
Math 205C - Topology Homework 2 Erin Pearse

1. a) Define a tangent vector on a manifold M.

A tangent vector on M at p is a mapping Xp : C∞(p) → R satisfying

i) Xp (αf + βg) = α (Xpf) + β (Xpg), and

ii) Xp (f · g) = (Xpf) g (p) + f (p) (Xpg),

for all α, β ∈ R and for all f, g ∈ C∞(p), where C∞(p) is the algebra of C∞

functions whose domain of definition includes some open neighbourhood of p.

b) Define a vector field on M .

A Cr vector field on M is a function assigning to every point p ∈ M a vector
Xp ∈ Tp(M) whose components in the frames of any local coordinates {(Up, ϕp)}
are functions of class Cr on Up.

c) Define the tangent space of M at p.

The tangent space Tp(M) of M at p is the collection of all tangent vectors Xp (as
defined above) with vector space operations defined by (Xp + Yp) f = Xpf +Ypf
and (αXp) f = α (Xpf).

i) What is dim Tp(M)?
dim Tp(M) = m = dim M .

ii) Find a basis for Tp(M).
{ ∂

∂x1
, . . . , ∂

∂xn
} is a basis for the tangent space at any point of Rn, so we

use the pullback of this basis (under the coordinate map) to define a ba-
sis for Tp(M). Therefore, the collection of parametrized tangent vectors
{ϕ−1

∗ ◦ ∂
∂x1 , . . . , ϕ

−1
∗ ◦ ∂

∂xm} forms a basis for Tp(M), where ϕ−1
∗ is the inverse

of the isomorphism ϕ∗ : Tp(M) → Tϕ(p)(Rn) of the tangent spaces, induced
by the coordinate map ϕ.

d) X(M) = {all vector fields on M}.
i) Does X(M) form a vector space?

Yes. For vector fields X,Y ∈ X(M) and ∀a, b ∈ R, Z = aX + bY ∈ X(M).

ii) What is dim X(M)? (Provide proof)
dim X(M) = ∞. Suppose that dim X(M) = n < ∞. Then X(M) has some
basis {X1, . . . , Xn}, and any vector field on M can be written as a linear
combination of these basis elements, i.e.,

X = a1X1 + . . . + anXn, ∀X ∈ X(M)

Now choose one vector from Tpi
(M) at each of n points {pi}n

i=1. Then we
have

Xpi
= a1X1(pi) + . . . + anXn(pi) = a1X1pi

+ . . . + anXnpi
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at each pi. Hence, we have n equations and n unknowns, so we can solve
for the ai and get

X = α1X1 + . . . + αnXn (?)

for some α1, . . . , αn ∈ R. We have completely determined the vector field
on M , by specifying it at these n points. Now choose some point q ∈ M
and determine Xq, based on (?). Let Yq 6= Xq be any other vector in
Tq(M). Consider the vectors {Xp1 , . . . , Xpn , Yq}. Since we have specified
only finitely many vectors, there must be some X ′ ∈ X(M) which takes
these values at each of the respective points {p1, . . . , pn, q}. But clearly,
this X ′ cannot be a linear combination of the “basis” {X1, . . . , Xn}. ¥

2. a) Let X,Y ∈ X(M) and show that [X, Y ] = XY − Y X ∈ X(M).

For f ∈ C∞, define Z ∈ X(M) by

Zpf = (XY − Y X)p f = Xp (Y f)− Yp (Xf) .

This is a well-defined linear map C∞(p) → R because X(M) is a C∞(M)-module.
To see that Zp satisfies the Leibniz rule, note that

Zpfg = (XY − Y X)p fg

= Xp (Y fg)− Yp (Xfg)

= Xp (fY g + gY f)− Yp (fXg + gXf)

= (Xpf) (Y g)p + f (p) Xp (Y g) + (Xpg) (Y f)p

+ g (p) Xp (Y f)− (Ypf) (Xg)p − f (p) Yp (Xg)

− (Ypg) (Xf)p − g (p) (YpXf)

= f (p) (XY − Y X)p g + g (p) (XY − Y X)p f

= f (p) Zpg + g (p) Zpf

b) Is XY a vector field in general? If not, provide a counterexample.
No, XY is not a vector field in general. Counterexample: define the vector fields
X = d

dx
, Y = d

dy
and check the product rule:

XY (fg) = d
dx

d
dy

(fg)

= d
dx

(
g df

dy
+ f dg

dy

)

=
(

dg
dx

df
dy

+ g d2f
dxdy

)
+

(
df
dx

dg
dy

+ f d2g
dxdy

)

(XY f) g + (XY g) f = d2f
dxdy

g + d2g
dxdy

f

Since XY (fg)− ((XY f) g + (XY g) f) = df
dx

dg
dy

+ dg
dx

df
dy
6= 0,

we know that XY is not a vector field in this case.
¤
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3. a) Define a Lie Algebra.

A Lie Algebra L is a vector space over R that is endowed with the additional
structure of an operation (X,Y ) → [X, Y ] ∈ L satisfying

i) it is bilinear over R:

[α1X1 + α2X2, Y ] = α1 [X1, Y ] + α2 [X2, Y ]

[X, α1Y1 + α2Y2] = α1 [X, Y1] + α2 [X, Y2]

ii) it is skew commutative:

[X, Y ] = − [Y, X]

iii) it satisfies the Jacobi identity :

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

b) Prove that X(M) with the Lie bracket operation forms a Lie Algebra.

Let α, β ∈ R and suppose X1, X2, Y are vector fields. Then

[αX1 + βX2, Y ] f = (αX1 + βX2) Y f − Y (αX1 + βX2) f

= αX1Y f + βX2Y f − αY X1f − βY X2f

= αX1Y f − αY X1f + βX2Y f − βY X2f

= α (X1Y − Y X1) f + β (X2Y − Y X2) f

= α [X1, Y ] f + β [X2, Y ] f

shows that [X,Y ] is linear in the first variable. Then [Y, X] = Y X − XY =
−XY +Y X = − (XY − Y X) = − [X,Y ] shows that [X, Y ] is skew-commutative.
Then

[X, [Y, Z]] f = X (Y (Zf))−X (Z (Y f))− Y (Z (Xf)) + Z (Y (Xf))

[Y, [Z, X]] f = Y (Z (Xf))− Y (X (Zf))− Z (X (Y f)) + X (Z (Y f))

[Z, [X,Y ]] f = Z (X (Y f))− Z (Y (Xf))−X (Y (Zf)) + Y (X (Zf))

=⇒ [X, [Y, Z]] f + [Y, [Z,X]] f + [Z, [X, Y ]] f = 0

¤

c) Give two examples of a Lie Algebra; one finite-dimensional and one infinite-
dimensional.

i) (R3,×) is a 3-dimensional Lie algebra.

ii) X(M) with the commutator product [X, Y ] is a infinite-dimensional Lie
algebra. (see 1(d) for proof of dim X(M) = ∞). ¤
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4. a) X,Y ∈ X(M) and f, g ∈ C∞(M).
Prove the identity. [fX, gY ] = fg [X, Y ] + f (Xg) Y − g (Y f) X.

[fX, gY ] = (fX) (gY )− (gY ) (fX)

= f (XgY + gXY )− g ((Y f) X + fY X)

= fXgY + fgXY − gY fX − gfY X

= fg (XY − Y X) + fXgY − gY fX

= fg [X, Y ] + f (Xg) Y − g (Y f) X

b) X = y ∂
∂x
− x ∂

∂y
, Y = z ∂

∂x
− y ∂

∂z
, Z = ∂

∂x
+ ∂

∂y
+ ∂

∂z
in R3.

i) Compute [X, Y ].

[X,Y ] = x
(

∂2y
∂y∂z

− ∂2z
∂x∂y

)
+ y

(
∂2z
∂x2 − ∂2x

∂y∂z

)
+ z

(
∂2x
∂x∂y

− ∂2y
∂x2

)

ii) Compute [Y, Z].

[Y, Z] = ∂2y
∂z2 − ∂2z

∂x∂z
+ ∂2y

∂y∂z
− ∂2z

∂x∂y
+ ∂2y

∂x∂z
− ∂2z

∂x2

iii) Compute [X, Z].

[X,Z] = ∂2x
∂y∂z

+ ∂2x
∂y2 + ∂2x

∂x∂y
− ∂2y

∂x∂z
− ∂2y

∂x∂y
− ∂2y

∂x2

¤
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5. a) S1 is the 1-dimensional sphere. Show that S1 admits a nonvanishing vector field.

Define S1 by S1 = {(cos θ, sin θ) ∈ R2 ... θ ∈ R} and let X be a vector field defined
on S1 by ∂

∂θ
. Then for any θ, ∂

∂θ
= (− sin θ, cos θ) 6= (0, 0).

Equivalently, let X = −y ∂
∂x

+ x ∂
∂y

. This is easily seen to be a nonvanishing

vector field on S1, as it only vanishes at (0, 0), and (0, 0) /∈ S1. To see that it is
tangent to S1 everywhere, note that (x, y) · (−y, x) = −xy + xy = 0.

b) T 2 = S1×S1 is the torus. Show that T 2 also admits a nowhere vanishing vector
field.
Parametrize a torus as Φ : R2 → R3 by

Φ (u, v) = ((2 + cos u) cos v, (2 + cos u) sin v, sin u)

Then, taking partial derivatives with respect to u and v, we get

Φu (u, v) = (− sin u cos v,− sin u sin v, cos u)

Φv (u, v) = (− (2 + cos u) sin v, (2 + cos u) cos v, 0)

The vector field X = (Φu, Φv) is thus everywhere tangential to T 2 by construc-
tion. To see that it is nowhere vanishing, compute

‖Φu‖ =
√

sin2 u cos2 v + sin2 u sin2 v + cos2 u

=
√

sin2 u + cos2 u

=
√

1

= 1

and

‖Φv‖ =
√

4 + 4 cos u + cos2 u

=

√
(2 + cos u)2

= 2 + cos u

> 1

Since each component always has magnitude at least 1, ‖X‖ 6= 0.

c) How about the same question for S2, the 2-dimensional sphere?
It’s darn tricky, this one is ...
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6. a) Define a cotangent vector field.

A C∞ cotangent vector field (or covector field) is a function σ which assigns
to each point p ∈ M a covector σp ∈ T ∗

p (M) in a smooth manner. I.e., for
any coordinate neighbourhood (U,ϕ) with coordinate frames {E1, . . . , En}, the
functions σ(Ei) are C∞ on U .

b) Let F : M → N be a C∞ map between two differentiable manifolds M and N .
Describe the induced map F ∗ : T1(N) → T1(M) where T1(M) and T1(N) are the
collections of cofields on M and N respectively.

F∗ determines a linear map F ∗ : T ∗
F (p) (N) → T ∗

p (M), given by the formula

F ∗ (
σF (p)

)
(Xp) = σF (p) (F∗ (Xp))

The pullback map F∗ is of special significance, because it is always a well-defined
homomorphism of algebras.
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7. Show that the restriction of σ = x1dx2 = x2dx1 + x3dx4 − x4dx3 of R4 to the sphere
S3 is never zero on S3.

Parametrize S3 by solving for x4 as x4 =
√

1− x2
1 − x2

2 − x2
3 and defining

(x1, x2, x3) 7→
(

x1, x2, x3,
√

1− x2
1 − x2

2 − x2
3

)
= v.

Now taking the partial derivatives of v, we get

v1 =

(
1, 0, 0, −x1√

1−x2
1−x2

2−x2
3

)
= ∂

∂x1
− −x1√

1−x2
1−x2

2−x2
3

∂
∂x4

v2 =

(
0, 1, 0, −x2√

1−x2
1−x2

2−x2
3

)
= ∂

∂x2
− −x2√

1−x2
1−x2

2−x2
3

∂
∂x4

v3 =

(
0, 0, 1, −x3√

1−x2
1−x2

2−x2
3

)
= ∂

∂x3
− −x3√

1−x2
1−x2

2−x2
3

∂
∂x4

We evaluate σ on these vectors, using the rule dxi

(
∂

∂xj

)
= δij to get

σ (v1) = −x2 − x1x3√
1−x2

1−x2
2−x2

3

σ (v2) = x1 − x2x3√
1−x2

1−x2
2−x2

3

σ (v3) = −x4 − x2
3√

1−x2
1−x2

2−x2
3

Now to show that these are not all zero at the same time, we set them all equal to
zero and derive a contradiction.

x2 = − x1x3√
1−x2

1−x2
2−x2

3

=⇒ x2
2 =

x2
1x2

3

1−x2
1−x2

2−x2
3

x1 = x2x3√
1−x2

1−x2
2−x2

3

=⇒ x2
1 =

x2
2x2

3

1−x2
1−x2

2−x2
3

x4 = − x2
3√

1−x2
1−x2

2−x2
3

=⇒ x2
4 =

x4
3

1−x2
1−x2

2−x2
3

=⇒ 1− x2
1 − x2

2 − x2
3 =

x4
3

1−x2
1−x2

2−x2
3

=⇒ 1− x2
1 − x2

2 − x2
3 − x2

2x
2
3 − x2

1x
2
3 = x4

3 + x2
3 − x2

3x
2
1 − x2

2x
2
3 − x4

3

=⇒ 1− x2
1 − x2

2 − x2
3 = x2

3

=⇒ x2
4 = x2

3

¥
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8. Let F : M → N be a C∞ map between two differentiable manifolds.

a) Explain why F∗ : X(M) → X(N) is in general not well-defined.

case i) F may not be surjective.
In this case, ∃q ∈ N such that @p ∈ M for which F (p) = q. Then if X is
a vector field on M , F∗(X) is not defined at q ∈ N .

case ii) F may not be injective.
In this case, suppose p1 6= p2 are such that F (p1) = F (p2) = q. It could
easily be the case that for some vector field X, F∗(Xp1) 6= F∗(Xp2). Since
F∗(X) cannot assign both Xp1 and Xp2 to q, F∗ : X(M) → X(N) is not
well-defined. ¤

b) What about when F∗ is a diffeomorphism?
When F∗ is a diffeomorphism, we know that F∗ is both injective and surjective,
and neither of the above cases can occur. F will have a well-defined inverse
G : N → M , and at each point p, we also have the isomorphism F∗ : Tp(M) →
TF (p)(N) and its well-defined inverse G∗.
Now given a C∞ vector field X on M , the vector Yq = F∗(XG(q)) is uniquely
determined, for each q ∈ N . Finally, Y is of class C∞ by direct application of
[Boothby IV.1.5, p.110]. ¤
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9. Determine a subset of R2 on which σ1 = x1dx1 + x2dx2 and σ2 = x2dx1 + x1dx2 are
linearly independent and find a frame field dual to σ1, σ2 over this set.

Suppose we have a linear combination ασ1 + βσ2 = 0, so that

0 = ασ1 + βσ2

= α (x1dx1 + x2dx2) + β (x2dx1 + x1dx2)

= (αx1 + βx2) dx1 + (αx2 + βx1) dx2.

Since dx1, dx2 are linearly independent, we have a system of equations

αx1 + βx2 = 0

αx2 + βx1 = 0

where we consider x1, x2 as coefficients, because we are solving for α, β. Consider
that

det

∣∣∣∣
x1 x2

x2 x1

∣∣∣∣ = x2
1 − x2

2

So if x2
1 − x2

2 6= 0, then α = β = 0, so σ1, σ2 are linearly independent. Hence, σ1, σ2

are linearly independent on

U = {(x1, x2) ∈ R2 ... |x1| 6= |x2|}.
Now, to find a frame field dual to σ1, σ2 over U , we need to locate

τ1 = a ∂
∂x1

+ b ∂
∂x2

τ2 = c ∂
∂x1

+ d ∂
∂x2

which satisfy
σ1(τ1) = 1 σ2(τ1) = 0

σ1(τ2) = 0 σ2(τ2) = 1

This gives us the systems of equations

σ1 (τ1) = x1a + x2b = 1

σ1 (τ2) = x1c + x2d = 0

σ2 (τ1) = x2a + x1b = 0

σ2 (τ2) = x2c + x1d = 1

from which we get

a =
−x1

x2
2 − x2

1

, b =
x2

x2
2 − x2

1

, c =
−x2

x2
1 − x2

2

, d =
x1

x2
1 − x2

2

by elementary algebra. Thus, our frame field is

τ1 =
−x1

x2
2 − x2

1

∂
∂x1

+
x2

x2
2 − x2

1

∂
∂x2

, τ2 =
−x2

x2
1 − x2

2

∂
∂x1

+
x1

x2
1 − x2

2

∂
∂x1

.

¥


