plane?

2. How does the measure of a curve/surface change when it is dis-
torted in a normal direction?

3. Consider a small disk around a point, and its image under normal
distortion by some distance €. How does the volume of the region
between these two surfaces change, as a function of €7

Today: look at (1) & (2); no convexity ’til next week!
This part follows [Morg] closely; some sections are direct quotes.

2. CURVATURE

2.1. 1 dimension.
Let £ : R — R? be a smooth curve with velocity v = .
The curvature of @ (t) is the change in the unit tangent vector T = |Z—|

The curvature vector k points in the direction in which a unit tangent
T is turning.

4T dr/dt 1
ds ds/dt |v]
The scalar curvature is the rate of turning
k= |k| =|dn/ds|.
When parametrized by arc length, curvature is
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Ficure 1. Tangents and curvatures. The radius of curvature at t1 is 1/k(t1).

If the curve is the graph of a function f : R — R"! tangent to the
x-axis at the origin 0, then

k(0) = f"(0) e R™

Without tangency hypothesis, scalar curvature is

L |f”\\/1 + | f']?sin 0
(1+|f2)%7

)

where 0 is the angle between f’ and f”. InR? f:R — R and 0 = 0,
SO
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“Curvature tells how the length of a curve changes as the curve is
deformed. If an infinitesimal piece of a planar curve ds is pushed a
distance du in the direction of k, the length changes by a factor of
1 — kdu. Indeed, the original arc lies to second order on a circle of radius

1/k, and the new one on a circle of radius 1/k —du = (1/k)(1 — kdu).”
[Morg]
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1/
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Ficure 2. Change in an infinitesimal curve.

In Fig. 2, k is pointing upward (opposite to 1/k).



2.2. 2 dimensions.
A surface can curve different amounts in different directions, possibly
even with different signs, e.g., a saddle. The principal curvatures are

k1 = most upward, ko = most downward,

Note: k1, ko always occur orthogonally.

mean curvature: H = k1 + ko

Gauss curvature: G = K1k9

Ky,= —1

Ficure 3. At the origin, this saddle has principal curvatures k; =

1

1, & = —1, mean curvature H = —%, and Gauss curvature G = —3.

AT

Note: Gauss curvature is negative iff k1, ko have different signs.



Ficure 4. The curvature of a surface S at a point p is measured by
the curvature of its slices by planes.

The curvature at (p,v) is given by the second fundamental form

*f 0% f
H(p, ’v) — (DQf)p(’U, ’U) — ! ggg (p) 3;233/(19)

So if v = [}], for example, then k = %.

IT is symmetric. When diagonalized (e.g., by choosing good coordi-
nates),

2f 0

o | @ oy | _ |1 0
0% f 592_f 0 K9 ’
dzdy Oy

so that mean curvature is traceIl.
Theorem (Euler). Curvature in direction v = (cos#, sin 6) is
k= 1(p,v) = K cos* O + Kysin® 0,

a weighted average of the principal curvatures.



Analogy:

(a) Rate of change of a function is directional derivative and depends on
direction.

(b) Rate of change of area of a surface is first variation and depends on
a vector field V.

Theorem. The first variation S with respect to a compactly supported
vector field V on S is

5'(9) = L area (S+tV)‘tO:—/V-Hn.
S

Sketch of proof. Since formula is linear in V', consider normal and tan-
gential variations separately. For tangential variations, the surface slides
along itself, and 6'(S) = 0. Let Vn be a small normal variation. In-
finitesimally, to first order we have

(1=Vg&y)dx - (1 = VEky)dy = (1 —VH)dxdy
=(1—-V - Hn)dzxdy. O

Consequence of Theorem: an area-minimizing surface must have van-
ishing mean curvature.

Definition. S is a minimal surface ift

0S =0T = area(S) < area(T).



2.3. Higher dimensions.

No more boldfaced vector notation (too many vectors!)

2.3.1. 2-dimensional surfaces in R".

The tangent plane 7,5 to S at p is the x2s-plane and the orthogonal
complement T),S* is the x3 ... z,-plane, and S is locally the graph of a
function

f:1,5 — TpSL.

The second fundamental tensor

92 f 0 f

I — Ox?  Oridrvy | _ | Q11 Q12
% f % f a2 a2
0r1019 ax%

where now the entries are vectors a;; € T),S L

The mean curvature vector is
H =tracell = a1 + asy € TpSL.
The Gauss curvature is the scalar
G =detIl = ayq - a9 — a19 - ags.

And again, it is a theorem that

51(5):—/SV-H.

Note: for R?, second fundamental tensor is second fundamental form
times m.



2.3.2. m-dimensional surfaces in R".
S is still locally the graph of a function

f:T,S — T,5+,

but now 7,5 is the z; ... x-plane.
The second fundamental tensor is a symmetric m X m matrix

> f _Pf
e T Owidwn
Il = : : :
02 f 92 f
| 0x10xy, = 895?” i

with entries in T),S*.
For hypersurfaces (n = m + 1), second fundamental tensor is second
fundamental form (a scalar matrix) times n and for some coordinates
k1

Il =

Then
H =tracell = k1 4+ -+ + K-

And again, it follows that

51(S) = — / V.H
S
by considering the infinitesimal displacement

(1—=1|Vi]k1)dzy...(1 = |Vi]kp)dey, = (1 =V - H)dzy ...dz,



2.4. Conclusions. Consider the case of an immersion
f : Mn N Nn+1.
e Then f(M) C N is a hypersurface.

e I is a real symmetric scalar matrix (times n)
e II has an orthonormal basis of eigenvectors with real eigenvalues

KRiy,...,Km.

e The symmetric functions of k1, ..., Kk, are the invariants of the
immersion f.

In other words,

e ; gives 1-dimensional curvature information

® K1+ -+ Ky, gives 2-dimensional curvature information
) ij <y, Fomjtim, gives 3-dimensional info

o G = Kq...Ky gives n-dimensional info.

Note: Gauss’ Theorema Egregium shows that G is intrinsic.
Moral:
Curvatures are the coefficients in some polynomial that expresses change

in volume under small deviations.
Let em be a normal variation of small magnitude €. Then

(1 —er)dx - (1 — eka)dy = 1 — (K1 + Ko)e + Kikoe? da dy



2.5. Application to tubes.

From [Gray].
Suppose v : [a, ] — R? is smooth plane curve.
Define J(x,y) := (—y, x) (in C, this is z — i2).
Then the curvature is the function x(u) such that

V' (u) = K(w)Jy' (w).
Put T :=~" and N := J«/, so that
T' = kN
N' = —kT.

Now for
Xi(u) = v(u) + tN(u),

the curve t — X;(u) traces out a parallel curve to v at distance |¢|, for
small .

X(u)=T(u) +tN'(u) = (1 — r(u)t)T(u)

b b
Length(X) = [ 1X!(w)] du = / (1 — w(u)t) du
Then

V(e) = / " Length(X,) dt

// 1 — k(u)t) dt du
—/25du

= 2¢ Length(7)

This is valid for small € (no self-intersections).
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Now suppose 7 : [a, b] — R? is smooth curve in R?, and

T = kN,
N'= —kT + 7B,
B'= —7N,

where 7 is the torsion of «v. The tube at distance ¢ is parametrized by
X'u,v) = vy(u) 4+ tcosvN(u) + tsinvB(u)
with partial derivatives
X!(u,v) = (1 — tk(u) cosv)T(u) — t7(u) sinvN (u)
+ t7(u) cosvB(u),
X'(u,v) = —tsinvN(u) + t cosvB(u),

Then for small ¢ > 0,
X! (u,v) x X! (u,v) = —tsinv(l — tr(u) cos(v))B(u)
— tcosv(l — tr(u) cosv)N(u),
| X! (u, v) x X (u,v)]] = (1 — k(u)tcosv).

2
/ 1 (4, 0) % X! (u, 0)]| = 2nt.
0

b p2m b
voly(P;) = / / |1 X! x X! || dvdu = / 27t du = 2wt Length ()
a J0 a

So for small ¢,

Vi(e) = / voly(P;) dt = we*Length(7).
0
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Ficure 5. (a) A tubular surface about the helix t — (cost,sint,t/4).
(b) A tube about a twisted cubic. [Gray]
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