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Self-similarity

A self-similar system is Φ = {Φj}J
j=1, where each Φj is a

contractive similarity mapping, i.e.,

Φj(x) = rjAjx + tj, 0 < rj < 1,

where Aj ∈ O(d) is a rotation/reflection and tj ∈ Rd.

A set F is self-similar iff F = Φ(F ) =
⋃J

j=1 Φj(F ).
For any such Φ, ∃!F 6= ∅ and F is compact.

[SST] There is a tiling T of the convex hull [F ] which is
canonically associated with Φ. Not a typical “fractal tiling”:

• Tiles are not typically fractal.
• Only the region [F ] is tiled, not Rd.
• Tiles may not be fractal, but T is.

T contains key geometric/dynamical information about Φ.

• T describes scaling/geometric oscillations.
• Curvature of the tiles relates to “curvature” of F .
• From T , one can define ζT , a geometric zeta function as-

sociated with Φ.
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Φ1(z) = ξz, Φ2(z) = (1− ξ)(z − 1) + 1, ξ = 1
2 + i
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Figure 1. The Koch tiling, with unique generator G = T1.

Figure 2. The tiling of [K] ∼ K. The tiles exhaust the complement of
the Koch curve within its convex hull.
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Fractal strings [FGCD]

A fractal string L ⊆ R is a bounded open subset

L := {`n}∞n=1.

Translation invariance: `n ∈ R, and may assume

`1 ≥ `2 ≥ `3 ≥ . . .

Also assume `n > 0, or else trivial.

Idea: ∂L = F , where F ⊆ R is fractal.

A self-similar fractal string is when ∂L = F for some Φ
with d = 1 and Aj = ±1.

The geometric zeta function ζL is a Dirichlet generating
function for the string.

ζL(s) :=
∑∞

n=1
`s
n.

The complex dimensions of L are

DL := {poles of ζL}.
Important result: a tube formula for strings

VA(ε) = vol1{x ∈ A
... dist(x, ∂A) < ε},

=
∑

ω∈DL
cω ε1−ω + c1ε.

cω is defined in terms of res (ζL; ω).
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Example: the Cantor String

l1
l2 l3

l4 l5 l6 l7

CS =
{

1
3,

1
9,

1
9,

1
27,

1
27,

1
27,

1
27, . . .

}
= [0, 1] ∼ C

∂(CS) = the Cantor set C
CS has lk = 1

3k+1 with wlk = 2k.

ζCS(s) =
∑∞

k=0
2k3−(k+1)s =

3−s

1− 2 · 3−s
.

VCS(ε) = 1
3 log 3

∑

ω∈DCS

61−ω

ω(1−ω)ε
1−ω − 2ε

=
∑

ω∈DCS∪{1}
cωε

1−ω

DCS(s) = {D + inp
... p = 2π

log 3, n ∈ Z}.

D = log3 2 = Minkowski dim of C.
As a self-similar string, CS is the tiling associated with the

self-similar system {Φ1, Φ2},
Φ1(x) = 1

3x, Φ2(x) = 1
3x + 2

3.
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Figure 3. The complex dimensions of the Cantor string.
D = log3 2 and p = 2π/ log 3. (Plot from [FGCD])
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Why call the poles of ζL the “complex dimensions”?
First reason: relation to Minkowski/box dimension.

Theorem (Lapidus). Assuming `n > 0 for all n,

D = inf{σ ≥ 0
...

∑∞
n=1

`σ
n < ∞}.

In fact, DL ∩ R+ = {D}.

Recall:
An (inner) tube formula for a set A ⊆ R is

VA(ε) = vol1{x ∈ A
... dist(x, ∂A) < ε},

i.e., the volume of the inner ε-neighbourhood of A.

The Minkowski dimension of ∂A is then

D = inf{t ≥ 0
... VA(ε) = O(ε1−t) as ε → 0+}.

A is said to be Minkowski measurable iff

M = lim
ε→0+

V (ε)ε−(1−D)

exists, and has a value in (0,∞).

For A ⊆ Rd, replace 1 by d in VA, D, M.
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Why call the poles of ζL the “complex dimensions”?
Second reason: relation to classical geometry.

The Steiner formula for ε-nbd of A ∈ Kd:

VA(ε) =
∑

i∈{0,1,...,d−1}
ci ε

d−i.

The classical (outer) tube formula is summed over the integral
dimensions of A.

[FGCD] Tube formula for L:

VL(ε) =
∑

ω∈DL∪{1}
cω ε1−ω.

[CDS] Tube formula for T :

VT (ε) =
∑

ω∈Ds∪{0,1,...,d}
cω εd−ω.

The fractal tube formula is summed over the integral and
complex dimensions of L or T .
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Φ1(z) = ξz, Φ2(z) = (1− ξ)(z − 1) + 1, ξ = 1
2 + i
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Figure 4. The Koch tiling, with unique generator G = T1.

Figure 5. The tiles exhaust the complement of the Koch curve within its
convex hull.
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The self-similar tiling:
extension to higher dimensions

From [SST]: Construct the self-similar tiling and produce a
collection of tiles

T = {Rn} = {Φw(Gq)}.

w ∈ {1, 2, . . . , J}k is a (finite) word, like w = 3132.

Φ3132(x) := Φ2◦Φ3◦Φ1◦Φ3(x), r3132 = r1r2r
2
3.

string L = {`n} tiling T = {Rn}
length `n inradius ρn

ζL =
∑

`s
n ζs =

∑
rs
w

DL = {poles of ζL} Ds = {poles of ζs}

Idea: decompose the complement of the attractor F within
its convex hull [F ].

1. Find the attractor F of Φ.

2. Take the (closed) convex hull C = [F ].

3. Define the generators Gq to be the connected components
of relint(C) ∼ Φ(C). (Note: Φ(C) ⊆ C [SST].)

4. The sets {Φw(Gq)} form a tiling of C ∼ F .
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Figure 6. Parameters for nonstandard Koch tilings.
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Figure 7. Nonstandard Koch tilings.

C0 C1 C2 C3 C4

T T1 T2 T3 T4

Figure 8. The Sierpinski Carpet tiling.
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Figure 9. The Pentagasket tiling. This tiling has 6 generators; one
pentagon G1, and five congruent isoceles triangles G2, . . . , G6.
T1 = G1 ∪G2 ∪ · · · ∪G6.

C0 C1 C2

Co T1 T2

Figure 10. The Menger Sponge tiling. This tiling has the unique
nonconvex generator G = T1.
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Tube formula of a self-similar tiling
Recall the form of VT given earlier:

VT (ε) =
∑

ω∈Ds∪{0,1,...,d}
cω εd−ω.

[CDS] The full form of VT :

VT (ε) =
∑

ω∈DT
res (ζT (ε, s); ω) .

DT = Ds ∪ {0, 1, . . . , d},
where Ds = {poles of ζs}.
Once the residues are evaluated, these are the same.

For sets with no fine structure (trivially self-similar),

ζs holomorphic =⇒ Ds = ∅

and we recover the “inner Steiner formula”.

In the formula for VT , ζT is a meromorphic distribution-
valued function; a generating function for the geometry of T .
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Ingredients of the Geometric Zeta Function

The tiling zeta function is the matrix product

ζT (ε, s) = ~g(s) · κ(ε) · E(ε, s).

The generator inradii form a Q-vector:

~g(s) := [gs
1, . . . , g

s
Q] ζs(s).

The curvature matrix is the Q× (d + 1) matrix

κ(ε) := [κqi(ε)]

(κqi(ε) is the “ith curvature” of the qth generator;

i.e., κqi(ε) is the coefficient of εd−i in γq.)

The boundary terms compose a (d + 1)-vector

E(ε, s) :=
[

1
s,

1
s−1, . . . ,

1
s−d

]
εd−s.

Then cω εd−ω is a residue of the matrix product:

cω εd−ω = res (ζT (ε, s); ω) .
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Idea behind the tube formula
Obtain a tube formula for T using the idea

VT (ε) = 〈ηg, γG〉 =

∫ ∞

0

γG(x, ε) dηg(x).

γG(x, ε) is the volume of the ε-neighbourhood of a tile with
inradius 1/x; i.e., the contribution of an tile at scale r−1

w .

ηg(x) is a measure giving the density of geometric states: it
is supported at reciprocal tile inradii. Each generator has its
own associated ηg:

ηg(x) = [ηs(x/g1), . . . , ηs(x/gQ)]

ηs(x) is the scaling measure: it is supported at the reciprocal
scales.

Obtain a tube formula

VT (ε) =
∑

ω∈DT
cω εd−ω

for DT = Ds ∪ {0, 1, . . . , d}.
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Contributions to VT (ε) =

∫ ∞

0

γG(x, ε) dηg(x)
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Figure 11. The volume VG(ε) = γG(1/g, ε) of the generator of the Koch tiling.
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Figure 13. The Koch geometric measure and contributions to the integral.
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Q: What’s different in Rd?
A: The generators.

Φj(x) = rjAjx + tj, 0 < rj < 1.

New: Aj ∈ SO(d) is a rotation/reflection.

• Since generators may have different shapes, must distin-
guish between tile of different type, but with the same
inradius.

• Different generators may have different inner tube formu-
las. (Intervals all have 2ε.)

Must distinguish scales from sizes: ηs vs. ηg.

ηs =
∑

w∈W δr−1
w

ηg = [ηs(x/gq)]
Q
q=1

ηgq =
∑∞

n=1
δρn(Gq)−1 =

∑
w∈W δ(gqrw)−1

Must calculate each congruency class of generators separately.
Cannot integrate against the same measure for each.
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Q: What’s the same in Rd?

A: The scaling ratios.

Properties of r1, . . . , rJ are still of key importance.

ζs is formally identical to ζη for η with g = 1.

ζs(s) =
∑

w∈W
rs
w =

1

1−∑J
j=1 rs

j

.

Ds depends entirely on r1, . . . , rJ .

Lattice/nonlattice dichotomy still holds.

The structure theorem for Ds is the same.

The distributional explicit formulas which applied to η in the
1-dimensional case apply to each ηgq in the d-dimensional case.
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Convex Geometry

The Steiner Formula for convex bodies A ∈ Kd.

VA(ε) =

d−1∑
i=0

(
d

i

)
Wd−i(A)εd−i

=

d−1∑
i=0

µd−i(B
d−i)µi(A)εd−i.

•Wi are the Minkowski functionals.

• Bi is the i-dimensional unit ball.

• µi are invariant/intrinsic measures.
Homogeneous: µi(rA) = riµi(A),

Basic idea:

VA(ε) =
∑

ω∈{0,1,...,d−1}
cω εω

where cω is related to the curvature of A.
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Curvature measures in convex geometry

VA(ε) =

d−1∑
i=0

µi(A)µd−i(B
d−i)εd−i.

For convex bodies A ∈ Kd,

κi(A) = d · µi(A)µd−i(B
d−i) =

(
d

i

)
Ci(A).

Here, the Ci are curvature measures and the κi are curvatures
(as def’d in convex/integral geometry).

The κi are homogeneous and translation invariant because
the µi are.

Ci(A) is the total curvature of A; a special case of the gen-
eralized curvature measure

Ci(A) := Ci(A,Rd) = Θi(A,Rd × Sd−1).

Θi is defined on U(Kd) × B(Σ), where U(Kd) is the ring of
polyconvex sets of dimension ≤ d.
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