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Self-similarity

A self-similar system is ® = {®;}7_,, where each ®; is a

contractive similarity mapping, i.e.,
(D](Qf) :TjAj37—|—tj, 0 < r; < 1,
where A; € O(d) is a rotation/reflection and ¢; € RY.

A set F'is self-similar iff F' = &(F) = U}le ,(F).
For any such ®, 3'F' # @ and F'is compact.

[SST] There is a tiling 7 of the convex hull [F] which is
canonically associated with ®. Not a typical “fractal tiling”:

e Tiles are not typically fractal.
e Only the region [F] is tiled, not RY.
e Tiles may not be fractal, but 7 is.

7 contains key geometric/dynamical information about ®.

e 7 describes scaling/geometric oscillations.

e Curvature of the tiles relates to “curvature” of F'.

e rom 7, one can define (7, a geometric zeta function as-
sociated with .



Ficure 1. The Koch tiling, with unique generator G = T7.

Ficure 2. The tiling of [K] ~ K. The tiles exhaust the complement of
the Koch curve within its convex hull.



Fractal strings [FGCD]

A fractal string £ C R is a bounded open subset
L:={l,} .
Translation invariance: ¢, € R, and may assume
by >l > 03> ...
Also assume £¢,, > 0. or else trivial.
Idea: 0L = F', where F' C R is fractal.

A self-similar fractal string is when 0L = F for some ®
with d =1 and A; = £1.

The geometric zeta function (y is a Dirichlet generating
function for the string.

Cels) = b

The complex dimensions of L are
D, = {poles of (,}.

Important result: a tube formula for strings

Vale) =voli{z € A dist(x,0A) < €},

= E c, el 7Y + e,

wEDt

¢, is defined in terms of res ((z;w).



Example: the Cantor String
I
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Des(s) ={D+inp:p= logg,nGZ}

D = logs; 2 = Minkowski dim of C.

As a self-similar string, CS is the tiling associated with the
self-similar system {1, $s},

Oy (z) = sz, Dolz) =30+ 3.
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Ficure 3. The complex dimensions of the Cantor string.
D =logs2 and p = 27/ log3. (Plot from [FGCD])



Why call the poles of (, the “complex dimensions”?
First reason: relation to Minkowski/box dimension.

Theorem (Lapidus). Assuming £, > 0 for all n,
D =inf{c >0 anl 07 < 00}

In fact, D, "R = {D}.

Recall:
An (inner) tube formula for a set A C R is

Vale) = voli{x € A dist(x,0A) < e},

i.e., the volume of the inner e-neighbourhood of A.
The Minkowsk:i dimension of OA is then

D =inf{t >0:Vy(e)=0("") ase — 07}

A is said to be Minkowski measurable iff

M = lim V(g)e D)

e—0t

exists, and has a value in (0, 00).

For A C R? replace 1 by d in Vy, D, M.



Why call the poles of (, the “complex dimensions”?
Second reason: relation to classical geometry:.

The Steiner formula for e-nbd of A € KC¢:

Vale) = Z ¢iet

i€{0,1,....d—1}

The classical (outer) tube formula is summed over the integral
dimensions of A.

[FGCD] Tube formula for L:

Vie(e) = ch ghv,

wEDzU{l}

(CDS] Tube formula for 7

Vr(e) = Z el

C()EDgU{O,l ..... d}

The fractal tube formula is summed over the integral and
complexr dimensions of £ or 7T .



Ficure 4. The Koch tiling, with unique generator G = T7.

Ficure 5. The tiles exhaust the complement of the Koch curve within its
convex hull.



The self-simzilar tiling:
extension to higher dimensions

From [SST]: Construct the self-similar tiling and produce a
collection of tiles

T ={Rn} ={Pu(Gy)}-
w € {1,2,...,J}F is a (finite) word, like w = 3132.

@3132<$> = <I>2o<I>3o<I>1o<I>3(x), 3132 = 7“17“27”?2).

string £ = {¢,,} tiling 7 = {R,}
length 2, inradius p,
Cc=2_10, Cs =D T

D, = {poles of (¢} D= {poles of (;}

Idea: decompose the complement of the attractor F' within
its convex hull [F].

1. Find the attractor F' of .
2. Take the (closed) convex hull C' = |F.

3. Define the generators G, to be the connected components

of relint(C') ~ ®(C'). (Note: &(C) C C' [SST].)
4. The sets {P,(G,)} form a tiling of C' ~ F'.

10
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Ficure 6. Parameters for nonstandard Koch tilings.
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Ficure 7. Nonstandard Koch tilings.
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Ficure 8. The Sierpinski Carpet tiling.
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Ficure 9. The Pentagasket tiling. This tiling has 6 generators; one
pentagon G, and five congruent isoceles triangles Go, ..., Gg.

T =GiUGyU--- UGG

Co T, | T,
| |

[ I

Ficure 10. The Menger Sponge tiling. This tiling has the unique
nonconvex generator G = Tj.
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Tube formula of a self-similar tiling
Recall the form of V7 given earlier:

Vr(e) = Z c, e,

(.UEDgU{O,l ..... d}

(CDS]| The full form of V7
Vr(e) = ) res(Cr(e, 8)iw).

weDr
Dy =D;U{0,1,...,d},
where D, = {poles of (}.
Once the residues are evaluated, these are the same.
For sets with no fine structure (trivially self-similar),
(s holomorphic =— Dy =g
and we recover the “inner Steiner formula”.

In the formula for V7, (7 is a meromorphic distribution-
valued function; a generating function for the geometry of 7.
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Ingredients of the Geometric Zeta Function

The tiling zeta function is the matrix product

(r(e,8) =g(s) - k(e)-E(e,s).

The generator inradii form a ()-vector:

g(s) = lg7: - - 9g) Gs(s)-

The curvature matriz is the @ x (d + 1) matrix

k(€)= [rgi(e)]

(kqi(e) is the “i*™ curvature” of the ¢ generator;

i.e., kyi(€) is the coefficient of e~ in ~,.)

The boundary terms compose a (d + 1)-vector

[—

Ee,s) =]

1 1 d—s
;,...,—]5 .

s’

Then ¢, % is a residue of the matrix product:

o €Y =res (Cr(e, 8);w).



Idea behind the tube formula
Obtain a tube formula for 7 using the idea

V() = (s 1) = / " el <) dngla).

Yoz, €) is the volume of the e-neighbourhood of a tile with
inradius 1/x; i.e., the contribution of an tile at scale r .

ng(7) is a measure giving the density of geometric states: it

is supported at reciprocal tile inradii. Each generator has its
own assoclated 7g:

Ng(x) = [s(x/g1), - s ms(T/90)]

ns(x) is the scaling measure: it is supported at the reciprocal
scales.

Obtain a tube formula

Vr(e) = Z ¢, e’

weDT

for Dy =D; U{0,1,...,d}.

15



Contributions to Vr(e) = / Ya(z, €) dng(z)
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Ficure 11. The volume Vi (e) = 75(1/g, €) of the generator of the Koch tiling.
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FicURE 12. The Koch scaling measure.
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Ficure 13. The Koch geometric measure and contributions to the integral.
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Q: What’s different in R??
A: The generators.
(I)](I‘) :TjAj37-|—tj, 0 < ri < 1.

New: A; € SO(d) is a rotation/reflection.

e Since generators may have different shapes, must distin-
guish between tile of different type, but with the same
inradius.

e Different generators may have different inner tube formu-
las. (Intervals all have 2¢.)

Must distinguish scales from sizes: 75 vs. 7.

= 0 g =[ns(w/ g0

oo = Dy niGo) = 2oy Ol

Must calculate each congruency class of generators separately:.
Cannot integrate against the same measure for each.
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Q: What’s the same in R??
A: The scaling ratios.
Properties of 1, ..., r; are still of key importance.

(s 1s formally identical to ¢, for n with g = 1.

D, depends entirely on rq,...,7;.
Lattice/nonlattice dichotomy still holds.
The structure theorem for Dy is the same.

The distributional explicit formulas which applied to 1 in the
l-dimensional case apply to each 74, in the d-dimensional case.
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Convex Geometry

The Steiner Formula for convex bodies A € IC¢.

5 (i

pa—i( B i A)e "
0

||
T T
,L L

!

o W, are the Minkowski functionals.

e B’ is the i-dimensional unit ball.

e /i; are invariant/intrinsic measures.
Homogeneous: p;(rA) = r'u;(A),

Basic idea:

where ¢, is related to the curvature of A.
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Curvature measures in convexr geometry

ZNZ ,ud z Bd Z)

For convex bodies A € /Cd,
) = d- (B = () i),

Here, the C; are curvature measures and the k; are curvatures

(as def’d in convex/integral geometry).

The k; are homogeneous and translation invariant because
the u; are.

C;(A) is the total curvature of A; a special case of the gen-
eralized curvature measure

Ci(A) = Ci(A,RY) = 6;(A,R? x 5971,

©; is defined on U(K?) x B(X), where U(K?) is the ring of
polyconvex sets of dimension < d.
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