- 1. V is an n-dimensional vector space over \mathbb{R} .
 - a) Define a tensor of type (r, s).

First, we define a multilinear map to be a function $\sigma: V_1 \times ... \times V_r \to \mathbb{R}$ which is linear in each V_i :

$$\sigma(v_1,\ldots,av_i+bu_i,\ldots,v_r)=a\sigma(v_1,\ldots,v_i,\ldots,v_r)+b\sigma(v_1,\ldots,u_i,\ldots,v_r)$$

Then for $r, s \in \mathbb{N}$, σ is a tensor of type (r, s) iff it is a multilinear map

$$\sigma: \underbrace{V \times \ldots \times V}_{r \text{ times}} \times \underbrace{V^* \times \ldots \times V^*}_{s \text{ times}} \to \mathbb{R}$$

r is called the *covariant order*, and s the *contravariant order*, of σ .

- b) Explain how $\mathfrak{T}_s^r(V)$ forms a vector space of dimension n^{r+s} .
- c) i) For $\mathfrak{T}^{\star}(V) = \bigoplus_{k=0}^{\infty} \mathfrak{T}^{k}(V)$, explain how $(\mathfrak{T}^{\star}(V), +, \otimes)$ forms an associative algebra.

See [Booth] p.207, Thm 6.2

ii) Is the tensor product \otimes commutative?

No, it is not commutative. Let $V = \mathbb{R}^2$, and let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ be vectors in V. Define $\varphi : V \times V \to \mathbb{R}$ and $\psi : V \times V \to \mathbb{R}$ by

$$\varphi(u,v) = \langle u,v \rangle = u_1 v_1 + u_2 v_2$$

$$\psi(u,v) = \det(u,v) = u_1 v_2 - u_2 v_1$$

For an example, we use four randomly selected vectors of \mathbb{R}^2 :

$$s = (0,1), t = (1,1), u = (1,3), v = (1,0)$$

and compute

$$\varphi \otimes \psi (s, t, u, v) = \varphi \otimes \psi ((0, 1), (1, 1), (1, 3), (1, 0))$$

$$= \varphi ((0, 1), (1, 1)) \psi ((1, 3), (1, 0))$$

$$= (0 + 1) (0 - 3)$$

$$= -3$$

and

$$\psi \otimes \varphi (s, t, u, v) = \psi \otimes \varphi ((0, 1), (1, 1), (1, 3), (1, 0))$$

$$= \psi ((0, 1), (1, 1)) \varphi ((1, 3), (1, 0))$$

$$= (0 - 1) (1 + 0)$$

$$= -1$$

2

See [Booth] p.209

3. a) Define the alternating and symmetric tensors.

Let V be a vector space, and let $\varphi \in \mathfrak{I}^r(V)$ be some tensor. We say φ is symmetric iff $\forall i, j = 1, 2, ..., r$, we have

$$\varphi(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_r) = \varphi(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_r)$$

We say φ is alternating iff $\forall i, j = 1, 2, ..., r$, we have

$$\varphi(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_r) = -\varphi(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_r)$$

b) Define the alternating and symmetrizing operators.

The action of the alternating operator $\mathcal{A}: T^{r}(V) \to T^{r}(V)$ on a tensor φ is defined pointwise as

$$(\mathcal{A}\varphi)(v_1,\ldots,v_r) = \frac{1}{r!} \sum_{\sigma \in \mathfrak{S}_r} (\operatorname{sgn}\sigma) \varphi(v_{\sigma(1)},\ldots,v_{\sigma(r)})$$

The action of the symmetrizing operator $S:T^{r}\left(V\right)\to T^{r}\left(V\right)$ on a tensor φ is defined pointwise as

$$(\$\varphi)(v_1,\ldots,v_r) = \frac{1}{r!} \sum_{\sigma \in \mathfrak{S}_r} \varphi(v_{\sigma(1)},\ldots,v_{\sigma(r)})$$

 \mathfrak{S}_r is the symmetric group of all permutations on r letters.

c) Define the wedge product: $\bigwedge : \bigwedge^k(V) \times \bigwedge^l(V) \to \bigwedge^{k+l}(V)$.

$$(\varphi, \psi) \xrightarrow{\wedge} (\varphi \wedge \psi) \stackrel{def}{=} \frac{(r+s)!}{r!s!} \mathcal{A} (\varphi \otimes \psi)$$

d) Give an example $\omega \in \bigwedge^k$, $\eta \in \bigwedge^l$ such that $\omega \otimes \eta \notin \bigwedge^{k+l}$.

Consider the tensors $dx, dy \in \bigwedge^1$, considered as alternating tensors on V, and observe how they act on the vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$:

$$dx \otimes dy ((u_1, u_2), (v_1, v_2)) = dx (u_1, u_2) \cdot dy (v_1, v_2) = u_1 v_2$$

but

$$dx \otimes dy ((v_1, v_2), (u_1, u_2)) = dx (v_1, v_2) \cdot dy (u_1, u_2) = v_1 u_2.$$

Since we don't necessarily have that $u_1v_2 = v_1u_2$, $dx \otimes dy \notin \bigwedge^2$.

4. a) If $\dim_{\mathbb{R}} = n$, then what is the dimension of $\bigwedge^k(V)$? What is its basis? If the vector space V has basis $\{v_1, \ldots, v_n\}$, then the basis of $\bigwedge^k(V)$ is

$$\mathcal{B} = \{v_{i_1} \wedge \ldots \wedge v_{i_k} : i_1 < \ldots < i_k\}.$$

Every element of $\bigwedge^k(V)$ can be written in the form $\sum_{i=1}^n a_i v_i$, so using the rule $x \wedge y = -y \wedge x$, it is clear that $v_1 \wedge \ldots \wedge v_n$ generates $\bigwedge^k(V)$. Since the v_i are linearly independent, \mathcal{B} forms a basis. The final thing to note is that the rule $x \wedge y = -y \wedge x$ forces any basis element to have distinct factors, and no more than k. This is because if $v_i = v_j$, then $v_1 \wedge \ldots \wedge v_i \wedge v_j \wedge v_k = 0$. See the next problem for more details.

Based on this, the cardinality of the basis can be calculated as simple counting argument. Since any basis element looks like $v_{i_1} \wedge \ldots \wedge v_{i_k}$, there are k components to choose and n possibilities to choose from. Order does not matter, because $x \wedge y = -y \wedge x$, so as generators of a vector space, $x \wedge y$ and $y \wedge x$ are essentially equivalent. Hence, the number of elements in any basis, and thus the dimension of $\bigwedge^k(V)$ is $\binom{n}{k}$.

b) Prove that $\bigwedge^k(V) = \{0\}$ if k > n.

Since the basis of $\bigwedge^k(V)$ is $\mathcal{B} = \{v_{i_1} \wedge \ldots \wedge v_{i_k} : i_1 < \ldots < i_k\}$ and k > n, every basis element looks like:

$$v_{i_1} \wedge \ldots \wedge v_{i_n} \wedge v_{i_{n+1}} \ldots \wedge v_{i_k}$$

Consider the possibilities for $v_{i_{n+1}}$. $v_{i_{n+1}}$ must be one of the $\{v_i\}_{i=1}^n$ that form a basis of V. Suppose $v_{i_{n+1}} = v_j$. But v_j is already one of the initial $v_{i_1} \wedge \ldots \wedge v_{i_n}$, so we are in the case where v_j occurs twice, which implies immediately that the entire basis element $v_{i_1} \wedge \ldots \wedge v_{i_n} \wedge v_{i_{n+1}} \ldots \wedge v_{i_k}$ is 0. To see this, first note that we can reorder the basis element so that the two v_j s are adjacent, without changing the value of the element. Then by swapping positions of the two v_j , we get

$$v_{i_1} \wedge \ldots \wedge v_j \wedge v_j \ldots \wedge v_{i_k} = -v_{i_1} \wedge \ldots \wedge v_j \wedge v_j \ldots \wedge v_{i_k}$$

which shows that both sides are 0. Since every basis element is 0, the entire basis is 0, and thus $\bigwedge^k(V) = \{0\}$.

c) For $\bigwedge^*(V) = \bigotimes_{k=0}^{\infty} \bigwedge^k(V)$, what is dim $\bigwedge^*(V)$? Explain how $(\bigwedge(V), +, \wedge)$ forms an associative algebra. Is it commutative?

We compute the dimension of using a technique from algebra:

$$\left[\bigwedge^{\star}(V):\mathbb{R}\right] = \left[\bigwedge^{\star}(V):C^{\infty}(V)\right] \cdot \left[C^{\infty}(V):\mathbb{R}\right] = n \cdot \infty = \infty$$

4

d) Is $(\bigwedge(V), +, \land)$ a subalgebra of $(\mathfrak{I}^*(V), +, \otimes)$?

Yes. Clearly $(\bigwedge(V), +, \wedge) \subset (\mathfrak{T}^*(V), +, \otimes)$, and we have shown above that $\bigwedge(V)$ actually does form an algebra under these operations. The key fact that distinguishes this case from 3(d) is that for tensors φ and ψ , $\varphi \otimes \psi$ may not be alternating, but the wedge product is defined in terms of the alternating operator, so that $\varphi \wedge \psi$ is alternating by construction. This is why $\bigwedge(V)$ is closed under \wedge .

- 5. a) Explain a k-form $\omega \in \bigwedge^k(M)$ on a manifold.
 - b) Explain the exterior/Grassman algebra on a manifold.
 - c) Let $F: M \to N$ be a C^{∞} map between two manifolds M, N. Describe the pullback map $F^*: \bigwedge(N) \to \bigwedge(M)$.
 - d) Prove that F^* is an algebra homomorphism.

$$F^* (\omega + \eta) = (\omega + \eta) \circ F = \omega \circ F + \eta \circ F = F^* \omega + F^* \eta$$

Now we need to show $F^*(\omega \wedge \eta) = F^*\omega \wedge F^*\eta$, so we begin by showing $F^*(\omega \otimes \eta) = F^*\omega \otimes F^*\eta$ as follows:

$$F^* (\omega \otimes \eta) (u, v) = ((\omega \otimes \eta) \circ F) (u, v) \qquad \text{def of } F^*$$

$$= (\omega \otimes \eta) (F (u), F (v))$$

$$= \omega \circ F (u) \cdot \eta \circ F (v) \qquad \text{def of } \omega \otimes \eta$$

$$= F^* \omega (u) \cdot F^* \eta (v) \qquad \text{def of } F^* \text{ again}$$

$$= (F^* \omega \otimes F^* \eta) (u, v) \qquad \text{def of } \omega \otimes \eta \text{ again}$$

Now we proceed with \wedge :

$$\begin{split} F^* \left(\omega \wedge \eta \right) (u,v) &= \left(\omega \wedge \eta \right) (F\left(u \right), F\left(v \right)) & \text{def of } F^* \\ &= \frac{(r+s)!}{r!s!} \mathcal{A} \left(\omega \otimes \eta \right) (F\left(u \right), F\left(v \right)) & \text{def of } \wedge \\ &= \frac{(r+s)!}{r!s!r!} \sum_{\sigma \in \mathfrak{S}_{k+j}} \left(\operatorname{sgn} \sigma \right) (\omega \otimes \eta) \left(F\left(u \right), F\left(v \right) \right) & \text{def of } \mathcal{A} \\ &= \frac{(r+s)!}{r!s!r!} \sum_{\sigma \in \mathfrak{S}_{k+j}} \left(\operatorname{sgn} \sigma \right) \left(F^* \omega \otimes F^* \eta \right) (u,v) & \text{by above} \\ &= \frac{(r+s)!}{r!s!} \mathcal{A} \left(F^* \omega \otimes F^* \eta \right) (u,v) & \text{def of } \mathcal{A} \text{ again} \\ &= \left(F^* \omega \wedge F^* \eta \right) (u,v) & \text{def of } \wedge \text{ again} \end{split}$$

Thus,
$$F^*(\omega \wedge \eta) = F^*\omega \wedge F^*\eta$$
.

6. a) Define the exterior differentiation operator $d: \bigwedge^k(M) \to \bigwedge^{k+1}(M)$.

d is the unique \mathbb{R} -linear map $d: \bigwedge^{\star}(M) \to \bigwedge^{\star}(M)$ satisfying

- i) for $f \in C^{\infty}(M) = \bigwedge^{0}(M)$, we have d(f) = df, the differential of f.
- ii) $d(\theta \wedge \sigma) = d\theta \wedge \sigma + (-1)^r \theta \wedge d\sigma, \forall \theta \in \bigwedge^r, \forall \sigma \in \bigwedge^k$
- iii) $d^2 = 0$
- b) Prove that $d^2 = 0$.

For $\omega \in \bigwedge^p(M)$, we can write $\omega = \sum \omega_{i_1 \cdots i_p} dx_{i_1} \wedge \ldots \wedge dx_{i_p}$ in local coordinates. Since d is \mathbb{R} -linear, it will suffice to consider the case $d\left(d\left(\omega_{i_1 \cdots i_p} dx_{i_1} \wedge \ldots \wedge dx_{i_p}\right)\right)$. Then

$$\begin{split} d^2\omega_i &= d\left(d\left(\omega_{i_1\cdots i_p}dx_{i_1}\wedge\ldots\wedge dx_{i_p}\right)\right) \\ &= d\left[\sum\nolimits_{k=1}^n \left(\frac{\partial\omega_{i_1\cdots i_p}}{\partial x_k}dx_k\right)\wedge dx_{i_1}\wedge\ldots\wedge dx_{i_p}\right] \\ &= d\left[\sum\nolimits_{k=1}^n \frac{\partial\omega_{i_1\cdots i_p}}{\partial x_k}dx_k\wedge dx_{i_1}\wedge\ldots\wedge dx_{i_p}\right] \\ &= \sum\nolimits_{k=1}^n \sum\nolimits_{j=1}^n \left[\frac{\partial^2\omega_{i_1\cdots i_p}}{\partial x_j\partial x_k}dx_j\wedge dx_k\wedge dx_{i_1}\wedge\ldots\wedge dx_{i_p}\right] \\ &= \sum\nolimits_{1\leqslant k< j\leqslant n} \left[\frac{\partial^2\omega_{i_1\cdots i_p}}{\partial x_j\partial x_k}-\frac{\partial^2\omega_{i_1\cdots i_p}}{\partial x_k\partial x_j}dx_j\wedge dx_k\wedge dx_{i_1}\wedge\ldots\wedge dx_{i_p}\right]. \end{split}$$

but then $\frac{\partial^2 \omega_{i_1 \cdots i_p}}{\partial x_j \partial x_k} = \frac{\partial^2 \omega_{i_1 \cdots i_p}}{\partial x_k \partial x_j}$, by the equality of mixed partial derivatives. So each term of the sum, and hence the entire sum, is 0.

c) Define the closed and exact differential forms.

 $\omega \in \bigwedge^p(M)$ is a closed form iff $d\omega = 0$, i.e., $\omega \in \operatorname{Ker} d$.

 $\omega \in \bigwedge^p(M)$ is an exact form iff $\exists \eta \in \bigwedge^{p-1}(M)$ such that $d\eta = \omega$, i.e., $\omega \in \operatorname{Im} d$.

$$\bigwedge^{p-1}(M) \xrightarrow{d} \bigwedge^{p}(M) \xrightarrow{d} \bigwedge^{p+1}(M)$$

- 7. a) Let $\omega = \sum_{i=1}^{n} \omega_i dx_i$ be a 1-form in \mathbb{R}^n . Show ω is closed $\iff \frac{\partial \omega_i}{\partial x_j} = \frac{\partial \omega_j}{\partial x_i}, \ \forall i, j.$
 - \implies Assume ω is closed so that $d\omega = 0$. Then

$$0 = d\omega$$

$$= \sum_{k=1}^{n} (d\omega_k) \wedge dx_i$$

$$= \sum_{k=1}^{n} \left(\sum_{i=1}^{n} \frac{\partial \omega_i}{\partial x_k} dx_k \right) \wedge dx_i$$

$$= \sum_{1 \le k < i \le n} \left[\left(\frac{\partial \omega_i}{\partial x_k} - \frac{\partial \omega_k}{\partial x_i} \right) dx_k \wedge dx_i \right]$$

6

But the basis elements $\{dx_k \wedge dx_i\}$ are linearly independent, so this implies

$$\frac{\partial \omega_i}{\partial x_k} - \frac{\partial \omega_k}{\partial x_i} = 0 \quad \forall i, k \implies \frac{\partial \omega_i}{\partial x_k} = \frac{\partial \omega_k}{\partial x_i} \quad \forall i, k.$$

$$\stackrel{\bigoplus}{} \frac{\partial \omega_i}{\partial x_k} = \frac{\partial \omega_k}{\partial x_i} \implies \frac{\partial \omega_i}{\partial x_k} - \frac{\partial \omega_k}{\partial x_i} = 0, \text{ which immediately gives}$$

$$d\omega = \sum_{1 \leq k < i \leq n} \left(\frac{\partial \omega_i}{\partial x_k} - \frac{\partial \omega_k}{\partial x_i} \right) dx_k \wedge dx_i = 0.$$

b) Find necessary and sufficient conditions for a 2-form $\omega = Cdx \wedge dy + Ady \wedge dz + Bdz \wedge dx$ to be closed in \mathbb{R}^3 , where A, B, C are functions in \mathbb{R}^3 .

We put $\omega_{12} = C$, $\omega_{23} = A$, $\omega_{13} = -B$, and consider $\omega = \sum_{1 \leq i < j \leq 3} \omega_{ij} dx_i \wedge dx_j$. Now

$$\begin{split} d\omega &= \left(\frac{\partial C}{\partial x}dx\right) \wedge dx \wedge dy + \left(\frac{\partial C}{\partial y}dy\right) \wedge dx \wedge dy + \left(\frac{\partial C}{\partial z}dz\right) \wedge dx \wedge dy + d(dx \wedge dy) \\ &+ \left(\frac{\partial A}{\partial x}dx\right) \wedge dy \wedge dz + \left(\frac{\partial A}{\partial y}dy\right) \wedge dy \wedge dz + \left(\frac{\partial A}{\partial z}dz\right) \wedge dy \wedge dz + d(dy \wedge dz) \\ &+ \left(\frac{\partial B}{\partial x}dx\right) \wedge dz \wedge dx + \left(\frac{\partial B}{\partial y}dy\right) \wedge dz \wedge dx + \left(\frac{\partial B}{\partial z}dz\right) \wedge dz \wedge dx + d(dz \wedge dx). \end{split}$$

Now by the basic properties of the alternating product,

$$dx \wedge dy = -dy \wedge dx \implies dx \wedge dx = -dx \wedge dx \implies dx \wedge dx = 0$$

Using the rule that $dx \wedge dx = 0$, we see that only the third, fourth, and eighth terms of the above sum are nonzero, i.e.,

$$d\omega = \left(\frac{\partial C}{\partial z}dz\right) \wedge dx \wedge dy + \left(\frac{\partial A}{\partial x}dx\right) \wedge dy \wedge dz + \left(\frac{\partial B}{\partial y}dy\right) \wedge dz \wedge dx$$
$$= \frac{\partial A}{\partial x}dx \wedge dy \wedge dz + \frac{\partial B}{\partial y}dx \wedge dy \wedge dz + \frac{\partial C}{\partial z}dx \wedge dy \wedge dz$$
$$= \left(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z}\right)dx \wedge dy \wedge dz$$

Thus we obtain $d\omega = 0 \iff \frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z} = 0$.

c) Show that a 2-form $\omega = \sum_{i < j} a_{ij} dx_i \wedge dx_j$ in \mathbb{R}^n is closed $\iff \frac{\partial a_{ij}}{\partial x_k} - \frac{\partial a_{jk}}{\partial x_j} + \frac{\partial a_{jk}}{\partial x_i} = 0 \ \forall i, j, k$

$$d\omega = \sum_{1 \leqslant i < j \leqslant n} \sum_{k=1}^{n} \frac{\partial \omega_{ij}}{\partial x_k} dx_k \wedge dx_i \wedge dx_j$$

8. Consider the 1-form $\omega = \frac{xdy - ydx}{x^2 + y^2}$ in $\mathbb{R}^2 \setminus \{(0,0)\}$. Is ω closed? Is ω exact?

$$\omega = \sum_{i=1}^{2} \omega_i dx_i = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

So applying d gives

$$d\omega = \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\partial \omega_{i}}{\partial x_{k}} dx_{i}$$
$$= \sum_{1 \leq k < i \leq n} \left(\frac{\partial \omega_{i}}{\partial x_{k}} - \frac{\partial \omega_{k}}{\partial x_{i}} \right) dx_{k} \wedge dx_{i}$$

Which shows that ω will be closed precisely when

$$\frac{\partial}{\partial y} \left(\frac{-y}{x^2 + y^2} \right) = \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right).$$

Now

$$\frac{\partial}{\partial y} \left(\frac{-y}{x^2 + y^2} \right) = \frac{-(x^2 + y^2) + y(2y)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

and

$$\frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right) = \frac{(x^2 + y^2) - x(2x)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

shows that ω is closed.

9. a) In \mathbb{R}^3 , determine which of the following forms are closed and which are exact¹:

i)
$$\varphi = yzdx + xzdy + xydz$$

Consider $\varphi = \omega_1 dx_1 + \omega_2 dx_2 + \omega_3 dx_3$. Then φ is closed because

$$\begin{split} d\varphi &= \sum_{1\leqslant k < i\leqslant 3} \left[\frac{\partial \omega_i}{\partial x_k} - \frac{\partial \omega_k}{\partial x_i}\right] dx_k \wedge dx_i \\ &= \left(\frac{\partial \omega_2}{\partial x_1} - \frac{\partial \omega_1}{\partial x_2}\right) dx_1 \wedge dx_2 \\ &\qquad \qquad + \left(\frac{\partial \omega_3}{\partial x_1} - \frac{\partial \omega_1}{\partial x_3}\right) dx_1 \wedge dx_3 + \left(\frac{\partial \omega_3}{\partial x_2} - \frac{\partial \omega_2}{\partial x_3}\right) dx_2 \wedge dx_3 \\ &= \left(\frac{\partial (xz)}{\partial x} - \frac{\partial (yz)}{\partial y}\right) dx \wedge dy \\ &\qquad \qquad + \left(\frac{\partial (xy)}{\partial x} - \frac{\partial (yz)}{\partial z}\right) dx \wedge dz + \left(\frac{\partial (xy)}{\partial y} - \frac{\partial (xz)}{\partial z}\right) dy \wedge dz \\ &= (z-z) dx \wedge dy + (y-y) dx \wedge dz + (x-x) dy \wedge dz \\ &= 0 \end{split}$$

If we define $\psi \in \bigwedge^0(\mathbb{R}^3)$ by $\psi = xyz$, then φ is exact because $d\psi = \frac{\partial}{\partial x}(xyz) dx + \frac{\partial}{\partial y}(xyz) dy + \frac{\partial}{\partial z}(xyz) dz$ = yzdx + xzdy + xydz $= \varphi$

¹Note that φ exact $\implies \varphi$ closed, so some of these calculations are unnecessary. \bigcirc

ii)
$$\varphi = xdx + x^2y^2dy + xzdz$$

 φ is not closed because

$$d\varphi = \left(\frac{\partial(x^2y^2)}{\partial x} - \frac{\partial(x^2y^2)}{\partial y}\right) dx \wedge dy$$

$$+ \left(\frac{\partial(xz)}{\partial x} - \frac{\partial(x)}{\partial z}\right) dx \wedge dz + \left(\frac{\partial(xz)}{\partial y} - \frac{\partial(x^2y^2)}{\partial z}\right) dy \wedge dz$$

$$= \left(2xy^2 - 0\right) dx \wedge dy + (z - 0) dx \wedge dz + (0 - 0) dy \wedge dz$$

$$= 2xy^2 dx \wedge dy + z dx \wedge dz$$

$$\neq 0$$

Since not closed \implies not exact, we know that φ cannot be exact.

iii)
$$\varphi = 2xy^2dx \wedge dy + zdy \wedge dz$$

 φ is closed because

$$\begin{split} d\varphi &= \sum_{1\leqslant i_2 < i_2 \leqslant 3} \left[\left(\sum_{k=1}^3 \frac{\partial \omega_{i_1 i_2}}{\partial x_k} dx_k \right) \wedge dx_{i_1} \wedge dx_{i_2} \right] \\ &= \left(\frac{\partial (2xy^2)}{\partial x} dx \right) \wedge dx \wedge dy \\ &+ \left(\frac{\partial (2xy^2)}{\partial y} dy \right) \wedge dx \wedge dy + \left(\frac{\partial (2xy^2)}{\partial z} dz \right) \wedge dx \wedge dy \\ &+ \left(\frac{\partial z}{\partial x} dx \right) \wedge dy \wedge dz + \left(\frac{\partial z}{\partial y} dy \right) \wedge dy \wedge dz + \left(\frac{\partial z}{\partial z} dz \right) \wedge dy \wedge dz \\ &= 2y^2 dx \wedge dx \wedge dy + 4xy dy \wedge dx \wedge dy + 0 dz \wedge dx \wedge dy \\ &+ 0 dx \wedge dy \wedge dz + 0 dy \wedge dy \wedge dz + 1 dz \wedge dy \wedge dz \\ &= 2y^2 dx \wedge dx \wedge dy + 4xy dy \wedge dx \wedge dy + 1 dz \wedge dy \wedge dz \\ &= 0 \end{split}$$

If we define $\psi \in \bigwedge^1(\mathbb{R}^3)$ by $\psi = cdx + x^2y^2dy + zydz$, where $c \in \mathbb{R}$, then φ is exact because

$$d\psi = \left(\frac{\partial c}{\partial x}dx\right) \wedge dx + \left(\frac{\partial c}{\partial y}dy\right) \wedge dx + \left(\frac{\partial c}{\partial z}dz\right) \wedge dx$$

$$+ \left(\frac{\partial (x^2y^2)}{\partial x}dx\right) \wedge dy + \left(\frac{\partial (x^2y^2)}{\partial y}dy\right) \wedge dy + \left(\frac{\partial (x^2y^2)}{\partial z}dz\right) \wedge dy$$

$$+ \left(\frac{\partial (zy)}{\partial x}dx\right) \wedge dz + \left(\frac{\partial (zy)}{\partial y}dy\right) \wedge dz + \left(\frac{\partial (zy)}{\partial z}dz\right) \wedge dz$$

$$= 0dx \wedge dx + 0dy \wedge dx + 0dz \wedge dx$$

$$+ 2xy^2dx \wedge dy + 2x^2ydy \wedge dy + 0dz \wedge dy$$

$$+ 0dx \wedge dz + zdy \wedge dz + ydz \wedge dz$$

$$= 2xy^2dx \wedge dy + zdy \wedge dz$$

$$= \varphi$$

10. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ taking $(x, y, z) \xrightarrow{f} (s, t)$ be defined by f(x, y, z) = (xy, yz + 1).

a) Let $\varphi = stds + dt$ be a 1-form in \mathbb{R}^2 . Compute $f^*(\varphi)$. $f^*(\varphi) = \varphi \circ f$, so s = xy and t = yz + 1, so we find the other components of φ in terms of x, y, z as

$$ds = \frac{\partial(xy)}{\partial x}dx + \frac{\partial(xy)}{\partial y}dy + \frac{\partial(xy)}{\partial z}dz = ydx + xdy$$
$$dt = \frac{\partial(yz+1)}{\partial x}dx + \frac{\partial(yz+1)}{\partial y}dy + \frac{\partial(yz+1)}{\partial z}dz = zdy + ydz$$

Then

$$f^{*}(\varphi) = (xy)(yz+1)(ydx+xdy) + (zdy+ydz)$$

$$= x^{2}y^{2}zdy + xy^{3}zdx + x^{2}ydy + xy^{2}dx + ydz + zdy$$

$$= (xy^{3}z + xy^{2})dx + (x^{2}y^{2}z + z + x^{2}y)dy + ydz$$

b) Let $\varphi = st(ds \wedge dt)$ be a 1-form in \mathbb{R}^2 . Compute $f^*(\varphi)$. Using ds, dt as calculated above, we obtain

$$f^*(\varphi) = (xy) (yz+1) ((ydx + xdy) \wedge (zdy + ydz))$$

$$= (xy^2z + xy) (yzdx \wedge dy + y^2dx \wedge dz + xzdy \wedge dy + xydy \wedge dz)$$

$$= (xy^3z^2 + xy^2z) dx \wedge dy + (xy^4z + xy^3) dx \wedge dz + (x^2y^3z + x^2y^2)$$

11. Let ω be a 1-form. For vector fields X, Y, prove the formula

$$d\omega\left(X,Y\right) = X\left(\omega(Y)\right) - Y\left(\omega(X)\right) - \omega\left([X,Y]\right).$$

 $X,Y \in \mathfrak{X}(M)$ and $\omega \in \bigwedge^1(M)$, so let $\omega = fdg$ where $f,g \in C^{\infty}$. It will suffice to prove that the formula is true locally, i.e., in a coordinate neighbourhood of each point. In each such neighbourhood, with coordinates x_1,\ldots,x_n , we have $\omega = \sum_{i=1}^n a_i dx_i$, by the definition of ω as a 1-form. Now the left side of the formula becomes

$$d\omega(X,Y) = df \wedge dg(X,Y)$$

= $df(X)dg(Y) - dg(X)df(Y)$
= $(Xf)(Yg) - (Xg)(Yf)$

and the right side of the formula becomes

$$\begin{split} X\omega(Y) - Y\omega(X) - \omega\left([X,Y]\right) &= X\left(fdg(Y)\right) - Y\left(fdg(X)\right) - fdg\left([X,Y]\right) \\ &= X\left(f(Yg)\right) - Y\left(f(Xg)\right) - f\left(XYg - YXg\right) \\ &= (Xf)(Yg) - (Xg)(Yf) \end{split}$$

12. a) Define a Riemannian metric.

A Riemannian metric on a differentiable manifold M is not actually a metric at all. Instead, it is the (rather misleading) name given to any positive definite covariant symmetric tensor of type (2,0). More formulaically,

$$ds^2 = \sum_{1 \le i < j \le n} g_{ij} dx_i \otimes dx_j$$
, where $g_{ij} = g_{ji}, \forall i, j$

- b) Describe two ways to construct a Riemannian metric on a manifold M.
 - i) Using the Whitney Imbedding Theorem, we can imbed M into some \mathbb{R}^n . Let dS_E^2 denote the standard Euclidean metric of \mathbb{R}^n . If we restrict dS_E^2 to M, we get a Riemannian metric on M.
 - ii) First, we choose an open cover $\{A_{\alpha}\}$ of M and use Boothby V.4.1 to produce a regular covering $\{U_i, V_i, \varphi_i\}$ and Boothby V.4.4 to produce a C^{∞} partition of unity $\{f_i\}$ subordinate to this cover. In a given coordinate neighbourhood U_i , we define a "local" Riemannian metric by

$$\Phi_i = \varphi_i^*(\psi),$$

where $\psi = dx_1^2 + dx_2^2 + \ldots + dx_n^2$ is the Euclidean metric. Finally, define

$$ds^2 = \Phi = \sum_i f_i \Phi_i$$

to obtain a globally-defined Riemannian metric.

c) How does one make a metric out of the Riemannian metric?

Let Φ be a Riemannian metric defined on M. By simply denoting $\langle x, y \rangle = \Phi(x, y)$, the Riemannian metric gives an inner product to the tangent space $T_p(M), \forall p \in M$. Let $\gamma(t)$ be a C^1 curve on M, and define $p_0 = \gamma(0)$ and $p_1 = \gamma(1)$. Define the length L of this curve, from p_0 to p_1 , by

$$L = \int_{0}^{1} \left(\Phi\left(\frac{d\gamma}{dt}, \frac{d\gamma}{dt}\right) \right)^{1/2} dt = \int_{0}^{1} \sqrt{\left\langle \frac{d\gamma}{dt}, \frac{d\gamma}{dt} \right\rangle} dt = \int_{0}^{1} \|\gamma'(t)\| dt$$

We now obtain a metric d(x,y) by defining the distance from p_0 to p_1 as

$$d(p_0, p_1) = \inf_{\gamma \in C^1} \left\{ \int_0^1 \|\gamma'(t)\| dt \right\}$$

- 13. a) Define a volume element.
 - b) Compute the volume (with the induces metric of \mathbb{R}^2) in terms of the coordinates given by
 - i) Stereographic projection.
 - ii) Spherical coordinates (with $\rho=1).$