
Math 205C - Topology Homework 3 Erin Pearse

1. V is an n-dimensional vector space over R.

a) Define a tensor of type (r, s).

First, we define a multilinear map to be a function σ : V1 × . . .× Vr → R which
is linear in each Vi:

σ (v1, . . . , avi + bui, . . . , vr) = aσ (v1, . . . , vi, . . . , vr) + bσ (v1, . . . , ui, . . . , vr)

Then for r, s ∈ N, σ is a tensor of type (r, s) iff it is a multilinear map

σ : V × . . .× V︸ ︷︷ ︸
r times

×V ∗ × . . .× V ∗
︸ ︷︷ ︸

s times

→ R

r is called the covariant order, and s the contravariant order, of σ.

b) Explain how Tr
s(V ) forms a vector space of dimension nr+s.

c) i) For T?(V ) =
⊕∞

k=0 Tk(V ), explain how (T?(V ), +,⊗) forms an associative
algebra.

See [Booth] p.207, Thm 6.2

ii) Is the tensor product ⊗ commutative?

No, it is not commutative. Let V = R2, and let u = (u1, u2) and v =
(v1, v2) be vectors in V . Define ϕ : V × V → R and ψ : V × V → R by

ϕ (u, v) = 〈u, v〉 = u1v1 + u2v2

ψ (u, v) = det (u, v) = u1v2 − u2v1

For an example, we use four randomly selected vectors of R2:

s = (0, 1) , t = (1, 1) , u = (1, 3) , v = (1, 0)

and compute

ϕ⊗ ψ (s, t, u, v) = ϕ⊗ ψ ((0, 1) , (1, 1) , (1, 3) , (1, 0))

= ϕ ((0, 1) , (1, 1)) ψ ((1, 3) , (1, 0))

= (0 + 1) (0− 3)

= −3

and

ψ ⊗ ϕ (s, t, u, v) = ψ ⊗ ϕ ((0, 1) , (1, 1) , (1, 3) , (1, 0))

= ψ ((0, 1) , (1, 1)) ϕ ((1, 3) , (1, 0))

= (0− 1) (1 + 0)

= −1
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2. Explain the tensor fields Tr
s(M),Tr(M),Ts(M) over a manifold M . How is a tensor

field written in local coordinates?

See [Booth] p.209

3. a) Define the alternating and symmetric tensors.

Let V be a vector space, and let ϕ ∈ Tr(V ) be some tensor. We say ϕ is
symmetric iff ∀i, j = 1, 2, . . . , r, we have

ϕ (v1, . . . , vi, . . . , vj, . . . , vr) = ϕ (v1, . . . , vj, . . . , vi, . . . , vr)

We say ϕ is alternating iff ∀i, j = 1, 2, . . . , r, we have

ϕ (v1, . . . , vi, . . . , vj, . . . , vr) = −ϕ (v1, . . . , vj, . . . , vi, . . . , vr)

b) Define the alternating and symmetrizing operators.

The action of the alternating operator A : T r (V ) → T r (V ) on a tensor ϕ is
defined pointwise as

(Aϕ) (v1, . . . , vr) = 1
r!

∑
σ∈Sr

(sgn σ)ϕ
(
vσ(1), . . . , vσ(r)

)

The action of the symmetrizing operator S : T r (V ) → T r (V ) on a tensor ϕ is
defined pointwise as

(Sϕ) (v1, . . . , vr) = 1
r!

∑
σ∈Sr

ϕ
(
vσ(1), . . . , vσ(r)

)

Sr is the symmetric group of all permutations on r letters.

c) Define the wedge product:
∧

:
∧k(V )×∧l(V ) → ∧k+l(V ).

(ϕ, ψ)
∧−−−−→ (ϕ ∧ ψ)

def
= (r+s)!

r!s!
A (ϕ⊗ ψ)

d) Give an example ω ∈ ∧k, η ∈ ∧l such that ω ⊗ η /∈ ∧k+l.

Consider the tensors dx, dy ∈ ∧1, considered as alternating tensors on V , and
observe how they act on the vectors u = (u1, u2) and v = (v1, v2):

dx⊗ dy ((u1, u2) , (v1, v2)) = dx (u1, u2) · dy (v1, v2) = u1v2

but

dx⊗ dy ((v1, v2) , (u1, u2)) = dx (v1, v2) · dy (u1, u2) = v1u2.

Since we don’t necessarily have that u1v2 = v1u2, dx⊗ dy /∈ ∧2.
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4. a) If dimR = n, then what is the dimension of
∧k(V )? What is its basis?

If the vector space V has basis {v1, . . . , vn}, then the basis of
∧k(V ) is

B = {vi1 ∧ . . . ∧ vik

... i1 < . . . < ik}.
Every element of

∧k(V ) can be written in the form
∑n

i=1 aivi, so using the rule

x ∧ y = −y ∧ x, it is clear that v1 ∧ . . . ∧ vn generates
∧k(V ). Since the vi are

linearly independent, B forms a basis. The final thing to note is that the rule
x ∧ y = −y ∧ x forces any basis element to have distinct factors, and no more
than k. This is because if vi = vj, then v1 ∧ . . . ∧ vi ∧ vj ∧ vk = 0. See the next
problem for more details.
Based on this, the cardinality of the basis can be calculated as simple counting
argument. Since any basis element looks like vi1∧. . .∧vik , there are k components
to choose and n possibilities to choose from. Order does not matter, because
x∧ y = −y∧x, so as generators of a vector space, x∧ y and y∧x are essentially
equivalent. Hence, the number of elements in any basis, and thus the dimension
of

∧k(V ) is (n
k).

b) Prove that
∧k(V ) = {0} if k > n.

Since the basis of
∧k(V ) is B = {vi1 ∧ . . . ∧ vik

... i1 < . . . < ik} and k > n, every
basis element looks like:

vi1 ∧ . . . ∧ vin ∧ vin+1 . . . ∧ vik

Consider the possibilities for vin+1 . vin+1 must be one of the {vi}n
i=1 that form a

basis of V . Suppose vin+1 = vj. But vj is already one of the initial vi1 ∧ . . .∧ vin ,
so we are in the case where vj occurs twice, which implies immediately that the
entire basis element vi1 ∧ . . . ∧ vin ∧ vin+1 . . . ∧ vik is 0. To see this, first note
that we can reorder the basis element so that the two vjs are adjacent, without
changing the value of the element. Then by swapping positions of the two vj,
we get

vi1 ∧ . . . ∧ vj ∧ vj . . . ∧ vik = −vi1 ∧ . . . ∧ vj ∧ vj . . . ∧ vik

which shows that both sides are 0. Since every basis element is 0, the entire
basis is 0, and thus

∧k(V ) = {0}.

c) For
∧?(V ) =

⊗∞
k=0

∧k(V ), what is dim
∧?(V )? Explain how (

∧
(V ), +,∧) forms

an associative algebra. Is it commutative?

We compute the dimension of using a technique from algebra:
[
∧? (V ) : R] = [

∧? (V ) : C∞ (V )] · [C∞ (V ) : R] = n · ∞ = ∞
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d) Is (
∧

(V ), +,∧) a subalgebra of (T?(V ), +,⊗)?

Yes. Clearly (
∧

(V ), +,∧) ⊂ (T?(V ), +,⊗), and we have shown above that∧
(V ) actually does form an algebra under these operations. The key fact that

distinguishes this case from 3(d) is that for tensors ϕ and ψ, ϕ ⊗ ψ may not
be alternating, but the wedge product is defined in terms of the alternating
operator, so that ϕ ∧ ψ is alternating by construction. This is why

∧
(V ) is

closed under ∧.

5. a) Explain a k-form ω ∈ ∧k(M) on a manifold.

b) Explain the exterior/Grassman algebra on a manifold.

c) Let F : M → N be a C∞ map between two manifolds M, N . Describe the
pullback map F ∗ :

∧
(N) → ∧

(M).

d) Prove that F ∗ is an algebra homomorphism.

F ∗ (ω + η) = (ω + η) ◦ F = ω ◦ F + η ◦ F = F ∗ω + F ∗η

Now we need to show F ∗ (ω ∧ η) = F ∗ω∧F ∗η, so we begin by showing F ∗ (ω ⊗ η) =
F ∗ω ⊗ F ∗η as follows:

F ∗ (ω ⊗ η) (u, v) = ((ω ⊗ η) ◦ F ) (u, v) def of F ∗

= (ω ⊗ η) (F (u) , F (v))

= ω ◦ F (u) · η ◦ F (v) def of ω ⊗ η

= F ∗ω (u) · F ∗η (v) def of F ∗ again

= (F ∗ω ⊗ F ∗η) (u, v) def of ω ⊗ η again

Now we proceed with ∧:

F ∗ (ω ∧ η) (u, v)

= (ω ∧ η) (F (u) , F (v)) def of F ∗

= (r+s)!
r!s!

A (ω ⊗ η) (F (u) , F (v)) def of ∧
= (r+s)!

r!s!r!

∑
σ∈Sk+j

(sgn σ) (ω ⊗ η) (F (u) , F (v)) def of A

= (r+s)!
r!s!r!

∑
σ∈Sk+j

(sgn σ) (F ∗ω ⊗ F ∗η) (u, v) by above

= (r+s)!
r!s!

A (F ∗ω ⊗ F ∗η) (u, v) def of A again

= (F ∗ω ∧ F ∗η) (u, v) def of ∧ again

Thus, F ∗ (ω ∧ η) = F ∗ω ∧ F ∗η. ¤
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6. a) Define the exterior differentiation operator d :
∧k(M) → ∧k+1(M).

d is the unique R-linear map d :
∧?(M) → ∧?(M) satisfying

i) for f ∈ C∞(M) =
∧0(M), we have d(f) = df , the differential of f .

ii) d (θ ∧ σ) = dθ ∧ σ + (−1)r θ ∧ dσ, ∀θ ∈ ∧r,∀σ ∈ ∧k

iii) d2 = 0

b) Prove that d2 = 0.

For ω ∈ ∧p(M), we can write ω =
∑

ωi1···ipdxi1 ∧ . . . ∧ dxip in local coordinates.

Since d is R-linear, it will suffice to consider the case d
(
d

(
ωi1···ipdxi1 ∧ . . . ∧ dxip

))
.

Then

d2ωi = d
(
d

(
ωi1···ipdxi1 ∧ . . . ∧ dxip

))

= d
[∑n

k=1

(
∂ωi1···ip

∂xk
dxk

)
∧ dxi1 ∧ . . . ∧ dxip

]

= d
[∑n

k=1

∂ωi1···ip
∂xk

dxk ∧ dxi1 ∧ . . . ∧ dxip

]

=
∑n

k=1

∑n

j=1

[
∂2ωi1···ip
∂xj∂xk

dxj ∧ dxk ∧ dxi1 ∧ . . . ∧ dxip

]

=
∑

16k<j6n

[
∂2ωi1···ip
∂xj∂xk

− ∂2ωi1···ip
∂xk∂xj

dxj ∧ dxk ∧ dxi1 ∧ . . . ∧ dxip

]
.

but then
∂2ωi1···ip
∂xj∂xk

=
∂2ωi1···ip
∂xk∂xj

, by the equality of mixed partial derivatives. So each

term of the sum, and hence the entire sum, is 0.

c) Define the closed and exact differential forms.

ω ∈ ∧p(M) is a closed form iff dω = 0, i.e., ω ∈ Ker d.
ω ∈ ∧p(M) is an exact form iff ∃η ∈ ∧p−1(M) such that dη = ω, i.e., ω ∈ Im d.

∧p−1(M)
d−−−→ ∧p(M)

d−−−→ ∧p+1(M)

7. a) Let ω =
∑n

i=1 ωidxi be a 1-form in Rn. Show ω is closed ⇐⇒ ∂ωi

∂xj
=

∂ωj

∂xi
, ∀i, j.

⇒ Assume ω is closed so that dω = 0. Then

0 = dω

=
∑n

k=1
(dωk) ∧ dxi

=
∑n

k=1

(∑n

i=1

∂ωi

∂xk
dxk

)
∧ dxi

=
∑

16k<i6n

[(
∂ωi

∂xk
− ∂ωk

∂xi

)
dxk ∧ dxi

]
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But the basis elements {dxk ∧ dxi} are linearly independent, so this implies
∂ωi

∂xk
− ∂ωk

∂xi
= 0 ∀i, k =⇒ ∂ωi

∂xk
= ∂ωk

∂xi
∀i, k.

⇐ ∂ωi

∂xk
= ∂ωk

∂xi
⇒ ∂ωi

∂xk
− ∂ωk

∂xi
= 0, which immediately gives

dω =
∑

16k<i6n

(
∂ωi

∂xk
− ∂ωk

∂xi

)
dxk ∧ dxi = 0.

¤

b) Find necessary and sufficient conditions for a 2-form ω = Cdx∧dy +Ady∧dz +
Bdz ∧ dx to be closed in R3, where A,B, C are functions in R3.

We put ω12 = C, ω23 = A,ω13 = −B, and consider ω =
∑

16i<j63 ωijdxi ∧ dxj.
Now

dω = (∂C
∂x

dx) ∧ dx ∧ dy + (∂C
∂y

dy) ∧ dx ∧ dy + (∂C
∂z

dz) ∧ dx ∧ dy + d(dx ∧ dy)

+ (∂A
∂x

dx) ∧ dy ∧ dz + (∂A
∂y

dy) ∧ dy ∧ dz + (∂A
∂z

dz) ∧ dy ∧ dz + d(dy ∧ dz)

+ (∂B
∂x

dx) ∧ dz ∧ dx + (∂B
∂y

dy) ∧ dz ∧ dx + (∂B
∂z

dz) ∧ dz ∧ dx + d(dz ∧ dx).

Now by the basic properties of the alternating product,

dx ∧ dy = −dy ∧ dx =⇒ dx ∧ dx = −dx ∧ dx =⇒ dx ∧ dx = 0

Using the rule that dx ∧ dx = 0, we see that only the third, fourth, and eighth
terms of the above sum are nonzero, i.e.,

dω =
(

∂C
∂z

dz
) ∧ dx ∧ dy +

(
∂A
∂x

dx
) ∧ dy ∧ dz +

(
∂B
∂y

dy
)
∧ dz ∧ dx

= ∂A
∂x

dx ∧ dy ∧ dz + ∂B
∂y

dx ∧ dy ∧ dz + ∂C
∂z

dx ∧ dy ∧ dz

=
(

∂A
∂x

+ ∂B
∂y

+ ∂C
∂z

)
dx ∧ dy ∧ dz

Thus we obtain dω = 0 ⇐⇒ ∂A
∂x

+ ∂B
∂y

+ ∂C
∂z

= 0. ¤

c) Show that a 2-form ω =
∑

i<j aijdxi ∧ dxj in Rn is closed ⇐⇒ ∂aij

∂xk
−∂ajk

∂xj
+

∂ajk

∂xi
=

0 ∀i, j, k

dω =
∑

16i<j6n

∑n

k=1

∂ωij

∂xk
dxk ∧ dxi ∧ dxj
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8. Consider the 1-form ω = xdy−ydx
x2+y2 in R2\{(0, 0)}. Is ω closed? Is ω exact?

ω =
∑2

i=1
ωidxi = −y

x2+y2 dx + x
x2+y2 dy

So applying d gives

dω =
∑n

i=1

∑n

k=1

∂ωi

∂xk
dxi

=
∑

16k<i6n

(
∂ωi

∂xk
− ∂ωk

∂xi

)
dxk ∧ dxi

Which shows that ω will be closed precisely when

∂
∂y

(
−y

x2+y2

)
= ∂

∂x

(
x

x2+y2

)
.

Now
∂
∂y

(
−y

x2+y2

)
=
− (x2 + y2) + y (2y)

(x2 + y2)2 =
y2 − x2

(x2 + y2)2

and
∂
∂x

(
x

x2+y2

)
=

(x2 + y2)− x (2x)

(x2 + y2)2 =
y2 − x2

(x2 + y2)2

shows that ω is closed.

9. a) In R3, determine which of the following forms are closed and which are exact1:

i) ϕ = yzdx + xzdy + xydz

Consider ϕ = ω1dx1 + ω2dx2 + ω3dx3. Then ϕ is closed because

dϕ =
∑

16k<i63

[
∂ωi

∂xk
− ∂ωk

∂xi

]
dxk ∧ dxi

=
(

∂ω2

∂x1
− ∂ω1

∂x2

)
dx1 ∧ dx2

+
(

∂ω3

∂x1
− ∂ω1

∂x3

)
dx1 ∧ dx3 +

(
∂ω3

∂x2
− ∂ω2

∂x3

)
dx2 ∧ dx3

=
(

∂(xz)
∂x

− ∂(yz)
∂y

)
dx ∧ dy

+
(

∂(xy)
∂x

− ∂(yz)
∂z

)
dx ∧ dz +

(
∂(xy)

∂y
− ∂(xz)

∂z

)
dy ∧ dz

= (z − z) dx ∧ dy + (y − y) dx ∧ dz + (x− x) dy ∧ dz

= 0

If we define ψ ∈ ∧0(R3) by ψ = xyz, then ϕ is exact because

dψ = ∂
∂x

(xyz) dx + ∂
∂y

(xyz) dy + ∂
∂z

(xyz) dz

= yzdx + xzdy + xydz

= ϕ

¥
1Note that ϕ exact =⇒ ϕ closed, so some of these calculations are unnecessary. ©q̀
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ii) ϕ = xdx + x2y2dy + xzdz

ϕ is not closed because

dϕ =

(
∂(x2y2)

∂x
− ∂(x2y2)

∂y

)
dx ∧ dy

+
(

∂(xz)
∂x

− ∂(x)
∂z

)
dx ∧ dz +

(
∂(xz)

∂y
− ∂(x2y2)

∂z

)
dy ∧ dz

=
(
2xy2 − 0

)
dx ∧ dy + (z − 0) dx ∧ dz + (0− 0) dy ∧ dz

= 2xy2dx ∧ dy + zdx ∧ dz

6= 0

Since not closed =⇒ not exact, we know that ϕ cannot be exact. ¥

iii) ϕ = 2xy2dx ∧ dy + zdy ∧ dz

ϕ is closed because

dϕ =
∑

16i2<i263

[(∑3

k=1

∂ωi1i2

∂xk
dxk

)
∧ dxi1 ∧ dxi2

]

=

(
∂(2xy2)

∂x
dx

)
∧ dx ∧ dy

+

(
∂(2xy2)

∂y
dy

)
∧ dx ∧ dy +

(
∂(2xy2)

∂z
dz

)
∧ dx ∧ dy

+
(

∂z
∂x

dx
) ∧ dy ∧ dz +

(
∂z
∂y

dy
)
∧ dy ∧ dz +

(
∂z
∂z

dz
) ∧ dy ∧ dz

= 2y2dx ∧ dx ∧ dy + 4xydy ∧ dx ∧ dy + 0dz ∧ dx ∧ dy

+ 0dx ∧ dy ∧ dz + 0dy ∧ dy ∧ dz + 1dz ∧ dy ∧ dz

= 2y2dx ∧ dx ∧ dy + 4xydy ∧ dx ∧ dy + 1dz ∧ dy ∧ dz

= 0

If we define ψ ∈ ∧1(R3) by ψ = cdx + x2y2dy + zydz, where c ∈ R, then
ϕ is exact because

dψ =
(

∂c
∂x

dx
) ∧ dx +

(
∂c
∂y

dy
)
∧ dx +

(
∂c
∂z

dz
) ∧ dx

+

(
∂(x2y2)

∂x
dx

)
∧ dy +

(
∂(x2y2)

∂y
dy

)
∧ dy +

(
∂(x2y2)

∂z
dz

)
∧ dy

+
(

∂(zy)
∂x

dx
)
∧ dz +

(
∂(zy)

∂y
dy

)
∧ dz +

(
∂(zy)

∂z
dz

)
∧ dz

= 0dx ∧ dx + 0dy ∧ dx + 0dz ∧ dx

+ 2xy2dx ∧ dy + 2x2ydy ∧ dy + 0dz ∧ dy

+ 0dx ∧ dz + zdy ∧ dz + ydz ∧ dz

= 2xy2dx ∧ dy + zdy ∧ dz

= ϕ ¥
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10. Let f : R3 → R2 taking (x, y, z)
f−→ (s, t) be defined by

f (x, y, z) = (xy, yz + 1) .

a) Let ϕ = stds + dt be a 1-form in R2. Compute f ∗(ϕ).

f ∗(ϕ) = ϕ ◦ f , so s = xy and t = yz + 1, so we find the other components of ϕ
in terms of x, y, z as

ds = ∂(xy)
∂x

dx + ∂(xy)
∂y

dy + ∂(xy)
∂z

dz = ydx + xdy

dt = ∂(yz+1)
∂x

dx + ∂(yz+1)
∂y

dy + ∂(yz+1)
∂z

dz = zdy + ydz

Then

f ∗(ϕ) =

s︷︸︸︷
(xy)

t︷ ︸︸ ︷
(yz + 1)

ds︷ ︸︸ ︷
(ydx + xdy) +

dt︷ ︸︸ ︷
(zdy + ydz)

= x2y2zdy + xy3zdx + x2ydy + xy2dx + ydz + zdy

=
(
xy3z + xy2

)
dx +

(
x2y2z + z + x2y

)
dy + ydz

¤

b) Let ϕ = st(ds ∧ dt) be a 1-form in R2. Compute f ∗(ϕ).

Using ds, dt as calculated above, we obtain

f ∗(ϕ) = (xy) (yz + 1) ((ydx + xdy) ∧ (zdy + ydz))

=
(
xy2z + xy

) (
yzdx ∧ dy + y2dx ∧ dz + xzdy ∧ dy + xydy ∧ dz

)

=
(
xy3z2 + xy2z

)
dx ∧ dy +

(
xy4z + xy3

)
dx ∧ dz +

(
x2y3z + x2y2

)

¤

11. Let ω be a 1-form. For vector fields X,Y , prove the formula

dω (X, Y ) = X (ω(Y ))− Y (ω(X))− ω ([X,Y ]) .

X, Y ∈ X(M) and ω ∈ ∧1(M), so let ω = fdg where f, g ∈ C∞. It will suf-
fice to prove that the formula is true locally, i.e., in a coordinate neighbourhood
of each point. In each such neighbourhood, with coordinates x1, . . . , xn, we have
ω =

∑n
i=1 aidxi, by the definition of ω as a 1-form. Now the left side of the formula

becomes

dω (X, Y ) = df ∧ dg (X, Y )

= df(X)dg(Y )− dg(X)df(Y )

= (Xf)(Y g)− (Xg)(Y f)
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and the right side of the formula becomes

Xω(Y )− Y ω(X)− ω ([X,Y ]) = X (fdg(Y ))− Y (fdg(X))− fdg ([X,Y ])

= X (f(Y g))− Y (f(Xg))− f (XY g − Y Xg)

= (Xf)(Y g)− (Xg)(Y f)

¥

12. a) Define a Riemannian metric.

A Riemannian metric on a differentiable manifold M is not actually a metric
at all. Instead, it is the (rather misleading) name given to any positive definite
covariant symmetric tensor of type (2,0). More formulaically,

ds2 =
∑

16i<j6n

gijdxi ⊗ dxj, where gij = gji,∀i, j

b) Describe two ways to construct a Riemannian metric on a manifold M .

i) Using the Whitney Imbedding Theorem, we can imbed M into some Rn.
Let dS2

E denote the standard Euclidean metric of Rn. If we restrict dS2
E

to M , we get a Riemannian metric on M .

ii) First, we choose an open cover {Aα} of M and use Boothby V.4.1 to
produce a regular covering {Ui, Vi, ϕi} and Boothby V.4.4 to produce a
C∞ partition of unity {fi} subordinate to this cover. In a given coordinate
neighbourhood Ui, we define a “local” Riemannian metric by

Φi = ϕ∗i (ψ),

where ψ = dx2
1 + dx2

2 + . . . + dx2
n is the Euclidean metric. Finally, define

ds2 = Φ =
∑

i
fiΦi

to obtain a globally-defined Riemannian metric.

c) How does one make a metric out of the Riemannian metric?

Let Φ be a a Riemannian metric defined on M . By simply denoting 〈x, y〉 =
Φ(x, y), the Riemannian metric gives an inner product to the tangent space
Tp(M),∀p ∈ M . Let γ(t) be a C1 curve on M , and define p0 = γ(0) and
p1 = γ(1). Define the length L of this curve, from p0 to p1, by

L =

1∫

0

(
Φ

(
dγ
dt

, dγ
dt

))1/2
dt =

1∫

0

√〈
dγ
dt

, dγ
dt

〉
dt =

1∫

0

‖γ′(t)‖ dt

We now obtain a metric d(x, y) by defining the distance from p0 to p1 as

d (p0, p1) = inf
γ∈C1

{∫ 1

0

‖γ′(t)‖ dt

}
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13. a) Define a volume element.

b) Compute the volume (with the induces metric of R2) in terms of the coordinates
given by

i) Stereographic projection.

ii) Spherical coordinates (with ρ = 1).


