Math 205C - Topology Homework 3 ERIN PEARSE

1. V is an n-dimensional vector space over R.
a) Define a tensor of type (r,s).

First, we define a multilinear map to be a function o : V; x ... x V., — R which
is linear in each V;:

o (v, .. av; +bugy .o v) = ao (V1. U, 0p) F 00 (V1 Uy, U)
Then for r,s € N, o is a tensor of type (r, s) iff it is a multilinear map

a:V><...><V><V*><...><V";—>R

Vv v
r times s times

r is called the covariant order, and s the contravariant order, of o.
b) Explain how J7 (V') forms a vector space of dimension n"**.

c) i) For T*(V) = @,—, T*(V), explain how (T*(V), +, ®) forms an associative
algebra.

See [Booth] p.207, Thm 6.2
ii) Is the tensor product ® commutative?

No, it is not commutative. Let V = R? and let v = (uy,uy) and v =
(v1,v9) be vectors in V. Define p : V xV — Rand ¢ :V xV — R by

¢ (u,v) = (u,v) = uvy + Uy
Y (u,v) = det (u,v) = ujve — Uy
For an example, we use four randomly selected vectors of R?:
=(0,1),t=(1,1),u=(1,3),v = (1,0)
and compute

@V (s, t,u,v) =99 ((0,1),(1,1),(1,3),(1,0))
=¢((0,1),(1,1))% ((1,3),(1,0))
= (0+1)(0—3)
=3

and

¢®@<57t7u7v):¢®(p((071) (171) (1 3) (170))
=1 ((0,1),(1,1)) ¢ ((1,3),(1,0))
— (0—1)(140)
=-1
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2. Explain the tensor fields J7(M),T"(M),Ts(M) over a manifold M. How is a tensor
field written in local coordinates?

See [Booth] p.209

3.

a)

Define the alternating and symmetric tensors.

Let V' be a vector space, and let ¢ € T"(V) be some tensor. We say ¢ is
symmetric iff Vi,7 =1,2,...,r, we have

O (V1o Ve, Uy 0) =0 (V1,0 U Uy, )
We say ¢ is alternating ift Vi,j = 1,2,...,r, we have

© (V1o Uiy, Uy 0) = =@ (V1,00 Uy e, Uy, )

Define the alternating and symmetrizing operators.

The action of the alternating operator A : 7" (V) — T7 (V) on a tensor ¢ is
defined pointwise as

(Ap) (v1,...,0,) = 7%, ZUGG (sgno)e (vg(l), . ,UG(T))

The action of the symmetrizing operator 8 : 77 (V) — T" (V) on a tensor ¢ is
defined pointwise as

(SQD) (Ul, c. ,’UT) = % ZO’EGT (Y2 (Uo(l)7 c. ,’UG(,.))

S, is the symmetric group of all permutations on r letters.
Define the wedge product: A : A*(V) x A(V) = A" (V).

(0. 8) —2 (p A ) ™ 220 4 (o )

Give an example w € A", 7 € A' such that w @ n ¢ A"

Consider the tensors dx,dy € /\1, considered as alternating tensors on V', and
observe how they act on the vectors u = (uy, uz) and v = (v1, v9):

dr @ dy ((u1,us) , (v1,v9)) = dx (uy, usz) - dy (vy, v2) = uzvy
but
dr ® dy ((Ulu UQ) ’ (ula u2)) =dx (Uh UQ) ' dy (ulu u2> = V1Ua.

Since we don’t necessarily have that ujvy = viug, de @ dy ¢ /\2.
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a)

If dimp = n, then what is the dimension of A*(V)? What is its basis?
If the vector space V has basis {vy,...,v,}, then the basis of A*(V) is

(B:{Uh/\---/\vik Zl<<lk}

Every element of A*(V) can be written in the form 3.7, a;v;, so using the rule
xr ANy = —yAx, it is clear that v; A ... A v, generates /\k(V) Since the v; are
linearly independent, B forms a basis. The final thing to note is that the rule
r ANy = —y A x forces any basis element to have distinct factors, and no more
than k. This is because if v; = v;, then v; A ... Av; Avj Avp = 0. See the next
problem for more details.

Based on this, the cardinality of the basis can be calculated as simple counting
argument. Since any basis element looks like v;, A.. . Av;, , there are k components
to choose and n possibilities to choose from. Order does not matter, because
x ANy = —y Az, so as generators of a vector space, x Ay and y A x are essentially
equivalent. Hence, the number of elements in any basis, and thus the dimension

of A"(V) is ().
Prove that A*(V) = {0} if k& > n.

Since the basis of A"(V)is B = {vy, A... Av;, P41 < ... <i} and k > n, every
basis element looks like:

Viq /\.../\Uin/\vin+1.../\1)ik
Consider the possibilities for v; ,,. v;,,, must be one of the {v;}!_; that form a
basis of V. Suppose v;,., = v;. But v; is already one of the initial v;; A... Av;,,
so we are in the case where v; occurs twice, which implies immediately that the
entire basis element v;; A ... Av;, Av;,,., ... A is 0. To see this, first note
that we can reorder the basis element so that the two v;s are adjacent, without
changing the value of the element. Then by swapping positions of the two v;,

we get
Uil/\---/\vj/\vj---/\vik:_Uh/\---/\vj/\vj---/\vik

which shows that both sides are 0. Since every basis element is 0, the entire

basis is 0, and thus A\*(V) = {0}.

For A*(V) = @32, N*(V), what is dim A*(V)? Explain how (A\(V), +, A) forms
an associative algebra. Is it commutative?

We compute the dimension of using a technique from algebra:
N (V)R = [A" (V) : €= (V)] - [C* (V) : R = n- 00 = 00
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d) Is (A(V),+,A) a subalgebra of (T*(V), +,®)?

Yes. Clearly (A(V),+,A) € (T*(V),+,®), and we have shown above that
A (V) actually does form an algebra under these operations. The key fact that
distinguishes this case from 3(d) is that for tensors ¢ and ¢, ¢ ® ¥ may not
be alternating, but the wedge product is defined in terms of the alternating
operator, so that ¢ A ¢ is alternating by construction. This is why A(V) is
closed under A.

a) Explain a k-form w € A*(M) on a manifold.
b) Explain the exterior/Grassman algebra on a manifold.

c) Let ' : M — N be a C* map between two manifolds M, N. Describe the
pullback map F*: A(N) — A(M).
d) Prove that F* is an algebra homomorphism.
Friw+n) =(w+noF=wolF+noF =Fw+Fn

Now we need to show F'* (w A n) = F*wAF*n, so we begin by showing F”* (w @ 1) =
F*w ® F*n as follows:

Fr(w®n) (u,v) =((w®n)oF) (u,v) def of F*
= (wen) (F(u), F ()
=woF(u)-noF (v) def of w®n
= Fw(u) - F*n(v) def of F* again
= (F'w® F*n) (u,v) def of w ® 1 again

Now we proceed with A:

F*(wAn) (u,v)

= (wAn) (F(u), F(v)) def of F*

= A (@) (F (u), F (v)) def of A

= 5 D e, (ER0) @@ (F(u) F () defof A

_ (T+5)! * *

=GB Y e, (0) (Frw @ Fn) (u,0) by above

= (TrTsi)!A (F"w ® F*n) (u,v) def of A again
= (F"w A F™'n) (u, v) def of A again

Thus, F* (w A n) = F*w A F*n. O
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a) Define the exterior differentiation operator d : A*(M) — A (M).
d is the unique R-linear map d : A" (M) — A\*(M) satisfying
i) for f € C°(M) = \°(M), we have d(f) = df, the differential of f.
i) d(@Ao)=diAa+(—1)0Ado, V8 e \' Yo e \*
iii) d2 = 0

b) Prove that d* = 0.

For w € A\"(M), we can write w = Y w;,...;,dx;, A ... Adx;, inlocal coordinates.
Since d is R-linear, it will suffice to consider the case d (d (wil...ipdasil AAY da:ip) )
Then

(d (w“ ap Ty NN dxip))
[ (aw” TP d$k) ANdxgy N ... A dasip]

8$k

" Owy - OWiy -ip
=d [Zk . dry Ndz;, A... N\ d:cl-p}

oxy,

" 02wiy...q
— Zk:l Zj:l [ axj})xkp dxj ANdxyp Ndxg, N ... A\ dm,»p}

= Z 82(.01'1“.1.]) o 82wi1~~ip dx A dl’ A dI A A d{E
1<k<j<n Ox;0xy, Oz 0x; J k i1 ip | -

2 2, . .
but then 8;}”% 2 = 68:18;;1’ , by the equality of mixed partial derivatives. So each

term of the sum, and hence the entire sum, is 0.

c¢) Define the closed and exact differential forms.

we AP(M) is a closed form iff dw = 0, i.e., w € Kerd.
w € NP(M) is an exact form iff 3n € A’~'(M) such that dn = w, i.c., w € Imd,

N — = N(M) —— A7)
a) Let w=Y""  widz; be a 1-form in R™. Show w is closed <= g‘;’l = g—‘;’j, Vi, j.
Assume w is closed so that dw = 0. Then
0=dw

= Zn (dwy) N dx;
k=1
- n n Duws
o Zk:l (Zizl Oy, dxk) A de;
_ Ow; 3wk
o Zl<k<i<n [(8”’ ) drg N dxl}

~ ~
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But the basis elements {dzy A dx;} are linearly independent, so this implies

oo _ B0k — (0 Vik = G2 = 0% vk

oxy, Oxy,
Qi — Qwp o Qwi 9wr _ () which immediately gives
oxy, ox; oxy, ox; ) y
do= > (22— 22 )du nds =0,
1<k<i<n

g

b) Find necessary and sufficient conditions for a 2-form w = Cdx Ady + Ady Adz +
Bdz A dx to be closed in R?, where A, B, C' are functions in R3.

We put wis = C,wez = A,wiz3 = —B, and consider w = ZKK].@ wijdx; A\ dx;.
Now
dw = (% dw) A de N dy + (5dy) A de N dy + (52d2) Ada A dy + d(da A dy)
+ (§adx) Ndy N dz + (Grdy) A dy A dz + (Gdz) AN dy A dz + d(dy A dz)
+ (§8dx) Ndz N dx + (§0dy) A dz Ada + (52dz) Adz A de + d(dz A da).
Now by the basic properties of the alternating product,
der Ndy=—dyNde = drAdr=—-drANdr = dexANdrx=0

Using the rule that dx A dx = 0, we see that only the third, fourth, and eighth
terms of the above sum are nonzero, i.e.,

dw = (%—fdz) Adx N\ dy + (‘g—’;‘dx) ANdy N\dz + (%—]jdy> Adz A dx
— Bdw Ndy Adz+ GBde Ady N dz + Ldx A dy A dz
— (%+%—§+%>dm/\dy/\dz

Thus we obtain dw =0 < 6‘4 + ?95 + %S = 0. [l

c¢) Show that a 2-formw = ) ,_. a;jdx; A dr; in R™ is closed <= %—%%—% =
j i

0Vi, 7, k

1<j

(%JU ‘ A
dw = Zl<l<]<n Zk 1 Oxp, dxk A dxz A dl']
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8. Consider the 1-form w = xjg;g‘jw in R?\{(0,0)}. Is w closed? Is w exact?

2
w= Zi:l widr; = Zzdr + Zsdy
So applying d gives

dw—g E i I
i=1 k13xk Ti

= E (gw’ — M) dxy N\ dx;
1<k<ign \ 9Tk

Which shows that w will be closed precisely when
9 (—_y) -9 <L>
Oy \z2+y2 ] = Oz \ x2+9y2 ) *

g( —y ) — (@ +y)+y Ry vt
AT (a2 +42)* (a2 +42)*

Now

and
2

o (2 ) @Hy)—a2r) Y-z
o) -y ey
shows that w is closed.

9. a) In R3, determine which of the following forms are closed and which are exact':
i) ¢ = yzdr + xzdy + rydz

Consider ¢ = wydry + wedxy + wsdrs. Then ¢ is closed because

— Owi __ M
dip = Zl<k<i<3 [‘%k } day, A dz;

— (Ow2 _ Owr
= <8x1 8:62) dﬂ?l A\ dIQ

+(%—%>dx1/\d:c3+(g%g—@>d$2/\d$3

ox1 oxs Ox3
_ [ 9(z2) A(yz)
_<89: 8yy)d:v/\dy
+ (6%’) ) dr A dz + (a(xy) 6%?) dy N dz
= (z—z)dm/\dy+(y—y)dm/\dz—i—(m—x)dy/\dz
=0

If we define 1) € A\°(R3) by ¢ = xyz, then ¢ is exact because
dy = é% (xyz) dx + 88 (xyz) dy + 5= (myz) dz
= yzdr + xzdy + rydz
=@

INote that ¢ exact = ¢ closed, so some of these calculations are unnecessary. @)
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i) = xdr + 2?y*dy + xzdz

@ is not closed because

82222 8:!222
dg0:< (amy)_ (ayy))dx/\dy

Tz T Tz A x2y?
+ (—85%) — a{g;) dx N dz + (8(8y) — (azy )) dy N\ dz

= (22> = 0)dz Ady + (z — 0)dz Adz+ (0 — 0) dy A dz
= 2zy%dx A dy + zdw A dz
#0

Since not closed = not exact, we know that ¢ cannot be exact. |

iii) ¢ = 2zy?dx A dy + zdy A dz

@ is closed because

_ 3 Owiy iy ) }
dp = Zl<i2<i2<3 [(Zk:1 Az, drg | A driy A d,

= (@dm) Adz A dy

+ (6(2—?2)@> Adz A dy + (a(?f)dz) Adz A dy

+ (Sdx) Ndy Adz + (g—;dy> Ady Ndz+ (5dz) Ady A dz
= 2y%dx A dx A dy + dxydy A dxe A dy + 0dz A dx A dy

+0dx ANdy Ndz+ 0dy Ndy Ndz + 1dz AN dy N\ dz
= 2y%dx N dx A dy + dxydy A dx A dy + 1dz A dy A dz
=0

If we define ¢» € A'(R?) by ¢ = cdx 4 22y*dy + zydz, where ¢ € R, then
@ is exact because

dp = (2dx) A da + (g’—;dy> Adx + ($dz) A dx
2242 2242 xz2y?
+ (—a(axy )dx) N dy + (%dy) A dy + (8(azy )dz> A dy

+ (%d:p) Adz + (%y)dy) Adz + (%w) A dz
= 0dx A dz 4 0dy N dz + 0dz N dx
+ 2xy%dx A dy + 22 ydy A dy + 0dz A dy
+ 0dz Ndz + zdy Ndz + ydz N\ dz
= 2x%dx N dy + zdy A dz
= B
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10. Let f : R® — R? taking (z,y, 2) 2 (s,t) be defined by
flw,y,2) = (zy,yz +1).

a) Let ¢ = stds + dt be a 1-form in R?. Compute f*(ip).

f*(p) =po f,s0s=uaxyandt=yz+1, so we find the other components of ¢
in terms of x,y, z as

ds =2 my dx + 8(“’ dy + my ) 4z = ydx + xdy
dt = 8@2* D + yz“ dy + 2y = zdy + ydz

Then
s t ds dt
. AN~ - p -~ ~
fr(e) = (wy) (yz + 1) (ydw + zdy) + (2dy + ydz)
= 2y 2dy + vy’ zd + 2Pydy + vy’dr + ydz + zdy
= (29’2 + 2y?) da + (2°y*2 + 2 + 2%y) dy + yd=

O
b) Let ¢ = st(ds A dt) be a 1-form in R%. Compute f*(y).
Using ds, dt as calculated above, we obtain
fr(e) = (zy) (yz + 1) ((ydx + xdy) A (2dy + ydz))
= (zy*z + 2y) (yzdx A dy + y*da A dz + zzdy A dy + zydy A dz)
= (acy3z2 + xy2z) dz N\ dy + (xy4z + a:y3) dz N dz + (nygz + x2y2)
O

11. Let w be a 1-form. For vector fields X, Y, prove the formula
dw (X,Y) = X (w(Y)) =V (w(X)) —w ([X,Y]).

X,Y € (M) and w € N'(M), so let w = fdg where f,g € C®. Tt will suf-
fice to prove that the formula is true locally, i.e., in a coordinate neighbourhood

of each point. In each such neighbourhood, with coordinates z1,...,x,, we have
w =Y, a;dx;, by the definition of w as a 1-form. Now the left side of the formula
becomes

dw (X, Y)=df Ndg (X,Y)
— df(X)dg(Y) — dg(X)df (V)
= (X/)(Yg) = (Xg)(Y[)
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and the right side of the formula becomes

Xw(Y) =Yw(X) —w([X,Y]) = X (fdg(Y)) = Y (fdg(X)) — fdg (X, Y])
=X (f(Yg)) - Y (f(Xg)) - f(XYyg - Y Xy)
= (XNYg) - (Xg)(YF)

12.  a) Define a Riemannian metric.

A Riemannian metric on a differentiable manifold M is not actually a metric
at all. Instead, it is the (rather misleading) name given to any positive definite
covariant symmetric tensor of type (2,0). More formulaically,

ds? = Z gijdr; @ dxj, where g;; = gji, Vi, j
1<i<ji<n

b) Describe two ways to construct a Riemannian metric on a manifold M.

i) Using the Whitney Imbedding Theorem, we can imbed M into some R™.
Let dS% denote the standard Euclidean metric of R™. If we restrict dS%
to M, we get a Riemannian metric on M.

ii) First, we choose an open cover {A,} of M and use Boothby V.4.1 to
produce a regular covering {U;, V;, ¢;} and Boothby V.4.4 to produce a
C partition of unity {f;} subordinate to this cover. In a given coordinate
neighbourhood U;, we define a “local” Riemannian metric by

where ¢ = dx? + dz3 + ... + dz? is the Euclidean metric. Finally, define

d82 =0 = Zfl(bz

to obtain a globally-defined Riemannian metric.

¢) How does one make a metric out of the Riemannian metric?

Let ® be a a Riemannian metric defined on M. By simply denoting (x,y) =
®(x,y), the Riemannian metric gives an inner product to the tangent space
T,(M),Yp € M. Let v(t) be a C' curve on M, and define py = ~(0) and
p1 = v(1). Define the length L of this curve, from pgy to p;, by

1 1 1
L= [ @) a = [\ a= [
0 0 0

We now obtain a metric d(z,y) by defining the distance from p, to p; as

oo = ing { [ 1o}
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13. a) Define a volume element.

b) Compute the volume (with the induces metric of R?) in terms of the coordinates
given by

i) Stereographic projection.

ii) Spherical coordinates (with p = 1).



