
. January 2005

Part I.

1. (a) Let U ⊆ K be contained in a Hausdorff space X, with U open and K compact,
and assume that f : X → Y is a continuous map into another Hausdorff space
Y . Prove that the closure of f(U) is a compact subset of f(K).

Solution. Since K is compact in X, the continuity of f implies f(K) will be

compact in Y . Y is Hausdorff, so f(K) is closed, i.e., f(K) = f(K).

Since U ⊆ K implies f(U) ⊆ f(K), which implies f(U) ⊆ f(K) = f(K), we

see that f(U) is a closed subset of a compact set and is thus compact. �

(b) Let f,X, Y be as in the preceding problem and assume in addition that f is
an onto, open mapping and X is locally compact. Prove that Y is also locally
compact.

Solution. Using the ‘local’ definition of locally compact, we choose a neighbour-
hood U of y such that y ∈ U ⊆ Y and find a neighbourhood V of y such that
V̄ is compact and V̄ ⊆ U .
f continuous implies f−1(U) is a neighbourhood of f−1(y), so for x ∈ f−1(y)
we can find a neighbourhood W of x with compact closure W̄ ⊆ f−1(U) by
the local compactness of X. Since f is open, f(W ) will be a neighbourhood
of y. And since f is continuous, f(W̄ ) will be compact in f(f−1(U)) = U .
This equality follows by the surjectivity of f . Also, W ⊆ W̄ implies that
f(W ) ⊆ f(W̄ ) ⊆ U .
Now f(W̄ ) is a compact subspace of the Hausdorff space Y , so it is closed, i.e.,

f(W̄ ) = f
(

W̄
)

. Then

W ⊆ W̄ =⇒ f(W ) ⊆ f(W̄ ) = f
(

W̄
)

=⇒ f(W ) ⊆ f
(

W̄
)

=⇒ f(W ) is compact.

So put V = f(W ) and see that Y is locally compact. �

2. Let S be the set of all connected subsets of the cartesian plane. Show that the
cardinality of S is strictly greater than the cardinality of the plane. (Hint : consider
all subsets of the form

(0, 1)2 ∪ {B × {1}}
where B is a subset of (0, 1). Under what conditions is such a subset connected?
Why?

Solution. Following the hint, first note that (0, 1)2 ∪{B×{1}} is connected for any
arbitrary subset B ⊆ (0, 1). To see this, pick b ∈ B and observe that any open
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neighbourhood O = U × V (“cartesian plane” indicates the usual topology on R2)
must intersect (0, 1)2, hence is in the same component as (0, 1)2. See Thm. 25.1.

Since there is a continuous bijection [0, 1] → [0, 1]2 by the Peano map, we have

|S| ≥
∣

∣(0, 1)2 ∪ {B × {1}}
∣

∣

= |{B ⊆ (0, 1)}|
=
∣

∣2(0,1)
∣

∣

=
∣

∣2[0,1]
∣

∣ 2 points don’t do much

=
∣

∣

∣
2[0,1]2

∣

∣

∣
by the Peano map

>
∣

∣[0, 1]2
∣

∣ by some famous theorem

=
∣

∣R2
∣

∣ . �

3. The logical implications of the statements below have the form A =⇒ B =⇒ D
and A =⇒ C =⇒ D if they are suitably labeled as A,B,C,D. Give a labeling of
the statements for which this is true.
(1) The topological space X is compact and metrizable.
(2) The topological space X is first countable.
(3) The topological space X is metrizable.
(4) The topological space X is second countable.

Solution by Chui (Zhi) Yao. We label the statements:
(A) The topological space X is compact and metrizable.
(D) The topological space X is first countable.
(B) The topological space X is metrizable.
(C) The topological space X is second countable.

It is clear that (A) =⇒ (B). To see that (B) =⇒ (D), fix x ∈ X and consider
the collection of metric balls {Bn(x)}∞n=1, where Bn(x) = B(x, 1/n).

To see (A) =⇒ (C), let An be a finite covering of X by 1/n-balls (any covering
by 1/n-balls has a finite subcover, by compactness). Then A =

⋃

∞

n=1 An is a basis
for X. To see that it really is a basis, use Lemma 13.2: pick an open set U ⊆ X.
Then we can find a metric ball B(x, ε) with x ∈ B(x, ε) ⊆ U , for 0 < ε <∞. Then
choose n sufficiently large that 1/n < ε/2 and find an element of An containing x.
We have satisfied the requirements of the Lemma. It is clear that (C) =⇒ (D); if
B is a countable basis, then just take the subcollection consisting of sets of B which
contain x, as a basis at x. �

Part II.

4. Let Fn be the free group of rank n. Show that for all n ≥ 2, F2 contains a subgroup
isomorphic to Fn.
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Figure 1. A covering space for a wedge of 2 circles.

Solution. The space E depicted in Figure 1 is a covering space for the wedge of two
circles B. Note that E and a wedge of 3 circles are both deformation retracts of the
triply punctured plane, hence they have the same fundamental groups. In a similar
manner, it is possible to show that a wedge En of n circles is a covering space for a
wedge of 2 circles, for any n ≥ 2.

By Thm. 54.6, the covering map p : En → B gives a monomorphism p∗ :
π1(En, e0) → π1(B, b0). This gives an injective homomorphism

p∗ : Fn = π1(En, e0) → F2 = π1(B, b0),

so p∗(π1(En, e0)) is a subgroup of π1(B, b0) = F2 which is isomorphic to Fn. �

Note, this does not produce an explicit homomorphism, as is requested in the
similar problem June 2004 #6, so here is an alternative approach:

Solution. Let the generators of Fn be a1, a2, . . . , an, so Fn = F (a1, a2, . . . , an); and
let the generators of F2 be x, y so that F2 = F (x, y). We construct a homomorphism
ϕ : Fn → F2 by defining it on the generators:

a1 7→ yxy−1

a2 7→ y2x2y−2

...

an 7→ ynxny−n.

Then use ϕ(ab) = ϕ(a)ϕ(b) to extend ϕ to all of Fn. Now H = Im(ϕ) is a subgroup
of F2 and ϕ : Fn → Im(ϕ) is an epimorphism. It only remains to show ϕ is injective.

Consider that an element in the image of ϕ has the form

ϕ(α) = yδ1xε1yδ2xε2yδ3xε3 . . . yδmxεmyδm+1.

We can recover α via the following decoding algorithm:

(i) δ1 = 1, 2, . . . , n indicates that the first letter of α is a1, a2, . . . , an, respectively.

(ii) ε1/δ1 is the exponent of the first letter of α.

(iii) δ′2 = δ1 + δ2 indicates whether the second letter of α is a1, a2, . . . , an, as in (i).

(iv) ε2/δ
′

2 is the exponent of the second letter of α.
...
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γ

Figure 2. Loops around the axes in R3.

This algorithm clearly stops after m steps. Since this procedure for constructing the
inverse exists, ϕ is injective. This procedure works because raising a1, a2, . . . , an to
a power produces a higher exponent on the x but not on the y:

ϕ(a5
2) = ϕ(a2)

5 = (y2x2y−2) . . . (y2x2y−2) = y2x10y−2. �

5. Consider the nonnegative coordinate axes of R3, i.e., the subset

Y = {(x, 0, 0) ∈ R3; x ≥ 0} ∪ {(0, y, 0) ∈ R3; y ≥ 0} ∪ {(0, 0, z) ∈ R3; z ≥ 0}.
Calculate the fundamental group of X = R3 \ Y .

Solution. This is Munkres Ex. 56.2(e). Consider that any loop in this space is
homotopic to some combination of α, β, γ (and their inverses), as depicted in Figure
2. Note that α ∗ β = γ, so that the fundamental group can be generated without γ.
Also, note that β ∗ α ' γ 6= γ, so fundamental group is not abelian.

We have a group with two generators and it is clear by inspection that there is
no relation between the two generators; i.e.,

π1(X) = F (α, β). �

6. Suppose that X has universal covering space X̃, and X̃ is compact. Show that the
fundamental group of X is finite.

Solution. (See also June 2004 #7, and 1998 #4).
By Thm. 54.4, the lifting correspondence gives a surjection

ϕ : π1(X, b) → p−1(b).

This is a bijection since X̃, as a universal covering space, must be simply connected.
Thus it suffices to show p−1(b) is finite.

Take an open covering {U} of X consisting of neighbourhoods which are evenly
covered by p. Every point of X has a neighbourhood open neighbourhood which is
evenly covered, so this is clearly possible. Then {p−1(U)} is an open covering of X̃.
We can write each of these sets as

p−1(U) =
⊔

α

Vα,
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and obtain an open covering {Vα} of X̃ which (by compactness) must have a finite
subcover {Vαi

}n
i=1. Now suppose b ∈ Ub, so

p−1(b) ⊆ p−1(Ub) =
⊔

α

Vbα =

J
⊔

j=1

Vbαj
,

where the Vbαj
are from the finite subcover. Since each Vbαj

is homeomorphic to
Ub (and thus intersects p−1(b) in exactly one point), and since the Vbαj

are disjoint,
|p−1(b)| <∞. �

Part III.

7. Suppose that M is a smooth n-manifold and that

π : M ′ →M

is a covering map. Show that M ′ has a unique smooth structure relative to which
π is locally a diffeomorphism.

Solution. As a covering map, π is locally a homeomorphism, i.e., for x ∈M , there is
a neighbourhood U of x for which π−1(U) = tVx, Vx open in M ′, and π

∣

∣

Vx
: Vx → U

is a homeomorphism. So we use this to pull the smooth structure of M back to M ′;
M already has some smooth structure U = {(Uα, ϕa)}.

For any x ∈ Uα, use π to find a neighbourhood Ux of x so that π−1(Ux∩Uα) = tVxα

and π
∣

∣

Vxα
is a homeomorphism.

Claim: V =
{

(Vxα, ϕ◦ π
∣

∣

Vxα

}

is a smooth structure.

Proof. We need to check compatibility of the covering. Recall that (V1, ψ1) and
(V2, ψ2) are compatible iff V1 ∩ V2 6= 0 implies that ψ2 ◦ψ−1

1 and ψ2 ◦ψ−1
1 are diffeo-

morphisms of the open sets ψ1(U ∩ V ) and ψ2(U ∩ V ).
Let V1, V2 be two intersecting sets of V and check that

ψ2 ◦ψ−1 : ψ1(V1 ∩ V2) → ψ2(V1 ∩ V2)

is a diffeomorphism. First, note that for any y ∈ V1 ∩ V2, π(y) = x ∈ π(V1) ∩ (V2).
Hence, for V1 = U1α and V2 = U2β we can take α = β, i.e., we can choose sets from
the “same level” in the pancake stack so that y ∈ U1α ∩ U2α. Then

ψ2 ◦ψ−1
1 (ψ1(V1 ∩ V2)) = ψ2(V1 ∩ V2) ψi are diffeo

= ϕ2 ◦ π
∣

∣

V2
(V1 ∩ V2) def ψ2

= ϕ2 (π(U1α ∩ U2α)) α = β

= ϕ2(U1 ∩ U2) def π

= ϕ1(U1 ∩ U2) smooth str of M

= ψ1 ◦ψ−1
2 (ψ2(V1 ∩ V2)) BSA (in reverse) �

The uniqueness of this smooth structure comes from the covering map. �
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8. Prove every smooth manifold admits a Riemannian metric.

Solution. By the Whitney Embedding Theorem, any smooth manifold M of dimen-
sion n may be smoothly embedded into R2n+1 as a closed submanifold. The restric-
tion of the standard Riemannian metric on R2n+1 to M is a Riemannian metric on
M . �

9. To define the Hopf fibration h : S3 → S2, we think of S3 as the unit sphere in C⊕C
and S2 as the unit sphere in C⊕R. With respect to these coordinates, the formula
for h is

h : (a, c) 7→
(

2ac, |a|2 − |c|2
)

.

(a) Show that the image of h is indeed contained in S2.

Solution by Wayne Lam. For (a, c) ∈ S3 we have |a|2 + |c|2 = 1. Then

‖h(a, c)‖2
C⊕R = |2ac|2 +

∣

∣|a|2 − |c|2
∣

∣

2

= 4|a|2|c|2 + |a|4 − 2|a|2|c|2 + |c|4

= |a|4 + 2|a|2|c|2 + |c|4

=
(

|a|2 + |c|2
)2

= 1. �

(b) Show that h is a quotient map.

Solution. First note that h is continuous (as a composition of continuous maps),
S3 is compact and S2 is Hausdorff; thus h is a closed map. A surjective closed
map is always a quotient map, since a quotient map only requires that saturated
closed sets have closed images. Hence we only need to show h is surjective.
Pick (z, x) ∈ S2. Then let

a =
√

1+x
2
ei arg z c =

√

1−x
2
.

Now we have

h(a, c) = h

(

√

1+x
2
ei arg z,

√

1−x
2

)

=

(

2
√

1+x
2

1−x
2
ei arg z, 1+x

2
− 1−x

2

)

=
(√

1 − x2ei arg z, x
)

=
(

|z|ei arg z, x
)

= (z, x).

�
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(c) Identify S1 with the unit circle in C. Consider the S1-action on S3,

H : S1 × S3 → S3,

H : (ω; (a, c)) → (ωa, ωc),

where the multiplication takes place in C. Show that the orbits of this circle
action coincide with the fibers of h.

Solution by Wayne Lam. First, we pick a point in the orbit of (a, c) and show
it is in the same fiber; so let (a, c) ∈ S3 ⊆ C ⊕ C. Then

h(ωa, ωc) =
(

2ωaωc, |ωa|2 − |ωc|2
)

=
(

2ac̄, |a|2 − |c|2
)

ωω̄ = |ω|2 = 1

= h(a, c),

so (ωa, ωc) ∈ [(a, c)], ∀ω.
Next, we pick two points in the same fiber and show that one can be written
as the image of the other under the action; so suppose h(a1, c1) = h(a2, c2). By
the formula for h, this gives the equalities

a1c1 = a2c2 (9.1)

and
2|a1|2 − 1 = 2|a2|2 − 1 =⇒ a2 = a1e

iθ. (9.2)

Thus for a1 6= 0 we have

a1c1 = a1e
iθc2

c1 = e−iθc2

c1 = e−iθc2

c2 = eiθc1.

In case a1 = 0, we have a2 = 0 by (9.1) and then |c1|2 = |c2|2 by (9.2), which
implies c2 = c1e

iθ.
Either way, (a2, c2) = eiθ(a2, c2). �
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. June 2004

Part I.

1. (a) Suppose that X is a set and U and V are topologies for X. Prove that U ∩ V
is also a topology for X.

Solution by Wayne Lam.

(i) It is clear that ∅, X ∈ U ∩ V.

(ii) Suppose {Oα} ⊆ U ∩ V. Then {Oα} ⊆ U and hence
⋃

αOα ∈ U , since U
is a topology. Similarly,

⋃

αOα ∈ V, whence
⋃

α Oα ∈ U ∩ V.

(iii) Suppose {On}N
n=1 ⊆ U ∩ V. Then {On} ⊆ U and hence

⋂N

n=1On ∈ U ,

since U is a topology. Similarly,
⋂N

n=1On ∈ V, whence
⋂N

n=1On ∈ U ∩ V.

�

(b) Suppose that ∼ is the binary relation on R such that x ∼ y iff y is a positive
multiple of x. Determine whether the quotient space is Hausdorff and prove
your conclusion is correct.

Solution by Wayne Lam. The quotient space is not Hausdorff; we denote it by

R/ ∼ = {[−1], [0], [1]}.
U is open in R/ ∼ iff p−1(U) is open in R, so let U be any open neighbourhood
of 0. Then p−1(U) contains an open interval about 0, i.e., ∃(a, b) ⊆ p−1(U) for
a < 0 < b. Then U contains [−1] and [1]. Hence the quotient space is not even
T1, let alone Hausdorff. �

2. (a) Let X and Y be topological spaces, let a ∈ X and b ∈ Y , and let A and B
be the connected components of a and b in X and Y respectively. Prove that
A×B is the connected component of (a, b) in X × Y .

Solution. Recall that a component is defined to be an element of the partition
associated to the equivalence relation

x ∼ y iff ∃W ⊆ X connected, with x, y ∈ W.

Also recall the following theorem: The components {Ci} form a partition of X
such that each connected nonempty W ⊆ X intersects only one Ci.
To see that A× B is the component of (a, b), we show

A× B * C =⇒ C not connected.

Project C to the axes: FX = πX(C), FY = πY (C). Then lift back to the product
space: C ⊆ π−1

X (FX) × π−1
Y (FY ) = D. Let {Di} be the connected components

of D.
Since A× B ⊆ C ⊆ D, let D1 be the component containing A×B.
Claim: D1 = A× B.
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Proof. Suppose A * πX(D1). Then πX(D1) is not connected, by the theorem
cited initially. Whence D1 is not connected, by Thm. 23.5 (a contin image of
connected is connected). The same holds for B = πY (D1). �

Now since C ⊆ D and D1 = A×B, any pt of C which is not in A×B is in some
other connected component of C, hence C is not connected by the disjointness
of partitions (by the thm again). �

(b) Let X be a topological space and suppose that x ∈ X is not a limit point of
X. Prove that the one point subset {x} is open in X.

Solution. If x is not a limit point, we can find an open neighbourhood U of x
that does not intersect X in any point other than x, i.e.,

U = U ∩X = {x}.
Since U is open, we are done. �

3. Let X be a topological space such that every point in X lies in a maximal compact
subset. Prove that X is compact.

Solution. We will use Zorn’s Lemma. Using inclusion for an order, define

A = {nonempty compact subsets of X}.
Pick a chain A = {Ai}, so Ai ⊆ Aj for i < j. Suppose A has no upper bound. Then
we can find a sequence

{Ajk
}∞k=1, Ajk

⊆ Ajk+1
, (3.1)

and for any M ∈ A, ∃K such that AjK
* M . But choose x ∈ Aj1 . There is no

maximal subset containing x, since such a set would contradict (3.1). <↙
Hence A has a maximal element B by Zorn. To see that B = X, suppose not.

Then we can find y ∈ X \B and consider C = Bt{y} + B. C can easily be seen to
be compact by using the finite subcover definition of compactness. The compactness
of X contradicts the maximality of B. So B = X. �

4. (a) Suppose that X is a separable metric space and A is a subspace of X. Prove
that A is also separable.

Solution. We begin by proving the following useful fact.
Claim: When X is metrizable, separable is equivalent to second countable.

Proof. (⇒) (Munkres Ex30.5(a)) Let W = {wn}∞n=1 be a countable dense sub-
space of X. For each wn, consider the family of metric balls V = {Vnk}∞k=1,
where

Vnk = B(wn, 1/k) = {x ∈ X ... d(x, wn) < 1/k}.
Evidently, V is a countable basis. (⇐) (Munkres Thm 30.3) From each nonempty
basis element Bn, choose a point xn. Then D = {xn}∞n=1 is dense in X: given
any point x ∈ X, every basis element containing x intersects D, so x ∈ D. �
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Now note that a subspace of a second-countable space is also second-countable
by Thm 30.2: If B is a countable basis for X, then {B ∩ A ... B ∈ B} is a
countable basis for the subspace A of X. �

(b) Give an example of a topological space that is metrizable but does not have
a complete metric, and give reasons for your answer. [Hint : Look at dense
subsets of the real numbers.]

Solution. If you have studied Real Analysis, you can use an Lp space with the
Lq metric. Otherwise, follow the hint and consider Q ⊆ R. Q has the metric
it inherits as a subspace of R, so is clearly metrizable. To see that it is not
complete, choose a Cauchy sequence of rationals which converges to π, like

q1 = 3

q2 = 3.1

q3 = 3.14

q4 = 3.141

...

q20 = 3.1415926535897932384

...

Q = {qk}∞k=1 is clearly a sequence in Q which converges to π ∈ R \ Q. To see
Q is Cauchy, note that it is convergent in R, hence Cauchy in R and also in Q.
Alternatively, put M = min{m,n} − 1, note that

|qm − qn| ≤ 10−M ,

which is less than any fixed ε for sufficiently large M . �

Part II.

5. Let B3 = {(x, y, z) ∈ R3 ... x2 +y2 +z2 ≤ 1} be the 3-ball. Let H be the solid torus in
the interior of B3 obtained by revolving the disk D = {(x, 0, z) ∈ R3

..
.(x−1/2)2+z2 ≤

1/9} about the z-axis. Let X = B3\H. Calculate the fundamental group π1(X).

Solution. If we take S1 to be the unit circle in the xy-plane, then X is the deforma-
tion retract of Y = R3 \ S1, as seen by the following homotopy:

F (x̄, t) =











(1 − t)x̄ + tx̄/‖x̄‖ ‖x̄‖ ≥ 1,

x̄ x̄ ∈ X,

(1 − t)x̄ + ty x̄ ∈ B3 \X,
where y is the metric projection of x̄ to X, i.e., the closest point of X to x̄ (which
is unique because the circle S1 has been removed). It is easily seen that this is
continuous, and that it fixes each point of X as t changes from 0 to 1.
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Thus, π1(X) = π1(Y ). The fundamental group of Y is

π1(Y ) = 〈[γ]〉 ∼= Z, (5.1)

where γ is the curve going from (2, 0, 0) to (0, 0, 2) to (0, 0,−2) to (2, 0, 0). (Y is
path-connected, so we have arbitrarily chosen the base point x0 = (2, 0, 0).) To see
why, let α be any curve with “winding number” 0, i.e., which is homotopic to some
curve β which does not pass through the disk D2 = hull(S1). Such a curve may be
disentangled (if necessary) from D2 as follows:

(i) Let Cε be a cylinder of very small radius ε around the x-axis.

(ii) For any segment of β which passes through Cε, replace this segment by a
geodesic across Cε which connects the entry and exit points of β. This process
can be done, even if β passes through Cε infinitely many times. Call the result
β̇.

(iii) Make a homotopy from β̇ by expanding ε until ε = 2, and call the result β̈.

(iv) Make a straight line homotopy from β̈ to the projection of β̈ in the xz-plane.
This resulting curve is straight-line homotopic to the constant map at x0, by
the contractibility of the xz-plane.

Thus, [α] = [γ]. Hence, any loop can be decomposed as a concatenation of trivial
loops and powers of γ, and (5.1) is valid. �

Steps (i)–(iv) are necessary in case the image of γ is dense in some neighbourhood
of D2; see Ex. 59.2 and consider Thm. 44.1.

6. Let F (a, b, c) be the free group of rank 3 generated by a, b, c and F (x, y) be the
free group of rank 2 generated by x, y. Find an explicit injective homomorphism
ϕ : F (a, b, c) → F (x, y). Also describe a complete list of cosets of the subgroup
ϕ(F (a, b, c)) of F (x, y).

Solution. (See also Jan 2005 #4).
We define the homomorphism on the generators by

a 7→ yxy−1

b 7→ y2x2y−2

c 7→ y3x3y−3.

Now consider that an element in the image of ϕ has the form

ϕ(α) = yδ1xε1yδ2xε2yδ3xε3 . . . yδnxεnyδn+1.

We can recover α via the following decoding algorithm:

(i) δ1 = 1, 2, 3 indicates whether the first letter of α is an a, b, or c, respectively.

(ii) ε1/δ1 is the exponent of the first letter of α.

(iii) δ′2 = δ1 + δ2 indicates whether the second letter of α is an a, b, or c, as in (i).

(iv) ε2/δ
′

2 is the exponent of the second letter of α.
...
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Since this procedure for constructing the inverse exists, ϕ is injective. This procedure
works because raising a, b, or c to a power produces a higher exponent on the x but
not on the y:

ϕ(b5) = ϕ(b)5 = (y2x2y−2) . . . (y2x2y−2) = y2x10y−2.

The cosets of H = ϕ(F (a, b, c)) are sets wH. Here, u ∈ wH iff u = wh where
h ∈ H. I.e., h begins with yε, ε = 1, 2, 3 and ends with yε for ε = −1,−2,−3, and
has yε for ε = ±1,±2 for any other factor of y which appears in h. Of course, the
exponents on the factors of x must also make sense. �

7. Suppose that X is a compact topological space, and p : X̃ → X is the universal
space of X. Show that X̃ is compact iff the fundamental group of X is finite.

Solution. (See also Jan 2005 #6, and 1998 #4).
(⇒) This was #6 on the Jan 2005 qualifier.
(⇐) By Thm. 54.4, the lifting correspondence gives a surjection

ϕ : π1(X, x0) → p−1(x0).

This is a bijection since X̃, as a universal covering space, must be simply connected.
Thus we know |p−1(x0)| = n <∞.

Let C = {C} be an open covering of X̃. For any x ∈ X, we have

p−1(x) = {b1(x), . . . , bn(x)}.
Thus, for each x ∈ X, we may choose sets from O which are neighbourhoods of the
points in its preimage, i.e., pick sets

C1(x), . . . , Cn(x) ∈ C with bi(x) ∈ Ci(x) ∈ C.
The sets Ci(x) are depicted as rectangles in Figure 3.

Also, we have that p is a covering map, so we also have an evenly covered neigh-
bourhood U(x) of each point x, i.e., an open set U(x) such that x ∈ U(x) and

p−1(U(x)) =
n
⊔

i=1

Vi(x).

U(x) and each of the sets Vi(x) is depicted as an ellipse in Figure 3.
Each set Vi(x) ∩ Ci(x) is a neighbourhood of bi(x) which is homeomorphic by p

to a subset of U(x). We intersect these to obtain a new neighbourhood of x:

W (x) =
n
⋂

i=1

p
(

Vi(x) ∩ Ci(x)
)

.

Now {W (x)}x∈X is an open cover of the compact space X, so we take a finite
subcover {W (xj)}J

j=1 of X. Looking back to C, we see that the collection

{Ci(xj) ∈ C ... i = 1, . . . , n; j = 1, . . . , J}
is a finite covering of X̃. To check this, note that {U(xj)} is a finite cover of X, so

{Vi(xj)∩Ci(xj)} is a covering of X̃, and each of these sets is contained in Ci(xj). �
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Figure 3. Constructing a finite subcover for X̃, the universal covering space
of the compact simply connected space X.

Part III.

8. Show there is no C∞ injection g : S2 → S1.

Solution. Since S1 ⊆ R2, Borsuk-Ulam (Thm. 57.3) says that there is some x ∈ S2

for which g(x) = g(−x). Hence, there can be no injection S2 → S1, let alone a C∞

injection. �

Alternative proof using differentiability:

Solution by Alissa Crans.
Assume g is injective and pick y ∈ Im(f). If y is a regular value, then g−1(y) is a
smooth 1-manifold. But since g is injective, g−1(y) contains only a single point, so

it is a 0-manifold. <↙
So each y ∈ Im(g) is a critical value, not a regular value. Thus, g−1(y) contains

at least one critical point. But by injectivity, g−1(y) is a singleton and hence is that
critical point. Thus the domain of g consists entirely of critical point, i.e., dgx = 0,
∀x ∈ S2. Since the domain is connected, this implies g is constant. But S2 is more

than a single point, so g is clearly not injective. <↙ �

9. Let U be an open subset of euclidean space and let X and Y be smooth vector fields
on U . Show that

[X, Y ] ≡ 0
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U

X

Xq

Yq

q
q

Φ
t
(q)

Φ
t
(q)

Ψ
s
(q) U

Y

Y

U

Yq

σ q

Φ
t
(q)

=  Φ
t°σσ q(Φt)*q

Figure 4. What it means for flows to commute. Recall that for any smooth
map Φ : U → V , the differential or push-forward is defined on infinitesimal
curves via Φ∗q〈σ〉q = 〈Φ◦σ〉Φ(q). Here we use the smooth map Φt : U → U
and the curve σ(s) = Ψs(q). The left side of (9.1) is (Φt)∗q(Yq), depicted in
the bottom diagram as a tangent vector to the image of the flow line σ(s),
after evolving it in time by the flow Φ of X. The right side of (9.1) is the
tangent vector depicted at top right, obtained by letting q flow along Φ by
time t, and evaluating the field Y at that point.

iff the local flows generated by X and Y commute.

Solution from Conlon p.78.
If the local flows commute on U , then by definition we have

ΦtΨs(q) = ΨsΦt(q), −δq < s, t < δq, ∀q ∈ U.

This means that for −δq < t < δq, Φt carries the flow line {Ψs(q) ... − δq < s < δq} of
Ψ onto another flow line of Ψ. By taking the infinitesimal curve point of view, we
see that evaluating a vector field at a point and then mapping it by the differential
of the flow gives the same result as evolving the point along the flow, and then
evaluating the vector field. In symbols,

(Φt)∗q(Yq) = YΦt(q). (9.1)

Putting this into the expression for the bracket, we have

[X, Y ] = LX(Y ) Thm. 2.8.16

= lim
t→0

ϕ−t∗(Y ) − Y

t
def of LX(Y )

= lim
t→0

Y − Y

t
above remark

= 0

throughout U .



Topology Qual Seminar 15

For the converse, assume [X, Y ] ≡ 0 on U . Let q ∈ U , fix s ∈ (−δq, δq) and let
q′ = Ψs(q) be a the point of U to which q has flowed at time s, under Ψ. We define
a mapping into the tangent space at this new point q′ as

v : (−δq, δq) → Tq′(U) by v(t) = Φ−t∗(YΦt(q′)).

Then v(t) is a differentiable curve in Tq′(U) = Rn, i.e., a smoothly varying family
of vectors. Thus we may differentiate

dv

dt
= lim

h→0

v(t+ h) − v(t)

h

= lim
h→0

(Φ−t−h)∗
(

YΦt+h(q′)

)

− Φ−t∗

(

YΦt(q′)

)

h
def v

= lim
h→0

Φ−t∗

(

(Φ−h)∗
(

YΦt+h(q′)

)

−
(

YΦt(q′)

)

h

)

linearity

= Φ−t∗

(

lim
h→0

(Φ−h)∗
(

YΦt(Φh(q′))

)

−
(

YΦt(q′)

)

h

)

continuity

= Φ−t∗[X, Y ]Φt(q′) Thm. 2.8.16

= 0 hyp [X, Y ] ≡ 0.

Whence dv
dt

= 0 on −δq < t < δq implies that v(t) is constant on this interval, i.e.

v(t) = Φ−t∗

(

YΦt(q′)

)

= Φ0∗

(

YΦ0(q′)

)

= Yq′, −δq < t < δq. (9.2)

But this is true for any q′ on the integral curve to Y given by σ(s) = Ψs(q). Thus,

σ̇(s) = YΨs(q) = Yσ(s) = Yq′ by Def. 2.8.3,

Whence (9.2) becomes

σ̇(s) = Φ−t∗

(

YΦt(q′)

)

,

and applying the flow Φt∗ gives

Φt∗(σ̇(s)) = Φt∗Φ−t∗

(

YΦt(q′)

)

= YΦt(q′) = YΦt(Ψs(q)), (9.3)

as s and t range independently over (−δq, δq). Now (9.3) states that Φt ◦σ is also
an integral curve to Y with initial conditions Φt(σ(0)) = Φt(q). But then

ΦtΨs(q) = ΨsΦt(q), −δq < s, t < δq, ∀q ∈ U.

by the uniqueness of solutions to ODE. �

10. To define the Hopf fibration h : S3 → S2, we think of S3 as the unit sphere in C⊕C
and S2 as the unit sphere in C⊕R. With respect to these coordinates, the formula
for h is

h : (a, c) 7→
(

2ac, |a|2 − |c|2
)

.

(a) Show that the image of h is indeed contained in S2.
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Solution by Wayne Lam. For (a, c) ∈ S3 we have |a|2 + |c|2 = 1. Then

‖h(a, c)‖2
C⊕R = |2ac|2 +

∣

∣|a|2 − |c|2
∣

∣

2

= 4|a|2|c|2 + |a|4 − 2|a|2|c|2 + |c|4

= |a|4 + 2|a|2|c|2 + |c|4

=
(

|a|2 + |c|2
)2

= 1. �

(b) Show that h is a quotient map.

Solution. First note that h is continuous (as a composition of continuous maps),
S3 is compact and S2 is Hausdorff; thus h is a closed map. A surjective closed
map is always a quotient map, since a quotient map only requires that saturated
closed sets have closed images. Hence we only need to show h is surjective.
Pick (z, x) ∈ S2. Then let

a =
√

1+x
2
ei arg z c =

√

1−x
2
.

Now we have

h(a, c) = h

(

√

1+x
2
ei arg z,

√

1−x
2

)

=

(

2
√

1+x
2

1−x
2
ei arg z, 1+x

2
− 1−x

2

)

=
(√

1 − x2ei arg z, x
)

=
(

|z|ei arg z, x
)

= (z, x).

�
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. January 2004

Part I.

1. Let A and B by subsets of a topological space X and let C be a subset of A ∩ B
that is closed in each of A and B with respect to the subspace topologies. Prove
that C is a closed subset of A ∪ B.

Solution by Wayne Lam.
By the hypotheses and the nature of subspace topology, we know that

C = CA ∩ A, and C = CB ∩ B,
for CA, CB closed in X. Then CA ∩ CB is closed in X and

(CA ∩ CB) ∩ (A ∪B) = (CA ∩ CB ∩ A) ∪ (CA ∩ CB ∪B)

= C ∪ C
= C.

This shows C as an intersection of A ∪ B with a closed subset of X; hence C is
closed in A ∪ B. �

2. (a) Let f and g be continuous functions from a topological space X to a Hausdorff
space Y . Prove that the set of all points x ∈ X such that f(x) = g(x) is a
closed subset of X.

Solution. Y is Hausdorff iff the diagonal ∆ ⊆ Y × T is closed. The mapping

Φ : X → Y × Y, by Φ(x) = (f(x), g(x))

is continuous, by Thm. 18.4 (maps into products). Then the preimage of the
closed set ∆ must be closed in X. But

Φ−1(∆) = {x ∈ X ... f(x) = g(x)}. �

(b) Let A be a subset of the Hausdorff space X and let r : X → A be a retraction.
Prove that A is a closed subset of X.

Solution. Consider r as a map into X, whose image is A, so that r : X → X;
and write id : X → X for the identity map. Now if r(x) = id(x), then Im r ⊆ A
implies x ∈ A. Conversely, if x ∈ A, then r(x) = a = id(x) by the defn of r.
We have just shown

A = {x ... r(x) = id(x)},
so A is closed by (a). �
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3. Let (X, d) be a metric space, and A ⊆ X. Show that the function dA : X → R
defined by dA(x) = inf{d(x, a) ... a ∈ A} is continuous.

Solution by Zhi Yao.
Let (r, s) be a basic open set, i.e., an open interval, in R. Then

d−1
A (r, s) = {x ∈ X ... r < inf

a∈A
{d(x, a)} < s}.

To show this set is open, we pick x ∈ d−1
A (r, s) and find a metric ball B(x, ε) about

x, which is contained in d−1
A (r, s). Denote d := dA(x) so that r < d < s. Since the

inequalities are strict, we can find r′, s′ such that

r < r′ < r′′ < d < s′ < s.

Now define

δ1 := r′′ − r′ and δ2 := s− s′.

For ε := min{δ1, δ2}, we will show that B(x, ε) ⊆ d−1
A (r, s). Pick y ∈ B(x, ε). Then

d(y, a) ≤ d(y, x) + d(x, a) triangle ineq

< (s− s′) + s′ def δ2

= s,

so infa∈A{d(y, a)} < s. Also,

d(x, a) ≤ d(x, y) + d(y, a) triangle ineq

r′′ < (r′′ − r′) + d(y, a) def δ1

r′ < d(y, a).

This gives r′ ≤ infa∈A{d(y, a)}, and hence r < infa∈A{d(y, a)}. (This extra step is
why we require the r′′ for this direction; to obtain a strict inequality after taking
the infimum.) Thus we have r < dA(y) < s. By the arbitrariness of y, this puts
B(x, ε) ⊆ d−1

A (r, s). �

4. Recall that if (X, d) is a metric space, then a contraction mapping ϕ : X → X is
any map that satisfies

d(ϕ(x), ϕ(y)) ≤ k · d(x, y),
for all x, y ∈ X and some k ∈ [0, 1). Show that any contraction mapping from
a compact metric space to itself has a unique fixed point. (Hint : Let x0 be any
point in X and consider the recursively defined sequence xn+1 = ϕ(xn). Show that
{xn+1}∞n=1 is Cauchy, and that its limit is the desired fixed point.)

Solution. Following the hint, choose any x0 ∈ X and define a sequence by xn+1 =
ϕ(xn). Applying ϕ repeatedly, we see

d(ϕn(x), ϕn(y)) ≤ knd(x, y).

Using ϕn+m(x0) = ϕn(ϕm(x0), we obtain

d(xn, xn+m) ≤ knd(x0, ϕ
m(x0)). (4.1)
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Note that if k = 0, there is nothing to prove, so assume k > 0. Hence

d(x0, ϕ
m(x0)) ≤ d(x0, ϕ(x0)) + d(ϕ(x0), ϕ

2(x0))+

· · ·+ d(ϕm−1(x0), ϕ
m(x0)) by the triangle ineq

≤ (1 + k + k2 + · · ·+ km−1d(x0, ϕ(x0)) by applying (4.1)

≤ 1

1 − k
d(x0, ϕ(x0)) geometric series.

Thus

d(xn, xn+m) ≤ kn

1 − k
d(x0, ϕ(x0))

n,m→∞−−−−−−→ 0.

We have just shown {xn} to be a Cauchy sequence. Compactness is equivalent to
being complete and totally bounded, and the completeness of X gives a point y such
that limn→∞ xn = y. Since {xn+1} obviously has the same limit, we see that

d(y, ϕ(y)) = lim d(xn, ϕ(xn)) continuity of d

= lim d(xn, xn+1) ϕ(xn) = xn+1

= 0,

so ϕ(y) = y and y is a fixed point on ϕ.
Suppose there were another fixed point z. Then

d(y, z) = d(ϕ(y), ϕ(z)) ≤ kd(y, z),

contradicting the fact that k < 1. <↙ �

5. Let ω be a C∞ differential k-form on Rn such that
∫

M

ω = 0

for every compact oriented smooth k-manifold M ⊆ Rn with ∂M = ∅. Use Stokes’
Theorem to show that ω is closed, that is, dω = 0. (Hint : To show that dω is 0 at
a point p, let M be a very small sphere whose center is p.)

Solution by Shilong Kuang. Suppose dω 6= 0. For definiteness, let dω > 0 at p.
Then by continuity, dω is positive in some small open neighbourhood of p, and
hence in Uε, a ball of radius ε centered at p. Then we have

0 =

∫

∂Uε

w by hypothesis

=

∫

Uε

dω Stokes’ Thm

> 0 dω > 0 on Uε.

This contradiction shows that we must have dω(p) = 0, and hence dω = 0. �

6. Let p ∈ Rn, and let f : Rn → Rn be a C1-mapping such that dfp is injective. Show
that there is an ε > 0 such that if g : Rn → Rn is a C1-mapping with ‖dgp‖ < ε,
then h ≡ f + g is injective in a neighbourhood of p.
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Solution by Shilong Kuang. Note that by the Inverse Function Theorem,

‖dhp‖ 6= 0 ⇐⇒ h is locally injective at p.

By the given condition on f , we may assume ‖dfp‖ > ε0. Since h = f + g, linearity
of d gives dh = d(f + g) = df + dg and evaluation at p gives dhp = dfp + dgp. Then

‖dhp‖ = ‖dfp + dgp‖
≥ ‖dfp‖ − ‖dgp‖ triangle ineq

> ε0 − ε

> 0,

where the last line follows by choosing ε = ε0. Thus, we find the required ε. �

Part II.

7. Let p : E → B be a covering map and B path connected. Show the the sets
p−1(b), b ∈ B all have the same cardinality.

Solution. Suppose |p−1(b0)| = k. Then we can find U such that

p−1(U) =

k
⊔

i=1

Vi and p
∣

∣

Vi
= pi : Vi → U is a homeomorphism, ∀i.

Assume that ∃b1 such that |p−1(b1)| = j 6= k; we will contradict the fact that B
is connected. Define

C = {b ... |p−1(b)| = k} and D = {b ... |p−1(b)| 6= k}.
We have b0 ∈ C, so C 6= ∅, and b1 ∈ D, so D 6= ∅. Also, it is clear that C ∩D = ∅
and C ∪D = B. So it just remains to show C,D are open.

For b ∈ C, we can find Ub such that p−1(Ub) =
⊔k

i=1 Vi, where the Vi are open.
Thus for x ∈ Ub, |p−1(x)| = k. Hence b ∈ Ub ⊆ C shows C is open. Similarly, D is

open. This gives C,D as a disconnection of B. <↙ Hence no such b1 exists. �

8. Let pi = (i, 0) ∈ R2, i = 1, 2, . . . , n, and X = R2 \ {p1, p2, . . . , pn}. Use the Seifert-
van Kampen Theorem to prove that the fundamental group π1(X) is a free group
of rank n.

Solution. First, we consider the case n = 2, so X is a plane punctured at (1, 0) and
(2, 0). Let

U = {(x, y) ∈ X ... x < 2} and V = {(x, y) ∈ X ... x > 1}.
Then we have

U ∪ V = X and U ∩ V = {(x, y) ∈ X ... 1 < x < 2},
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so that U, V are open and path-connected, and U ∩ V is simply connected. Since
π1(U ∩ V ) = 0, the Seifert-van Kampen Theorem gives an isomorphism

k : π1(U, x0) ∗ π1(V, x0) → π1(X, x0).

Since each of U, V has a circle as a deformation retract, we know

π1(U, x0) = F (a1) and π1(V, x0) = F (a2),

are each a free group with one generator. By Thm. 69.2, the free product of two
free groups is just the free group whose generators are the union of the generators
of the two factor groups, i.e.,

π1(U, x0) ∗ π1(V, x0) = F (a1, a2).

Hence π1(X, x0) ∼= F (a1, a2).
Now we use induction. At stage k, we have

U = {(x, y) ∈ X ... x < k} and V = {(x, y) ∈ X ... x > k − 1},
so U ∩ V is simply connected. Then

π1(U, x0) = F (a1, a2, . . . , ak−1) and π1(V, x0) = F (ak),

whence by Thm. 69.2 we have

π1(U ∪ V, x0) = F (a1, a2, . . . , ak). �

9. (a) Let X be a topological space. Let f, g : X → S1 be two continuous maps.
Show that if f(x) and g(x) are not antipodal to each other for every x ∈ X,
then f and g are homotopic.

Solution.
SOLUTION NEEDED!!!

�

(b) Find two non-homotopic continuous maps f, g : S1 → S1 such that there is
exactly one point x0 ∈ S1 where f(x0) = −g(x0).

Solution.
SOLUTION NEEDED!!!

�

Part III.

10. Identify R4 with C2 so that (x, y, u, v) ∈ R4 corresponds to (z1, z2) ∈ C2 for z1 =
x+ iy and z2 = u+ iv. Let V be the zero locus of the polynomial P (z1, z2) = z3

1 +z2
2 ,

i.e.,
V = {(z1, z2) ∈ C2 ... z3

1 + z2
2 = 0} ⊆ R4.

Show that V \ {(0, 0)} is a 2-dimensional smooth manifold.
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Solution by Alissa Crans.
First, we compute

z3
1 + z2

2 = (x+ iy)3 + (u+ iv)2

= x3 + 3x2iy + 3xi2y2 + i3y3 + u2 + 2uiv + i2v2

= 0 + 0i (by hypothesis).

Thus we may define f : R4 \ {(0, 0, 0, 0)} → R2 by

f(x, y, u, v) = (x3 − 3xy2 + u2 − v2, 3x2y − y3 + 2uv)

so that V \ {(0, 0)} = f−1((0, 0)). We use the following theorem:

Theorem. If f : Mm → Nn is a smooth map, m ≥ n, and y ∈ N is a regular value,
then f−1(y) ⊆ M is a smooth manifold of dimension (m− n).

To see that the origin is a regular point of f , we must show the differential matrix
has rank 2. Using row reduction,

df =

[

3x2 − 3y2 −6xy 2u −2v

6xy 3x2 − 3y2 2v 2u

]

∼





1 −6xy

3x2−3y2

2u
3x2−3y2

−2v
3x2−3y2

6xy 3x2 − 3y2 2v 2u





∼





1 −6xy

3x2−3y2

2u
3x2−3y2

−2v
3x2−3y2

0 (3x2
−3y2)2+36x2y2

3x2−3y2

2v(3x2
−3y2)−12xyu

3x2−3y2

2u(3x2
−3y2)+12xyv

3x2−3y2





To show that df has rank 2, it suffices to show (3x2 − 3y2)2 + 36x2y2 > 0. This is
always true unless x = y = 0. However, if x = y = 0, then

f(0, 0, u, v) = (u2 − v2, 2uv),

and for (0, 0, u, v) ∈ V , we would need

u2 − v2 = 0
2uv = 0

=⇒ u = ±v
uv = 0

=⇒ u = v = 0.

Thus, x and y are not both simultaneously 0 on V \ {(0, 0, 0, 0)}, and hence df
has rank 2 on V \ {(0, 0, 0, 0)}. Thus V \ {(0, 0, 0, 0)} is a manifold of dimension
4 − 2 = 2, by the theorem. �

11. Let M be a smooth manifold. For f, g smooth functions on M and X, Y smooth
vector fields on M , we have

[fX, gY ] = fg[X, Y ] + f(Xg)Y − g(Y f)X.

Suppose that a smooth function f on M satisfies [fX, Y ] = f [X, Y ] for all smooth
vector fields X and Y on M . What can one say about f?
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Solution. Suppose that g is the constant function which takes the value 1 every-
where. Putting this into the first formula above, we obtain

[fX, gY ] = [fX, Y ]

= f1[X, Y ] + f(X1)Y − 1(Y f)X product identity

f(X1)Y = 1(Y f)X hypothesis on f.

But X1 is the directional derivative of g(p) in the direction of Xp, which is always
0 because g is constantly equal to 1. Thus we have

(Y f)X = 0.

This implies that Y f = 0 and hence that f must be a constant function. �

12. (a) State what it means for a smooth vector field on a smooth manifold to be
complete.

Solution from Conlon Def. 4.1.7.
A smooth vector field X ∈ X(M) is complete iff its maximal local flow of
contains a global flow. �

Additional background information:
A local flow on a manifold M is a system of compatible local flows defined on
a covering of M , i.e., a family of smooth maps

{Φ : (−εα, εα) × Vα → Uα
... εα > 0}α∈A,

written Φα(t, x) = Φα
t (x), such that

(i) Vα ⊆ Uα ⊆M are open sets and {Vα}α∈A covers M .

(ii) Φα
0 : Vα → Uα is the inclusion map, ∀α ∈ A.

(iii) Φα
t1+t2

= Φβ
t1
◦Φα

t2
, wherever both sides are defined, ∀α, β ∈ A.

Ordering local flows by inclusion, we see there exists a unique maximal local
flow on M containing Φ: for any chain, just take the union to find an upper
bound; then apply Zorn.
To understand the local flow of a vector field, observe that every vector field
X ∈ X(M) is the infinitesimal generator of a local flow Φ on M , by ODE; i.e.,
the integral curves of X are flow lines for some local flow Φ that satisfies

Xsα
q (t) = ṡα

q (t), ∀t ∈ (−εα, εα).

A global flow on a manifold M is a smooth map

Φ : R ×M →M,

written Φt(x) = Φ(t, x), such that

(i) Φ0 = idM .

(ii) Φt1+t2 = Φt1 ◦Φt2 , ∀t1, t2 ∈ R.

(b) Give an example of a smooth manifold M1 such that every vector field on M1

is complete.
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Solution from Conlon 4.1.10–12.
Let M1 = Sn or T n be an example. To justify this, we use the following:

Proposition. If the maximal local flow of X ∈ X(M) contains an element of
the form

Φ : (−ε, ε) ×M →M, ε > 0,

then X is complete.

Now we show that if X ∈ X(M) has compact support, then X is complete. By
compactness, we can find cover spt(X) with finitely many open sets U1, . . . , Ur

of M such that the local flow of X contains elements

Φi : (−εi, εi) × Ui →M, 1 ≤ i ≤ r.

Let U0 = M \ spt(X), an open set with X|Uo ≡ 0. Define

Φ0 : R × U0 →M

by Φ0
t (x) = x, ∀x ∈ U0, ∀t ∈ R. Since {Ui}r

i=0 covers M and the Φi agree
on overlaps, we have just constructed a local flow on M generated by X. Let
ε := min εi and fit the elements of the local flow together to get

Φ : (−ε, ε) ×M →M

generated byX. From the proposition above, X is complete. Hence, ifM1 is any
compact smooth manifold, then every smooth vector field on it is complete. �

(c) Give an example of a smooth manifold M2 which has vector fields that are not
complete.

Solution. Intuitively, a incomplete vector field corresponds to dynamical system
which breaks down or blows up in a finite amount of time [Schultz].
[Conlon, Ex. 2.8.13] ex d

dx
∈ X(R) is not complete.

Let a ∈ R. We compute the integral curve to X through a.
d
dt
x(t) = ex

∫

e−xdx =

∫

dt

e−x = c− t

x = − log(c− t).

Then x(0) = − log c = a implies c = e−a. So xa(t) = − log(e−a − t), which is
only defined for −∞ < t < e−a. Thus M2 = R is an example of a manifold
which has incomplete vector fields. �


