
Math 023 - Matrix Algebra for Business
notes by Erin Pearse

Contents

I. Systems of Linear Equations 2
I.1. Introduction to Systems of Linear Equations 2
I.2. Gaussian Elimination and Gauss-Jordan Elimination 7
II. Matrices 13
II.1. Operations with Matrices 13
II.2. Algebraic Properties of Matrix Operations 20
II.3. Inverses of Matrices 22
II.4. Properties of Inverses 25
II.5. Elementary Matrices 29
II.6. Stochastic Matrices and Introduction to Markov Processes 39
II.7. Markov Process Concepts: Equilibrium and Regularity 45
II.8. The Closed Leontief Input-Output Model 52
II.9. The Open Leontief Input-Output Model 58
III. Determinants 63
III.1. The Determinant of a Matrix 63
III.2. Evaluation of a Determinant Using Elementary Operations 66
III.3. Properties of Determinants 68
III.4. Applications of Determinants: Cramer’s Rule 72
IV. Vectors and Vector Spaces 74
IV.1. Vectors 74
IV.2. Vector Spaces 78
IV.3. Subspaces 79
V. Vector Operations 81
V.1. Magnitude 81
V.2. Dot Product 83
VI. Linear Transformations 86
VI.1. Introduction to Linear Transformations 86
VI.2. The Geometry of Linear Transformations in the Plane 90
VII. Eigenvalues and Eigenvectors 92
VII.1. The Eigenvalue Problem 92
VII.2. Applications of Eigenvalues: Population Growth 96



2 Math 023 - Applied Matrix Algebra Lecture Notes

I. Systems of Linear Equations

I.1. Introduction to Systems of Linear Equations.

I.1.1. Linear equations.

Definition 1. A linear equation is a sum of variables with coefficients. This is a simple
type of equation, the kind with which you have the most familiarity - it is an equation whose
graph is straight.

Example 1.
A linear equation in 2 variables looks like ax1 + bx2 = d where a, b, d are constants

and x1, x2 are the two variables:

• x2 = 2x1 + 1
• 3x1 − x2 = 4
• x1 + x2 − 1 = 0

A linear equation in 3 variables looks like ax1 + bx2 + cx3 = d where a, b, c, d are
constants and x1, x2, x3 are the three variables:

• 0.5x1 − 3x2 + x3 = 2
• x3 − 2x2 + 3 = x1

• 2
3
x1 − 3

4
x2 = x3

In general, a linear equation in n variables looks like

a1x1 + a2x2 + a3x3 + . . . + anxn = b

where a1, a2, a3, . . . , an, b are constants and x1, x2, x3, . . . , xn are n variables.
For contrast, here are some examples of equations that are not linear:

x1x2 = 1: The variables are multiplied together.
1
x3

= x1: Reciprocals are not linear.

−2x1 + 2x2
2 + 3x3 = 1: Raising a variable to a power produces a nonlinear eqn.

x2 = sin x1: Trigonometric functions are not linear.
ex3 − 3x2 = 0: The exponential function is not linear.

I.1.2. Systems of Linear Equations.

Definition 2. A system of linear equations is simply a collection of two or more equations
which share the same variables.

Example 2. Suppose you have a collection of dimes and nickels worth 80 cents, and you
have 11 coins total. How do you determine how many of each type of coin you have? Let
the variable x1 be the number of dimes and x2 be the number of nickels. The associated
system of linear equations is

10x1 + 5x2 = 80

x1 + x2 = 11

A solution for the system may be found by solving for one variable in one equation, and
substituting this relation into the other. For example, the second equation may be rewritten
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as x2 = 11 − x1. This new expression for x2 may be substituted into the first equation to
produce

10x1 + 5(11− x1) = 80,

which then gives

5x1 = 25 =⇒ x1 = 5 and x2 = 6.

Equivalently, the solution may be found by multiplying one entire equation by a constant,
and then adding this new equation to the other one. Multiplying the second equation by
−10 gives

−10x1 − 10x2 = −110,

which, when added to the first gives

−5x2 = −30 =⇒ x2 = 6 and x1 = 5.

Performing either technique gives x1 = 5, x2 = 6.

Definition 3. A solution to a system of linear equations is sequence of numbers
s1, s2, . . . , sn such that the system of eqns is satisfied (i.e., true) when si is substituted in for
xi. In the previous example,

10 · 5 + 5·6 = 80

5 + 6 = 11

shows that (x1, x2) = (5, 6) is a solution to the system. Geometrically, a solution is a point
where all the graphs intersect.

A solution set for a system of linear equations is the set of all possible solutions for the
system.

This last definition might prompt you to ask, “How many solutions can a system of linear
eqns have?” Intuitively, you might expect that every system has exactly one solution, but
this is not the case. Consider the following systems:

Example 3.

x1 + x2= 2

x1 − x2= 2

This system represents two lines which intersect at the point (2, 0). Hence, it has the unique
solution (2, 0).

x1 + x2= 2

x1 + x2= 1

This system represents two parallel lines. Since these lines do not intersect, there is no
solution (s1, s2) which satisfies both equations simultaneously. Such a system is said to be
inconsistent. More intuitively, think of this system as being impossible to solve because two
numbers cannot sum to two different values.

x1 + x2 = 2

−x1 − x2= −2
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This system represents the same line two different ways. Since these two lines overlap each
other, any point on one line is also on the other. Hence, any point on the line is a solution
to the system. Thus, there are an infinite number of solutions to the system (any point on
the line will work!).

This example serves to illustrate the general case: for any system of linear equations, it is
always the case that there is either one unique solution, no solution, or an infinite number
of solutions. In other terminology, the solution set can consist of one point, it can be empty,
or it can contain infinitely many points. This is due to the nature of straight lines and the
ways they can intersect. For example, it is impossible for two straight lines to intersect in
precisely two places (in flat space).

I.1.3. Solution Techniques.

Definition 4. A system is in triangular form if each successive equation has one less
variable than the previous one.

Example 4. Each of these three systems is in triangular form. (Note how the variables are
aligned in columns, this will be important later on.)

x1 − 1
2
x2 + 3

2
x3 − x4 = 1

2

x2 − 2x3 + 3x4 = 2

x3 + 3
4
x4 = 3

4

x4 = 1

x1 − 3x2 = 1

− 2x2 = 2

x1 − x2 + 2x3 = 1

x2 − x3 =−3

4x3 = 2

Example 5. None of these three systems is in triangular form.

x1 − 1
2
x2 + 3

2
x3 − x4 = 1

2

x2 − 2x3 + 3x4 = 2

− 3x2 + x3 + 3
4
x4 = 3

4

x4 = 1

−x1 − 3x2 = 1

3x1 + x2 = 2

x1 − x2 + 2x3 = 1

2x2 − x3 =−3

2x1 + x2 + x3 = 0

Back substitution
We can solve a system that is in triangular form

2x1 − x2 + 3x3 − 2x4 = 1

x2 − 2x3 + 3x4 = 2

4x3 + 3x4 = 3

4x4 = 4

using the technique of back substitution as follows:

4x4 = 4 =⇒ x4 = 1

4x3 + 3 · 1 = 3 =⇒ x3 = 0

x2 − 2 · 0 + 3 · 1 = 2 =⇒ x2 =−1

2x1 − (−1) + 3 · 0− 2 · 1 = 1 =⇒ x1 = 1
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So the solution to this system is (1,−1, 0, 1).

Elementary operations
If a system is not in triangular form, we can manipulate it until it is, by using certain

elementary operations.

Definition 5. The elementary operations are:

I. Interchange two equations.

II. Multiply an equation by a nonzero constant.

III. Add a multiple of one equation to another.

Performing elementary operations on a system of linear equations produces an equivalent
system.

Definition 6. Two systems of linear equations are called equivalent iff they have the same
solution.

Example 6. To solve the system

x1 + 2x2 + x3 = 3 (1)

3x1 − x2 − 3x3 =−1 (2)

2x1 + 3x2 + x3 = 4 (3)

we first need to convert it into triangular form using elementary operations.
Multiply (1) by −3 to get −3x1 − 6x2 − 3x3 = −9 and add this to (2) to obtain

−7x2 − 6x3 = −10.

Multiply (1) by −2 to get −2x1 − 4x2 − 2x3 = −6 and add this to (3) to obtain

−x2 − x3 = −2.

The new equivalent system is

x1 + 2x2 + x3 = 3 (4)

− 7x2 − 6x3 =−10 (5)

−x2 − x3 = −2 (6)

Multiply (5) by −1
7

to obtain x2 + 6
7
x3 = 10

7
.

Add this to (6) to obtain −1
7
x3 = −4

7
.

Multiplying this by −7, we obtain another equivalent system

x1 + 2x2 + x3 = 3

x2 + 6
7
x3 =10

7

x3 = 4

Now the system is in triangular form and can be solved by back-substitution, starting with
x3 = 4:

x2 + 6
7
· 4 =10

7
=⇒ x2=−2

x1 + 2(−2) + 4 = 3 =⇒ x1= 3
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Example 7. Consider the linear system

x1 + 2x2 − 3x3 =−4 (7)

2x1 + x2 − 3x3 = 4 (8)

What’s the first thing you notice about this system? It has two equations, and 3 unknowns.
So can we still solve it? Well, mostly ...

Begin by eliminating x1 by multiplying (7) by −2 and adding it the second equation to
obtain

−3x2 + 3x3 = 12. (9)

Now solve 9 for x2 as
x2 = x3 − 4. (10)

Since this is about as far as we can go in solving this system, we let x3 = t, where t is a
parameter that can be any number, i.e., t ∈ R or −∞ < t < ∞ or t ∈ (−∞,∞). Now by
substituting x3 = t into (10), we get x2 = t− 4. Now we rewrite equation (7) as

x1 = −4− x2 + 3x3

= −4− 2(t− 4) + 3t

= t + 4

and we obtain the solution set (t + 4, t − 4, t), where −∞ < t < ∞. Note that there are
an infinite number of solutions, but not just any three numbers (a, b, c) is a solution of the
system. A solution needs to have the specific form (t + 4, t− 4, t).

Definition 7. A parameter is a variable, usually with a specified range, which remains
as part of the solution; the solution is said to be “given in terms of the parameter”. An
infinite solution set which is described in terms of a parameter is called a parametric
representation. If one of the variables has been set equal to the parameter, then it is
called a free variable.

A parametric representation is not unique; it can be written many ways. For example,
you should check that the parametric solution to the system above may also be written as:

(r, r − 8, r − 4),−∞ < r < ∞ x1 is a free variable.

(s + 8, s, s + 4),−∞ < s < ∞ x2 is a free variable.

(u + 2, u− 6, u− 2),−∞ < u < ∞ No free variable.

Homework Assignment:
Read: 1-10
Exercises: 1-6,11-18,39-44
Supplement: Application to Production Planning.
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I.2. Gaussian Elimination and Gauss-Jordan Elimination.

I.2.1. Matrices.

Remark. We begin today by introducing the idea of a matrix. Matrices are essentially
just a form of shorthand notation for systems of linear equations. You may remember my
previous remark about how important it is to keep the variables aligned in their respective
columns. The reason for this is that it leads naturally to the representation of the system in
matrix form.

Definition 8. A matrix is a rectangular array of numbers. An m × n matrix is a matrix
with m rows and n columns: 



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn




Definition 9. Each entry aij in the matrix is a number, where i tells what row the number
is on, and j tells which column it is in. For example, a23 is the number in the second row and
third column of the matrix. The subscripts i, j can be thought of as giving the “address” of
an entry within the matrix.

Example 8. The following 4 × 4 matrix gives the airline distances between the indicate
cities (in miles).

London Madrid New York Tokyo

London
Madrid
New York
Tokyo




0 785 3469 5959
785 0 3593 6706
3469 3593 0 6757
5959 6706 6757 0




Example 9. Suppose a manufacturer has four plants, each of which makes three products.
If we let aij denote the number of units of product i made by plant j in one week, then the
3× 4 matrix

Plant 1 Plant 2 Plant 3 Plant 4

Product 1
Product 2
Product 3




560 360 380 0
340 450 420 80
280 270 210 380




gives the manufacturer’s production for the week. For example, Plant 2 makes 270 units of
Product 3 in one week.

Definition 10. If we have an m×n matrix where m = n, then it is called a square matrix.
For a square matrix, the entries a11, a22, . . . , ann are called the main diagonal or sometimes
just the diagonal.
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Remark. We will discuss how to perform arithmetic operations with matrices shortly, that
is, how to add two matrices together or what it might mean to multiply two together. First,
however, we will consider the application of matrices that we will be using most often, and
develop some motivation for why matrices might be important.

Definition 11. The coefficient matrix of a system of linear equations is the matrix whose
entries aij represent the coefficient of the jth unknown in the ith equation.

Example 10. Given the linear system

x1 + 2x2 + x3 = 3

3x1 − x2 − 3x3 =−1

2x1 + 3x2 + x3 = 4

which we solved previously, the coefficient matrix of this system is




1 2 1
3 −1 −3
2 3 1




Definition 12. The augmented matrix of a system of linear equations is like the coefficient
matrix, but we include the additional column of constants on the for right side.

Example 11. The augmented matrix of the system given above is



1 2 1 3
3 −1 −3 −1
2 3 1 4


 .

Sometimes augmented matrices are written with a bar to emphasize that they are augmented
matrices: 


1 2 1 3
3 −1 −3 −1
2 3 1 4


 .

Example 12. Note that any term which is missing from an equation (in a system of linear
equations) must be represented by a 0 in the coefficient matrix. From the linear system

x1 − x2 + 2x3 = 1

x2 − x3 =−3

4x3 = 2
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the coefficient matrix would be 


1 −1 2
0 1 −1
0 0 4




and the augmented matrix would be


1 −1 2 1
0 1 −1 −3
0 0 4 2


 .

Definition 13. Now, as you might expect, we also have the elementary row operations
for matrices:

I. Interchange two rows.

II. Multiply an row by a nonzero constant.

III. Add one row to another.

Definition 14. Two matrices are said to be row-equivalent iff one can be obtained from
the other by a sequence of elementary row operations.

Remark. If we have an augmented matrix corresponding to a system of linear equations,
then an elementary row operation on this matrix corresponds to an elementary operation on
the original system and the resulting matrix corresponds to the new (but equivalent) system
of linear equations.You should check how similar these definitions are to the analogous ones
for linear systems.

On first glance, it appears that matrices are merely a shorthand notation for solving
systems of linear equations, by not having to write the variable names at each step. While
this is partially true, using matrices also allows for much greater and more general analysis.

When using matrices to solve systems, we will frequently find it advantageous to have a
matrix which has been converted into an equivalent matrix of a much simpler form.

Definition 15. A matrix in row-echelon form is a matrix which has the following prop-
erties:

1. The first nonzero entry in each row is a 1.

2. The first 1 of each row appears to the right of the first 1 in the row above it.

3. If any row consists entirely of zeroes, it appears at the bottom of the matrix.

Thus a matrix in row-echelon form corresponds to a triangular system of equations with the
additional requirement that the first coefficient be a 1.

Definition 16. A matrix in reduced row-echelon form is a matrix in row-echelon form
which has the additional requirement that the leading 1 of each row has only zeroes above
and below it.
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Example 13. Each of these matrices is in row-echelon form




1 4 2
0 1 3
0 0 1







1 2 3
0 0 1
0 0 0







1 3 0 0
0 0 1 3
0 0 0 0







0 1 2 0
0 0 0 1
0 0 0 0




but only the last two are in reduced row-echelon form.

I.2.2. Gaussian Elimination.

Remark. We now show how to use matrices in row-echelon form to solve systems of equa-
tions.

Definition 17. Gaussian elimination is the following method of solving systems of linear
equations:

1. Write the system as an augmented matrix.

2. Use elementary row operations to convert this matrix into an equivalent matrix
which is in row-echelon form.

3. Write this new matrix as a system of linear equations.

4. Solve this simplified equivalent system using back-substitution.

Essentially, Gaussian elimination is the same technique we were using previously, and as you
work a few exercises, you will see exactly how the two relate.

Example 14. We demonstrate how to use Gaussian elimination to solve one of your home-
work problems. Consider the following system:

x1 − 3x3 = −2

3x1 − 2x3 + x2 = 5

2x1 + 2x2 + x3 = 4

First, we write the system as an augmented matrix:




1 0 −3 −2
3 1 −2 5
2 2 1 4



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Second, we perform elementary row operations as follows:




1 0 −3 −2
0 1 7 11
2 2 1 4


 (−3)R1 + R2 → R2




1 0 −3 −2
0 1 7 11
0 2 7 8


 (−2)R1 + R3 → R3




1 0 −3 −2
0 1 7 11
0 0 −7 −14


 (−2)R2 + R3 → R3




1 0 −3 −2
0 1 7 11
0 0 1 2


 (−1

7
)R3 → R3

Third, we write this last matrix as a system of equations:

x1 − x3 =−2

x2 + 7x3 = 11

x3 = 2

Finally, we use back-substitution to obtain

x2 + 7 · 2 =11 =⇒ x2 = −3

x1 − 2 = 2 =⇒ x1 = 4

Thus, Gaussian elimination yields the solution (4,−3, 2).

Definition 18. Gauss-Jordan elimination is the following method of solving systems of
linear equations:

1. Write the system as an augmented matrix.

2. Use elementary row operations to convert this matrix into an equivalent matrix
which is in reduced row-echelon form.

3. Write this new matrix as a system of linear equations.

4. Solve this simplified equivalent system using back-substitution.

Gauss-Jordan elimination is just an extension of Gaussian elimination where you convert
the matrix all the way to reduced row-echelon form before converting back to a system of
equations.
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Example 15. Continuing from the previous example, we could convert the matrix to reduced
row-echelon form as follows:


1 0 0 4
0 1 7 11
0 0 1 2


 (3)R3 + R1 → R1




1 0 0 4
0 1 0 −3
0 0 1 2


 (−7)R3 + R2 → R2

Now when we convert this matrix back into a linear system, we see that it immediately gives
the solution (4,−3, 2).

Remark. Whenever you are working with an augmented matrix and you obtain a row which
is all zeroes except for the last, then you have an inconsistent system. That is, if you get a
row of the form [

0 0 · · · 0 c
]

for c 6= 0, then the original system of linear equations has no solution.

Definition 19. One particular important and useful kind of system is one in which all the
constant terms are zero. Such a system is called a homogeneous system. It is a fact
that every homogeneous system is consistent (ie, has at least one solution). One easy way
to remember this is to notice that every homogeneous system is satisfied by the trivial
solution, that is, x1, x2, . . . , xn = 0. When you set all variables to zero, the left side of each
equation becomes 0.

Example 16. We can solve the homogeneous system

x1 + x2 + x3 + x4 = 0

x1 + x4 = 0

x1 + 2x2 + x3 = 0.

by Gauss-Jordan elimination as:


1 1 1 1 0
1 0 0 1 0
1 2 1 0 0


 ∼




1 0 0 1 0
0 1 0 −1 0
0 0 1 1 0




Then letting x4 = t, back-substitution gives the solution as (−t, t,−t, t). For example, t = 2
gives the nontrivial solution (−2, 2,−2, 2).

Homework Assignment:
Read: 13-24
Exercises: 7-12,19-28
Supplement: Application to Simple Economies
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II. Matrices

II.1. Operations with Matrices.

II.1.1. Matrix Algebra.

Remark. I’d like to recall a couple of definitions we had earlier.

Definition 20. An m × n matrix is a rectangular array of numbers with m rows and n
columns: 



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn




Definition 21. Each number aij in the matrix is a called an entry.

Definition 22. If m = n, the matrix is said to be square.

Remark. As we discuss matrices and matrix operations today, it will be a good idea for
you to note where the size (m × n) of the matrices discussed comes into play. We first see
this come into play with the idea of matrix equality.

Definition 23. Two matrices are equal iff they are the same size and their corresponding
entries are equal.

Example 17. For example, these two matrices are equal
[

1 5
a21 3

]
?
=

[
1 b12

−1 3

]

iff a21 = −1 and b12 = 5.

Definition 24. If two matrices A and B are both of the same size, then we define the sum
of A and B as follows:




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am1 · · · amn


 +




b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...
bm1 bm1 · · · bmn


 =




a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n
...

...
. . .

...
am1 + bm1 am1 + bm1 · · · amn + bmn



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Remark. This is probably a good time to introduce some shorthand notation for matrices.
In future, we may write the matrix

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am1 · · · amn




in the abbreviated form
A = [aij] .

In this notation, the sum of two matrices A = [aij], B = [bij] is written

A + B = [aij] + [bij] = [aij + bij]

Example 18. For

A =

[
1 −2 4
2 −1 3

]
and B =

[
0 2 −4
1 3 1

]
,

the sum is given by

A + B =

[
1 + 0 −2 + 2 4− 4
2 + 1 −1 + 3 3 + 1

]
=

[
1 0 0
3 2 4

]

Note that this definition only makes sense when A and B are the same size. If two matrices
are of different size, then their sum is undefined.

Definition 25. Scalar multiplication (or “multiplication by a number”, or “multiplication
by a constant”) of a matrix

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am1 · · · amn


 = [aij]

by a scalar c is defined by

cA = c




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am1 · · · amn


 =




ca11 ca12 · · · ca1n

ca21 ca22 · · · ca2n
...

...
. . .

...
cam1 cam1 · · · camn


 = c [aij] = [caij]

Example 19. If we have the matrix

A =

[
4 8 2
6 8 10

]
,

then two scalar multiples of it are

1
2
A =

[
2 4 1
3 4 5

]
and 3A =

[
12 24 6
18 24 30

]



Lecture Notes Math 023 - Applied Matrix Algebra 15

Definition 26. The product of two matrices A = [aij] and B = [bij] is only defined when
the number of columns of A is equal to the number of rows of B. Suppose A is an m × n
matrix and B is an n×p matrix so that the product AB is well-defined. Then AB is defined
as follows:

AB = [cij] where cij =
∑n

k=1
aikbkj.

In other our previous notation, this would look like

AB =




∑n
k=1 a1kbk1

∑n
k=1 a1kbk2 · · · ∑n

k=1 a1kbkp∑n
k=1 a2kbk1

∑n
k=1 a2kbk2 · · · ∑n

k=1 aikbkp
...

...
. . .

...∑n
k=1 amkbk1

∑n
k=1 amkbk2 · · · ∑n

k=1 amkbkp




so that AB is an m × p matrix. While this formula is hideous and slightly terrifying, you
should not be alarmed. In practice, the entries of a product are not too difficult to compute,
and there is a very simple mnemonic for remembering which entries from the factor matrices
are used: to find the entry in the ith row and jth column of the product, use the ith row of
A and the jth row of B. Using full-blown matrix notation, we have




a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

. . .
...

ai1 ai2 ai3 · · · ain
...

...
...

. . .
...

am1 am2 am3 · · · amn







b11 b12 · · · b1j · · · b1p

b21 b22 · · · b2j · · · b2p

b31 b32 · · · b3j · · · b3p
...

...
. . .

...
. . .

...
bn1 bn2 · · · bnj · · · bnp




=




c11 c12 · · · c1j · · · c1p

c21 c22 · · · c2j · · · c2p
...

...
. . .

...
. . .

...
ci1 ci2 · · · cij · · · cip

...
...

. . .
...

. . .
...

cm1 cm2 · · · cmj · · · cmp




where

cij = ai1b1j + ai2b2j + ai3b3j + . . . + ainbnj.

You can see why A must have the same number of columns as B has rows - otherwise these
numbers would not match up equally, and the product wouldn’t be well-defined (ie, make
sense).

Example 20. Consider the matrices

A =




3 −2
2 4
1 −3


 and B =

[ −2 1 3
4 1 6

]
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since A has 2 columns and B has 2 rows, the product of these two matrices is well-defined,
and given by

AB =




3 −2
2 4
1 −3




[ −2 1 3
4 1 6

]

=




3 · (−2)− 2 · 4 3 · 1− 2 · 1 3 · 3− 2 · 6
2 · (−2) + 4 · 4 2 · 1 + 4 · 1 2 · 3 + 4 · 6
1 · (−2)− 3 · 4 1 · 1− 3 · 1 1 · 3− 3 · 6




=



−14 1 −3

12 6 30
−14 −2 −15




Note that B has 3 columns and A has 3 rows, so the product BA is also defined! We compute
this product as

BA =

[ −2 1 3
4 1 6

] 


3 −2
2 4
1 −3




=

[ −2 · 3 + 1 · 2 + 3 · 1 −2 · (−2) + 1 · 4 + 3 · (−3)
4 · 3 + 1 · 2 + 6 · 1 4 · (−2) + 1 · 4 + 6 · (−3)

]

=

[ −1 −1
20 −22

]

This example illustrates a very important point: when we multiply matrices, AB is not
necessarily equal to BA. In fact, they are usually different, and sometimes only one of them
will even be defined! Note that in this example, AB and BA do not even have the same size.

Example 21. Let

A =

[
3 4
1 2

]
and B =




1 2
4 5
3 6


 .

Then we can find the product

BA =




1 2
4 5
3 6




[
3 4
1 2

]
=




5 8
17 26
15 24




because B has 2 columns and A has 2 rows. However, the product AB is not even defined!
Note that in general, the product matrix gets its height from the first matrix and its width
from the second.

Definition 27. A vector is a matrix whose height or width is 1. A matrix with only one
column is called a column vector and a matrix with only one row is called a row vector.
A vector with 2 entries is called a 2-vector, a vector with 3 entries is called a 3-vector,
and so on. In general, an n-vector is a vector with n entries.
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Remark. Vectors come up a lot and have many different interpretations. For the moment,
we will treat them just as we treat matrices, although we do notice a couple of special things
that occur for matrices of this special form.

Example 22. The following are all vectors:

A =
[

2 1
]

B =
[

3 0 3 1
]

C =




0
0

−1


 D =

[
2

−1

]

The first two are row vectors and the second two are column vectors.

Remark. The first interesting thing that we notice about vectors is that when we have a
matrix times a vector, it can be written in different way:

[
1 3 −1
5 −4 2

] 


2
−1
−3


 =

[
2− 3 + 3

10 + 4− 6

]

=

[
2

10

]
+

[ −3
4

]
+

[
3

−6

]

= 2

[
1
5

]
− 1

[
3

−4

]
− 3

[ −1
2

]

Definition 28. Earlier, we discussed linear equations, which we can think of as linear com-
binations of numbers a1, a2, etc. Now, we are ready to define linear combinations of
vectors (v1, v2, etc.) as sums of the form

x1v1 + x2v2 + . . . + xnvn = x1




a11

a21
...

am1


 + x2




a12

a22
...

am2


 + . . . + xn




a1n

a2n
...

amn




Example 23. Considering the previously discussed matrices, we have

[
1 3 −1
5 −4 2

] 


x1

x2

x3


 = x1

[
1
5

]
+ x2

[
3
−4

]
+ x3

[ −1
2

]
=

[
2
8

]

where x1 = 2, x2 = −1, x3 = −3.

Remark. The motivation for the seemingly strange definition of matrix multiplication comes
from the applications to systems of linear equations, so we will consider this carefully. If we
have a system of one equation in one unknown, it looks like

ax = b.

We generally think of a, x, and b as scalars, but they can also be considered (somewhat
oddly) as 1 × 1 matrices. Now we wish to generalize this simple equation ax = b so that it
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represents an entire m× n linear system by a single matrix equation

Ax = b

where A is an m× n matrix, x is an n-vector, and b is an m-vector.
Now an m× n linear system

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...

am1x1 + am2x2+ . . . + amnxn= bm

can be written

Ax = b

where

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 , x =




x1

x2
...

xn


 , and b =




b1

b2
...

bm




because we have defined the product Ax by

Ax =




a11x1 + a12x2 + . . . + a11xn

a21x1 + a22x2 + . . . + a21xn
...

am1x1 + am2x2 + . . . + am1xn


 .

So you can see that the system of linear equations is equivalent to the matrix equation. In
general, we will be working a lot with equations of the form




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn







x1

x2
...

xn


 =




b1

b2
...

bm




Pay special attention to page 50 in the reading, as the text shows a full comparison of all the
equivalent ways we have for writing this equation. These will come up a lot, and developing
a good understanding of them now will help just just about everything we do in the rest of
the course!
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Example 24. Convince yourself that the following are all the same thing:

(1)
2x1+ x2−3x3 = 2

x1−2x2+ x3 = −1

−3x1 +2x3 = 4

(2) 


2x1 + 1x2 − 3x3

1x1 − 2x2 + 1x3

−3x1 + 0x2 + 2x3


 =




2
−1

4




(3)

x1




2
1

−3


 + x2




1
−2

0


 + x3



−3

1
2


 =




2
−1

4




(4) 


2 1 −3
1 −2 1

−3 0 2







x1

x2

x3


 =




2
−1

4




(5)
Ax = b, where

A =




2 1 −3
1 −2 1

−3 0 2


 ,x =




x1

x2

x3


 , and b =




2
−1

4


 .

Homework Assignment:
Read: 43-52
Exercises: 3-6,11-15,19-24,31-34
Supplement: Application to Production Costs
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II.2. Algebraic Properties of Matrix Operations.

Remark. Mathematical thought proceeds (like scientific thought in general) by studying
certain objects until one can extract the salient features of the system and develop rules about
how they interact. This mode of thinking is at the base of physics, chemistry, biology, and
the other sciences. In mathematics, the objects we’re studying are abstract (like numbers,
matrices, etc), but the manner of investigation is the same.

For example, when you first learned basic arithmetic, you learned how to add specific
numbers, you learned the times tables by heart, and it was not until later in elementary
school that you started to develop the properties of numbers in general. Algebra is the
distillation of properties of numbers and how they behave with respect to the operations of
addition and multiplication. Linear Algebra is the distillation of properties of matrices and
how they behave under addition and multiplication, and, as we will see, other operations
unique to matrices.

You have probably already seen these properties several times, but now we are going to
pay special attention to their names, so we can see the full parallel between algebra and
linear algebra.

II.2.1. Algebraic Properties of Scalars.

1. Commutative a + b = b + a additive

ab = ba multiplicative

2. Associative a + (b + c) = (a + b) + c additive

a(bc) = (ab)c multiplicative

3. Identity ∃!b s.t. a + b = a additive (b = 0)

∃!b s.t. a · b = a multiplicative (b = 1)

4. Inverses ∃b s.t. b + a = 0 additive (b = −a)

∃b s.t. b · a = 1 multiplicative (b = 1
a
)

5. Distributive a(b + c) = ab + ac mixed

(a + b)c = ac + bc mixed

6. Zero a · 0 = 0 mixed

ab = 0 =⇒ a = 0 or b = 0 mixed

Even if the names are not familiar, the properties are. Now contrast this with the rules
governing matrices (c, d are scalars, A,B,C are matrices):

II.2.2. Algebraic Properties of Matrices.

1. Commutative A + B = B + A additive (matrix)

AB 6= BA multiplicative (matrix)

2. Associative A + (B + C) = (A + B) + C additive (matrix)

(cd)A = c(dA) multiplicative (scalar)

A(BC) = (AB)C multiplicative (matrix)
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3. Identity ∃!B s.t. A + B = A additive (matrix)

∃!B s.t. AB = A (square) multiplicative (matrix)

4. Inverses ∃B s.t. A + B = 0mn additive (matrix)

∃B s.t. AB = In (sometimes) multiplicative (matrix)

5. Distributive c(A + B) = cA + cB mixed

(c + d)A = cA + dA mixed

A(B + C) = AB + AC matrix

(A + B)C = AC + BC matrix

6. Zero A0mn = 0mn matrix

cA = 0mn =⇒ c = 0 or A = 0mn mixed

AB = 0mn ; A = 0mn or B = 0mn matrix

Note that we now have FOUR operations to worry about: matrix addition and matrix
multiplication, but we still also have scalar addition, and scalar multiplication.

II.2.3. Matrix Identities. We know what the identities and inverses look like for scalars -
what do they look like for matrices?

• Additive identity:

0mn =




0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




• Multiplicative identity:

In =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




• Additive inverses of A: −A = −1 · A
• Multiplicative inverse of A: A−1A = AA−1 = In

Note the special cases: matrix multiplication is NOT commutative, multiplicative identity
is only defined for SQUARE matrices; multiplicative inverses do NOT always exist, and
there ARE zero-divisors.

Remark. By multiplicative associativity for matrices, it makes sense to multiply the same
matrix with itself multiple times; in other words, exponents are well defined for matrices and
we write A3 for A · A · A (and so on).

Note however, that Ak 6= [ak
ij], and there is no general explicit formula for Ak - it must be

worked out by hand. However, to see how the pattern sort of works, let

A =

[
1 1
1 1

]
.
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Then

A2 =

[
1 1
1 1

] [
1 1
1 1

]
=

[
1 + 1 1 + 1
1 + 1 1 + 1

]
=

[
2 2
2 2

]
.

Try computing A3 as an exercise. Hint :

A3 = A2A =

[
1 1
1 1

]2 [
1 1
1 1

]
=

[
2 2
2 2

] [
1 1
1 1

]

Also, for

B =

[
1 2
0 1

]
,

try computing B2 and B3.

II.3. Inverses of Matrices.

Definition 29. We say that an n×n matrix A is invertible iff there exists an n×n matrix
B such that AB = BA = In.

Remark. A quick test to see if a 2× 2 matrix

A =

[
a b
c d

]

is invertible, check that ad− bc 6= 0. Note: this only works for 2× 2 matrices. We will learn
more about why this works in a moment.

Remark. The most important Properties of Inverses are

(1) (A−1)−1 = A
(2) (Ak)−1 = A−1A−1 · · ·A−1 = (A−1)k

(3) (cA)−1 = 1
c
A−1, c 6= 0

(4) (AB)−1 = B−1A−1

assuming that both A and B are invertible. Note: this shows that if A and B are invertible,
then AB is also invertible.

Finding the Inverse of a Matrix
Let A be an n× n (square) matrix.

(1) Write the n × 2n matrix that consists of the given matrix A on the left and the

identity matrix of order n on the right, to obtain [A
... I].

(2) If possible, convert this new augmented matrix into reduced row-echelon form, by
using elementary row operations.

(3) If this is not possible, then A is not invertible.

If this is possible, then the new matrix is [I
... A−1].

(4) Check your work by multiplying to see that AA−1 = A−1A = I.
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Example 25. We will find the inverse of the matrix

A =




1 4 3
−1 −2 0

2 2 3




using this method.



1 4 3 1 0 0
−1 −2 0 0 1 0

2 2 3 0 0 1


 =




1 4 3 1 0 0
0 2 3 1 1 0
0 −6 −3 −2 0 1


 R1 + R2 → R2

(−2)R1 + R3 → R3

=




1 4 3 1 0 0
0 2 3 1 1 0
0 0 6 1 3 1




3R2 + R3 → R3

=




1 4 0 1
2
−3

2
−1

2

0 2 0 1
2
−1

2
−1

2

0 0 6 1 3 1




(−1
2
)R3 + R1 → R1

(−1
2
)R3 + R2 → R2

=




1 0 0 −1
2
−1

2
1
2

0 2 0 1
2
−1

2
−1

2

0 0 6 1 3 1




(−2)R2 + R1 → R1

=




1 0 0 −1
2
−1

2
1
2

0 1 0 1
4
−1

4
−1

4

0 0 1 1
6

1
2

1
6


 (1

2
)R2 → R2

(1
6
)R3 → R3

Leaving us with

A−1 =



−1

2
−1

2
1
2

1
4
−1

4
−1

4

1
6

1
2

1
6




Now you can check on your own that




1 4 3
−1 −2 0

2 2 3






−1

2
−1

2
1
2

1
4
−1

4
−1

4

1
6

1
2

1
6


 =




1 0 0
0 1 0
0 0 1




Example 26. Using inverse matrices to solve systems.
If A is an invertible matrix, then the system of linear equations Ax = b has the unique

solution given by

x = A−1b.
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For example, to solve the system

x1 + 4x2 + 3x3 = 12

−x1 − 2x2 =−12

2x1 + 2x2 + 3x3 = 8

we note that the coefficient matrix of this system is the matrix

A =




1 4 3
−1 −2 0

2 2 3




of the previous example. Therefore, the solution to the system is given by

x = A−1b =



−1

2
−1

2
1
2

1
4
−1

4
−1

4

1
6

1
2

1
6







12
−12

8


 =



−6 + 6 + 4
−3 + 3− 2

2− 6 + 8
6


 =




4
4

−8
3




II.3.1. Zero Properties of Matrices.

Example 27. Back when we introduced the Zero properties of matrices, I made the comment
that with matrices you occasionally encounter zero-divisors, that is, two matrices which can
multiply together to produce the zero matrix. Let’s see an example of two matrices which
can be multiplied together to produce the zero matrix. Suppose

A =

[
2 −1
2 −1

]
, and B =

[
1 −1
2 −2

]

so that we have

AB =

[
2 −1
2 −1

] [
1 −1
2 −2

]
=

[
0 0
0 0

]
= 022

Remark. It is precisely because of this last fact that the familiar Law of Cancellation does
NOT hold for matrices. For scalars, we have the Law of Cancellation:

ab = ac =⇒ b = c

For matrices, it is not true in general that

AB = AC =⇒ B = C.

We do, however, have the following result: if C is a invertible matrix, then

AC = BC =⇒ A = B and

CA = CB =⇒ A = B

Homework Assignment:
Read: 55-63,66-76
Exercises: §2.2 3-5,13-15 §2.3 9-18,25-27
Supplement: Application to Marital Status Models
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II.4. Properties of Inverses.
Last time, we finished by saying that the Law of Cancellation does not hold for matrices

in general:
AB = AC =⇒/ B = C.

Example 28. Consider the following examples. Let

A =

[
1 3
0 1

]
, B =

[
2 4
2 3

]
, and C =

[
1 −2
−1 2

]

Then we have

AC =

[
1 3
0 1

] [
1 −2
−1 2

]
=

[ −2 4
−1 2

]

and

BC =

[
2 4
2 3

] [
1 −2
−1 2

]
=

[ −2 4
−1 2

]

so AC = BC but A 6= B:[
1 3
0 1

] [
1 −2
−1 2

]
=

[
2 4
2 3

] [
1 −2
−1 2

]
, but

[
1 3
0 1

]
6=

[
2 4
2 3

]
.

Last time, we saw a list of the various properties of algebraic operations that can be
performed on matrices (and scalars). These tell us how we can do arithmetic with matrices:
we can add them, subtract them, multiply them, etc. While we cannot really “divide” by a
matrix, we do have the following definition:

Definition 30. We say that an n×n matrix A is invertible iff there exists an n×n matrix
B such that AB = BA = In.

So if a matrix is invertible, we can essentially “divide by the matrix”, by multiplying by
its inverse, just as we do with scalars (numbers). This allows us to solve the matrix equation

Ax = b

by multiplying both sides by A−1 and obtaining

A−1Ax = A−1b

x = A−1b

Thus we saw that it is possible to solve a matrix equation (and hence the entire associated
system of linear equations) by computing the matrix product A−1b. This shows how inverses
are useful things - and it is a good idea to know how to obtain them. Hence we have the
following method:

Finding the Inverse of a Matrix
Let A be an n× n (square) matrix.

(1) Write the n× 2n matrix [A
... I].

(2) Try to convert this matrix into the form [I
... A−1], by using elementary row operations.



26 Math 023 - Applied Matrix Algebra Lecture Notes

(3) If this is not possible, then A is not invertible.
If this is possible, then the righthand half of this matrix is A−1.

(4) Check your work by multiplying to see that AA−1 = A−1A = I.

However, there is a shortcut available for computing the inverse of 2×2 matrices. Earlier,
I said that the 2× 2 matrix

A =

[
a b
c d

]
,

is invertible precisely when ad− bc 6= 0. Today we see why.

Theorem. If we have a 2× 2 matrix A given by

A =

[
a b
c d

]
,

then A is invertible if and only if ad− bc 6= 0, and in this case, the inverse of A is given by

A = 1
ad−bc

[
d −b
−c a

]
.

Proof. To find the inverse of A, we use the method outlined above and convert the following
matrix into reduced row-echelon form:

[
a b 1 0
c d 0 1

]
=

[
a b 1 0

0 ad−bc
a

− c
a

1

]
− c

a
R1 + R2 → R2

=

[
1 b

a
1
a

0

0 ad−bc
a

− c
a

1

]
1
a
R1 → R1

=

[
1 b

a
1
a

0

0 1 − c
ad−bc

a
ad−bc

]
a

ad−bc
R2 → R2

=

[
1 0 d

ad−bc
−b

ad−bc

0 1 − c
ad−bc

a
ad−bc

]
− b

a
R2 + R1 → R1

=⇒ A−1 = 1
ad−bc

[
d −b
−c a

]

¤

Example 29. To see how this trick makes life easier, we will use it to find the inverses of a
couple matrices:

A =

[
3 −1
2 0

]
.

Then by the previous theorem, the formula gives

A−1 = 1
2

[
0 1

−2 3

]
.



Lecture Notes Math 023 - Applied Matrix Algebra 27

B =

[ −1 −5
2 6

]

Then

B−1 = 1
4

[
6 5

−2 −1

]

Example 30. Let’s use these examples to review some Properties of Inverses:

(1) (cA)−1 = 1
c
A−1, c 6= 0:

(2A)−1 =

(
2

[
3 −1
2 0

])−1

=

[
6 −2
4 0

]−1

= 1
8

[
0 2

−4 6

]

= 1
4

([
0 1

−2 3

])

= 1
2
A−1

(2) (A−1)−1 = A:

(A−1)−1 =

(
1
2

[
0 1

−2 3

])−1

= 2

[
0 1

−2 3

]−1

= 2

(
1
2

[
3 −1
2 0

])

= A

(3) (Ak)−1 = A−1A−1 · · ·A−1 = (A−1)k (for k = 2):

(A2)−1 =

([
3 −1
2 0

]2
)−1

=

[
7 −3
6 −2

]−1

= 1
4

[ −2 3
−6 7

]

(A−1)2 =

([
3 −1
2 0

]−1
)2

=

(
1
2

[
0 1

−2 3

])2

= 1
4

[ −2 3
−6 7

]
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II.4.1. New Operations. We also have new operations for matrices that do not have scalar
counterparts. The first one we will see is the transpose.

Definition 31. We define the transpose of an m× n matrix

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




to be the n×m matrix

AT =




a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn




The transpose is essentially formed by writing the columns of the original matrix as rows in
the new matrix. In other notation, A = [aij] =⇒ AT = [aji].

Example 31.

A =

[
1 2 3
4 5 6

]
=⇒ AT =




1 4
2 5
3 6




B =




1 2 3
4 5 6
7 8 9


 =⇒ BT =




1 4 7
2 5 8
3 6 9




Note that it is precisely the diagonal entries which remain fixed.

C =

[
1 2
2 3

]
=⇒ CT =

[
1 2
2 3

]

So it is possible for a matrix to be its own transpose.

Definition 32. For a square matrix A, when AT = A, we say A is symmetric. While this
definition will not come up much, we will run across it again in the last week of the course,
if we have time during our discussion diagonalization and eigenvalues.

Remark. For now, we only concern ourselves with the algebraic properties pertaining to
the matrix operation of transposition:

(1) (AT )T = A
(2) (A + B)T = AT + BT

(3) (cA)T = c(AT )
(4) (AB)T = BT AT

(5) (AT )−1 = (A−1)T

Homework Assignment:
Read: 61-63
Exercises: §2.2 23-26 §2.3 29-33
Supplement: none
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II.5. Elementary Matrices.

Definition 33. An n× n matrix is called an elementary matrix if it can be obtained from
the identity matrix In by a single elementary row operation.

Example 32.

E1 =




0 1 0
1 0 0
0 0 1


 E2 =




1 0 0
0 1 0
0 0 3


 E3 =




1 0 2
0 1 0
0 0 1




E1 comes from I3 by an application of the first row operation - interchanging two rows.
E2 comes from I3 by an application of the second row operation - multiplying one row by a
nonzero constant.
E3 comes from I3 by an application of the third row operation - adding a multiple of one
row to another.

II.5.1. Representation of Row Operations.

Example 33. Suppose we have the matrices

A =




1 2 3
4 5 6
7 8 9


 and E1 =




0 1 0
1 0 0
0 0 1




so that E1 is the elementary matrix obtained by swapping the first two rows of I3. Now we
work out the matrix products as

E1A =




0 1 0
1 0 0
0 0 1







1 2 3
4 5 6
7 8 9


 =




4 5 6
1 2 3
7 8 9




AE1 =




1 2 3
4 5 6
7 8 9







0 1 0
1 0 0
0 0 1


 =




2 1 3
5 4 6
8 7 9




Conclusion: multiplying by E1 on the left has the effect of swapping the first two rows of A.
Multiplying by E1 on the right has the effect of swapping the first two columns A. (Take
another look at E1 and notice that it can also be described as the elementary matrix resulting
from swapping the first two columns of I3.)

Compare also

E2A =




1 0 0
0 1 0
0 0 3







1 2 3
4 5 6
7 8 9


 =




1 2 3
4 5 6
21 24 27




So multiplying on the left by E2 is the same as multiplying the third row by 3, and recall
that this is the same operation by which E2 was obtained from the identity matrix.

We also have

E3A =




1 0 2
0 1 0
0 0 1







1 2 3
4 5 6
7 8 9


 =




1 + 14 2 + 16 3 + 18
4 5 6
7 8 9



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So multiplying on the left by E3 is the same as adding twice the third row to the first, and
recall that this is the same operation by which E3 was obtained from the identity matrix.

This example serves to demonstrate that row operations correspond to (matrix) multipli-
cation by elementary matrices. Everything that can be performed by row operations can
similarly be performed using elementary matrices.

Earlier, we gave the definition for two matrices being row-equivalent as: two matrices are
row-equivalent iff there is some sequence of row operations which would convert one into the
other. Now we rephrase that definition:

Definition 34. Two matrices A and B are row-equivalent iff there is some sequence of
elementary matrices E1, E2, . . . , Ek such that

EkEk−1 . . . E1E2A = B.

This is the same definition as before, it is just stated in different language.
By the way, since we will not be discussing column operations in this course, we will only

multiply by elementary matrices on the LEFT.

II.5.2. Inverses and Elementary Matrices.

Remark. If E is an elementary matrix, then E is invertible and its inverse E−1 is an
elementary matrix of the same type. It is very easy to find the inverse of an elementary
matrix E - just take the matrix corresponding to the inverse of operation used to obtain E.

Example 34. Since

E =




1 0 2
0 1 0
0 0 1




comes by 2R3+R1 → R1, we choose the operation that would “undo” this, namely, (−2)R3+
R1 → R1. Then the elementary matrix corresponding to this is

E−1 =




1 0 −2
0 1 0
0 0 1


 .

Theorem. The following conditions are equivalent (that is, each one implies the others):

(1) A is invertible.
(2) A can be written as the product of elementary matrices.
(3) A is row equivalent to I.
(4) The system of n equations in n unknowns given by Ax = b has exactly one solution.
(5) The system of n equations in n unknowns given by Ax = 0 has only the trivial

solution x1 = x2 = . . . = xn = 0.

Homework Assignment:
Read: 79-80,82-84
Exercises: §2.4 1-6
Supplement: none
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Review

• Is it true that (A−2)−1 = A2?
We know that A−2 = (A2)−1 = (A−1)2, by properties of inverses. Thus:

(A−2)−1 = ((A2)−1)−1 by A−2 = (A2)−1

= A2 by (A−1)−1 = A

• The brute-force method of reducing a matrix to row-echelon form.




a b c
d e f
g h i


 ∼




1 b
a

c
a

d e f

g h i


 1

a
R1 → R1

∼




1 b
a

c
a

0 e− d b
a

f − d c
a

g h i


 (−d)R1 + R2 → R2

∼




1 b
a

c
a

0 e− d b
a

f − d c
a

0 h− g b
a

i− g c
a


 (−g)R1 + R3 → R3

∼




1 b
a

c
a

0 1
(
f − d c

a

)
/
(
e− d b

a

)

0 h− g b
a

i− g c
a


 1

e−d
b
a

R2 → R2

...

But there is usually a better way! Look to see what cancels easily! Look to see what
zeroes are already in position. For example, rather than attempting to apply the
“brute force” method to this matrix:


5 4 −13
0 2 1
1 1 0


 ,

you are better off doing a row swap to obtain



1 1 0
0 2 1
5 4 −13




and then subtracting 5 times the first from the third:



1 1 0
0 2 1
0 −1 −13


 .
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From here, you can see that it is not much more work to finish reducing this matrix.
If you had attempted the brute force method, however, you would have obtained




1 4
5
−13

5
0 2 1
1 1 0


 ,

and nobody wants to do business with 13
5
.

• Why reduced row-echelon form really is more reduced than just row-echelon form.
For example, you cannot reduce this matrix any further:

A =

[
1 0 −2
0 1 1

]
.

But you can reduce this matrix (from Quiz 1) further:

B =




1 −2 3 9
0 1 3 5
0 0 1 2




If we convert B back into a system of linear equations, it is clear that there is still
back-substitution to be done before the system is solved. However, once this matrix
is fully in reduced row-echelon form,

∼



1 0 0 1
0 1 0 −1
0 0 1 2


 ,

converting back into equations amounts to just writing down the values for x1, x2, x3.
There is no back-substitution to be done.

The only time there is anything to be done with a reduced row-echelon matrix
(when converted back into equations) is when you need to introduce a parameter.
For example, the reduced row-echelon matrix:

C =




1 0 5 2
0 1 3 1
0 0 0 0




would become the system of equations

x1 +5x3 = 2

x2+3x3 = 1
.

Then for x3 = t, we would get x2 = 1− 3t and x1 = 2− 5t.

• It doesn’t matter which variable you choose to be the param. Consider §1.1, # 15:

5x1+2x2+x3 = 0

2x1+ x2 = 0

If we apply back-substitution to this system as it is, then we have the options:
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(1) Let x1 = t. Then

2t + x2 = 0 =⇒ x2 = −2t.

Substituting into the first equation, this gives

5t− 4t + x3 = 0 =⇒ x3 = −t,

so the solution set is {(t,−2t,−t)},∀t ∈ R.
(2) Let x2 = s. Then

2x1 + s = 0 =⇒ x1 = − s
2
.

Substituting into the first equation, this gives

−5 s
2

+ 2s + x3 = 0 =⇒ x3 = s
2
,

so the solution set is {(− s
2
, s, s

2
)},∀t ∈ R.

Even though these look different, they are actually the same answer. To see this,
note that we can obtain the first from the second by letting s = −2t. (We can do
this, because s can be any real number, just like t.) Then

{(− s
2
, s, s

2
)} = {(−−2t

2
,−2t, −2t

2
)}

= {(t,−2t,−t)}
So these two solution sets are the same. Note also that when we picked x1 to be the
parameter, we ended up with x1 as the free variable, and when we picked x2 to be
the parameter, we ended up with x2 as the free variable.

Any of the following would be correct answers to this problems:

{(− t
2
, t, t

2
)}

{( t
2
,−t,− t

2
)}

{(t,−2t,−t)}
{(−t, 2t, t)}

{(2t,−4t,−2t)}
What matters is the relations between the different parts: the third must be the
negative of the first, and the second must be twice the third. As long as this is true,
the answer is okay. This is the nonuniqueness of parametric representation.

Example 35. Following §2.3, #12: use inverses to solve the linear system

10x1+5x2−7x3 = 2

−5x1+1x2+4x3 = 1

3x1+2x2−2x3 = 1

Since this system is equivalent to the matrix equation


10 5 −7
−5 1 4

3 2 −2




︸ ︷︷ ︸
A




x1

x2

x3




︸ ︷︷ ︸
x̄

=




2
1
1




︸ ︷︷ ︸
b̄

,
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we can solve Ax̄ = b̄ by finding x̄ = A−1b̄:




10 5 −7 1 0 0
−5 1 4 0 1 0

3 2 −2 0 0 1


 ∼




0 7 1 1 2 0
−5 1 4 0 1 0

3 2 −2 0 0 1




∼



15 10 −10 0 0 5
−15 3 12 0 3 0

0 7 1 1 2 0




∼



1 2
3
−2

3
0 0 1

3
0 13 2 0 3 5
0 1 1

7
1
7

2
7

0




∼



1 2
3
−2

3
0 0 1

3
0 0 1

7
−13

7
−5

7
5

0 1 1
7

1
7

2
7

0




∼



1 2
3
−2

3
0 0 1

3
0 1 1

7
1
7

2
7

0
0 0 1

7
−13

7
−5

7
5




∼



1 2
3
−2

3
0 0 1

3
0 1 0 2 1 −5
0 0 1 −13 −5 35




∼



1 0 −2
3

−4
3
−2

3
11
3

0 1 0 2 1 −5
0 0 1 −13 −5 35




∼



1 0 0 −10 −4 27
0 1 0 2 1 −5
0 0 1 −13 −5 35




=⇒ A−1 =



−10 −4 27

2 1 −5
−13 −5 35


 ,

so x̄ = A−1b̄ = 1
47



−10 −4 27

2 1 −5
−13 −5 35







2
1
1


 =



−20− 4 + 27

4 + 2− 5
−26− 5 + 35


 =




3
1
4




Example 36. Following §2.3, #14: use inverses to solve the linear system

3x1+2x2+5x3 = 1

2x1+2x2+4x3 = 3

−4x1+4x2 = −1
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Since this system is equivalent to the matrix equation



3 2 5
2 2 4

−4 4 0




︸ ︷︷ ︸
A




x1

x2

x3




︸ ︷︷ ︸
x̄

=




1
3

−1




︸ ︷︷ ︸
b̄

,

we can solve Ax̄ = b̄ by finding x̄ = A−1b̄:




3 2 5 1 0 0
2 2 4 0 1 0

−4 4 0 0 0 1


 ∼



−2 2 0 0 0 1

2

2 2 4 0 1 0

3 2 5 1 0 0




∼



−1 1 0 0 0 1

4

0 4 4 0 1 1
2

3 2 5 1 0 0




∼



−1 1 0 0 0 1

4

0 1 1 0 1
4

1
8

0 5 5 1 0 3
4




∼



−1 1 0 0 0 1

4

0 1 1 0 1
4

1
8

0 0 0 1 −5
4

1
8




Since we have obtained the those three 0’s in the beginning of the third row, we will not be
able to get this matrix into the form [I |A−1], i.e., A is not invertible. Thus, we cannot use
inverses to solve this problem and we must do it the old-fashioned way: put the augmented
matrix in reduced row-echelon form.




3 2 5 1
2 2 4 3

−4 4 0 −1


 ∼



−2 2 0 −1

2

2 2 4 3

3 2 5 1




∼



−1 1 0 −1

4

0 4 4 5
2

3 2 5 1




∼



−1 1 0 −1

4

0 1 1 5
8

0 5 5 1
4






36 Math 023 - Applied Matrix Algebra Lecture Notes

∼



−1 1 0 −1

4

0 1 1 5
8

0 0 0 27
8




Since we have obtained a matrix with a row of the form
[

0 0 0 27
8

]
,

which corresponds to

0x1 + 0x2 + 0x3 = 27
8
, or 0 = 27

8

(an obvious falsehood), this system has no solution. It is inconsistent.

Example 37. Following §2.3, #10: use inverses to solve the linear system

x1+2x2+2x3 = 2

3x1+7x2+9x3 = −1

−x1−4x2−7x3 = 3

Since this system is equivalent to the matrix equation



1 2 2
3 7 9

−1 −4 −7




︸ ︷︷ ︸
A




x1

x2

x3




︸ ︷︷ ︸
x̄

=




2
−1

3




︸ ︷︷ ︸
b̄

,

we can solve Ax̄ = b̄ by finding x̄ = A−1b̄:



1 2 2 1 0 0
3 7 9 0 1 0

−1 −4 −7 0 0 1


 ∼




1 2 2 1 0 0
0 5 −11 0 1 −3

−1 −4 −7 0 0 1




∼



1 2 2 1 0 0
0 5 −11 0 1 −3
0 −2 −5 1 0 1




∼



1 2 2 1 0 0
0 10 −22 0 2 −6
0 −10 −25 5 0 5




∼



1 2 2 1 0 0
0 10 −22 0 2 −6
0 0 −47 5 2 −1




∼




1 2 2 1 0 0

0 1 −22
10

0 1
5
−3

5

0 0 1 − 5
47

− 2
47

1
47



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∼




1 2 0 57
47

4
47

− 2
47

0 1 0 11
47

5
47

−26
47

0 0 1 − 5
47

− 2
47

1
47




∼




1 0 0 35
47

− 6
47

−50
47

0 1 0 11
47

5
47

−26
47

0 0 1 − 5
47

− 2
47

1
47




=⇒ A−1 = 1
47




35 −6 50
11 5 −26
−5 −2 1


 ,

so x̄ = A−1b̄ = 1
47




35 −6 50
11 5 −26
−5 −2 1







2
−1

3


 = 1

47




70 + 6 + 150
22− 5− 78
−10 + 2 + 3


 = 1

47




226
−61
−5




Example 38. Following §2.3, #16: find the inverse of the matrix

A =




2 0 0
0 3 0
0 0 5




By inspection, it should be clear that

A−1 =




1
2

0 0
0 1

3
0

0 0 1
5


 .

If this isn’t clear immediately, consider what we discussed previously about

(1) elementary matrices representing row operations,
(2) how to find the inverse of an elementary matrix,
(3) how an invertible matrix is the product of elementary matrices.

Example 39. Following §2.3, #18: use inverses to solve the linear system

x1 = 1

3x1 = 3

2x1+5x2+5x3 = 7

Since this system is equivalent to the matrix equation



1 0 0
3 0 0
2 5 5




︸ ︷︷ ︸
A




x1

x2

x3




︸ ︷︷ ︸
x̄

=




1
3
7




︸ ︷︷ ︸
b̄

,
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we can solve Ax̄ = b̄ by finding x̄ = A−1b̄:


1 0 0 1 0 0
3 0 0 0 1 0
2 5 5 0 0 1


 ∼




1 0 0 1 0 0
0 5 5 −2 0 1
0 0 0 −3 1 0




Since we have obtained the those three 0’s in the beginning of the third row, we will not be
able to get this matrix into the form [I |A−1], i.e., A is not invertible. Thus, we cannot use
inverses to solve this problem and we must do it the old-fashioned way: put the augmented
matrix in reduced row-echelon form.


1 0 0 1
3 0 0 3
2 5 5 7


 ∼




1 0 0 1
2 5 5 7
0 0 0 0




∼



1 0 0 1
0 5 5 5
0 0 0 0




∼



1 0 0 1
0 1 1 1
0 0 0 0




So if we let x2 = s, then
s + x3 = 1 =⇒ x3 = 1− s.

Thus the solution set is
{(1, s, 1− s)}, ∀s ∈ R.

The point of this is example is that just because A is not invertible, it doesn’t necessarily
mean there is no solution. In the earlier example where A−1 didn’t exist, the system was
inconsistent and there was no solution. In this example, there was a solution - in fact, there
was an entire parametric family of solutions given by {(1, s, 1− s)}, ∀s ∈ R.

We saw a theorem that said (among other things):

Theorem. The following conditions are equivalent:

(1) A is invertible.
(2) The system of n equations in n unknowns given by Ax = b has exactly one solution.

So this can be reinterpreted as saying

Theorem. The following conditions are equivalent:

(1) A is not invertible.
(2) The system of n equations in n unknowns given by Ax = b has either:

(a) no solution, or
(b) a parametric family of solutions.

Don’t make the mistake of assuming a system has no solution, just because
the coefficient matrix is not invertible!!!
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II.6. Stochastic Matrices and Introduction to Markov Processes.

Definition 35. A stochastic process is any sequence of experiments for which the outcome
at any point depends on chance. A stochastic matrix or transition matrix is a square
matrix with the properties:

(1) Every entry is a number between 0 and 1 (inclusive).
(2) The sum of the entries from any column is 1.

Note: we need the columns to add to 1, not the rows.
A stochastic matrix represents probabilities. Since each entry is between 0 and 1, it can

be thought of as a percentage chance or probability of an event coming to pass. Specifically,
an entry aij represents the probability of something in state j making the transition into
state i.

Usually, we talk about stochastic matrices when we have a group which is divided into
several subgroups; the primary example for today is a population of people divided into
various consumer preference groups.

For example, if you look at last Thursday’s application supplement, you will notice that
the matrix

A =

married single[
0.70 0.20
0.30 0.80

]
married
single

representing likelihood of change in marital status, is a stochastic matrix. The first row
represents women who are married in 1 year, the second row represents women who are
single in 1 year. The first column represents all women who are currently married (all =
100%, so column totals to 1), and the second column represents all women who are currently
single (same: all=100%). One way to rephrase this is that the first column is a breakdown
of the portion of the population which begins in state 1 (married) and the second column
is a breakdown of the portion of the population which begins in state 2 (single). So out of
the starting population of married women, 30% will be single next year, or there is a 30%
chance that any given married woman will be single next year. There is a 70% chance she
will still be married. In the language of the definition, the probability is 0.70 that a married
woman will make the transition from married to single, in any given year.

You might ask the question, “Does the portion of married women continue to dwindle
as time goes on?” The answer to this is yes and no ... while the percentage of married
women gets smaller and smaller, it never gets below 40%, for reasons we will see later. (The
progression might look something like 40.1%, 40.01%, 40.001%, . . . ). Consider that on the
first year, 1

5
of 2000 single women get married, while on the second year, 1

5
of 4000 women

get married, so that more women are actually getting married each year, as the portion of
married women drops. Clearly, this is a little more complex than it initially appears, and it
requires a little more investigation to really see what’s going on.

We can write a stochastic (or transition) matrix as

P =




p11 p12 . . . p1n

p21 p22 . . . p2n
...

...
. . .

...
pn1 pn2 . . . pnn



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where pij ∈ [0, 1] is a number indicating the probability of a member of the jth state being
a member of the ith state at the next stage (or next step). For anyone who’s studied
probability, 0 6 pij 6 1 because a probability can be no less than 0% and no greater than
100%.

Example 40. (Consumer Preference Models) Suppose that only two mobile phone carriers
(AT&T and Sprint) service a particular area. Every year, Sprint keeps 1

4
of its customers

while 3
4

switch to AT&T. Every year, AT&T keeps 2
3

of its customers while 1
3
. This infor-

mation can be displayed in matrix form as

A =

Sprint AT&T[
1
4

1
3

3
4

2
3

]
Sprint

AT&T

We can equivalently interpret this matrix as probabilities; for any Sprint customer, there is
a 1 in 4 chance they will still be a Sprint customer next year. For any AT&T customer,
there is a 2 in 3 chance they will still be an AT&T customer next year. When we begin the
market analysis, Sprint has 3

5
of the market (market = total no. of customers) and AT&T

has 2
5

of the market. Therefore, we can denote the initial distribution of the market by

x̄(0) =

[
3
5

2
5

]
.

One year later, the distribution of the market will be given by

x̄(1) = Ax̄(0) =

[
1
4

1
3

3
4

2
3

][
3
5

2
5

]

=

[
1
4

(
3
5

)
+ 1

3

(
2
5

)
3
4

(
3
5

)
+ 2

3

(
2
5

)
]

=

[
3
20

+ 2
15

9
20

+ 4
15

]
=

[
9+8
60

27+16
60

]
=

[
17
60

43
60

]

This can be readily seen as follows, suppose the initial market consists of m = 12, 000 people,
and no change in this number occurs with time. Initially, Sprint has 3

5
m = 7200 customers

and AT&T has 2
5
m = 4800. At the end of the first year, Sprint keeps 1

4
of its original

customers and gains 1
3

of AT&T’s customers. Thus Sprint has

1
4

(
3
5
m

)
+ 1

3

(
2
5
m

)
=

[
1
4

(
3
5

)
+ 1

3

(
2
5

)]
m = 17

60
m = 3400

after 1 year has passed. Similarly, at the end of the first year, AT&T keeps 2
3

of its customers

and gains 3
4

of Sprint’s customers. Thus AT&T has

3
4

(
3
5
m

)
+ 2

3

(
2
5
m

)
=

[
3
4

(
3
5

)
+ 2

3

(
2
5

)]
m = 43

60
m = 8600

Similarly, at the end of 2 years, the distribution of the market will be given by

x(2) = Ax(1) = A
(
Ax(0)

)
= A2x(0)



Lecture Notes Math 023 - Applied Matrix Algebra 41

Example 41. Now, suppose we are given the matrix

A =

[
1
4

1
3

3
4

2
3

]

and the initial distribution of the market is denoted by

x(0) =

[
a
b

]
. (a and b are percentages)

Can we determine a and b so that the distribution will be the same from year to year? When
this happens, the distribution of the market is said to be stable.

Since Sprint and AT&T control the entire market, we must have

a + b = 1.

We also want the distribution to remain unchanged after the first year, so we require

Ax(0) = x(0)

or
A︷ ︸︸ ︷[

1
4

1
3

3
4

2
3

] x̄(0)︷ ︸︸ ︷[
a
b

]
=

x̄(0)︷ ︸︸ ︷[
a
b

]

so that we get
1
4
a + 1

3
b = a

3
4
a + 2

3
b = b

or

−3
4
a + 1

3
b = 0

3
4
a− 1

3
b = 0

Since these last two equations are the same,
3
4
a = 1

3
b =⇒ a = 4

9
b =⇒ 4

9
b + b = 13

9
b = 1 =⇒ b = 9

13
, a = 4

13

This problem is an example of a Markov process.
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II.6.1. Markov Processes.
Consider a system that is, at any one time, in one and only one of a finite number of

states. For example, the weather in a certain area is either rainy or dry; a person is either a
smoker or a nonsmoker; a person either goes or does not go to college; we live in an urban,
suburban, or rural area; we are in the lower, middle, or upper income brackets; or we buy a
Chevrolet, Ford, or other make of car. As time goes by, the system may move from one state
to another, and we assume that the state of the system is observed at fixed time intervals
(every day, every year, etc). In many applications, we know the present state of the system
and we wish to know the state at the next, or some other future observation period. We
often predict the probability of the system being in a particular state at a future observation
period from its past history.

Definition 36. A Markov process is a process in which

(1) The probability of the system being in a particular state at a given point in time
depends only on its state at the immediately preceding observation period.

(2) The probabilities are constant over time (for example, in the case of the marital status
example, the probabilities 0.70, 0.30, 0.20, and 0.80 remain the same from year to
year).

(3) The set of possible states/outcomes is finite.

Suppose a system has n possible states. For each i = 1, 2, 3, . . . , n, j = 1, 2, 3, . . . , n, let
pij be the probability that if part of the system is in state j at the current time period, then
it will be in state i at the next.

Definition 37. A transition probability is an entry pij in a stochastic/transition matrix.
That is, it is a number representing the chance that something in state j right now will be
in state i at the next time interval.

Example 42. Coca-cola is testing a new diet version of their best-selling soft drink, in a
small town in California. They poll shoppers once per month to determine what customers
think of the new product. Suppose they find that every month, 1

3
of the people who bought

the diet version decide to switch back to regular, and 1
2

the people who bought diet decide
to switch to the new diet version. Let D denote diet soda buyers, and let R be regular soda
buyers. Then the transition matrix of this Markov process is

P =

D R[
2
3

1
2

1
3

1
2

]
D

R

In this matrix, note that the entries are transition probabilities: 1
3

represents the probability

of a shopper making the transition from Diet to Regular, and 2
3

represents the probability
of a shopper making the transition from Diet to Diet (they can stay the same).

Example 43. A market research organization is studying a large group of caffeine addicts
who buy a can of coffee each week. It is found that 50% of those presently using Starbuck’s
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will again buy Starbuck’s brand next week, 25% will switch to Peet’s, and 25% will switch
to some brand. Of those buying Peet’s now, 30% will again buy Peet’s next week, 60% will
switch to Starbuck’s, and 10% will switch to another brand. Of those using another brand
now, 40% will switch to Starbuck’s and 30% will switch to Peet’s in the next week. Let S,
P, and O denote Starbuck’s, Peet’s and Other, respectively. The probability that a person
presently using S will switch to P is 0.25, the probability that a person presently using P
will again buy P is 0.3, and so on. Thus, the transition matrix of this Markov process is

P =

S P O


0.50 0.60 0.40
0.25 0.30 0.30
0.25 0.10 0.30




S
P
O

Definition 38. A probability vector is a vector

x̄ =




p1

p2
...

pn




(1) whose entries pi are between 0 and 1: 0 6 pi 6 1, and
(2) whose entries pi sum to 1: p1 + p2 + . . . + pn =

∑n
i=1 pi = 1

Example 44. Each column of the previous (coffee) transition matrix is a probability vector:

x̄S =




0.50
0.25
0.25


 x̄P =




0.60
0.30
0.10


 x̄O =




0.40
0.30
0.30




Each column of the mobile phone matrix from the very beginning is also a probability vector:

x̄S =

[
1
4

3
4

]
x̄A =

[
1
3

2
3

]

Definition 39. The state vector of a Markov process at step k is a probability vector

x̄(k) =




p
(k)
1

p
(k)
2
...

p
(k)
n




which gives the breakdown of the population at step k. The state vector x̄(0) is the initial
state vector.



44 Math 023 - Applied Matrix Algebra Lecture Notes

Example 45. The initial state vector of the mobile phone example was given as

x̄(0) =

[
3
5

2
5

]

and we computed the state vector after 1 year to be

x̄(1) =

[
17
60

43
60

]
.

Back on the application regarding marital status, the initial state vector would be

x̄(0) =

[
.8
.2

]

and the state vector after 1 year would be

x̄(1) =

[
.6
.4

]
.

We will now use the transition matrix of a Markov process to determine the probability of
the system being in any of the n states at future times. The following theorem was alluded
to in the marital status assignment:

Theorem. If P is the transition matrix of a Markov process, then the state vector x̄(k+1) at
the (k + 1)th step, can be determined by the previous state vector x̄(k) by

x̄(k+1) = P x̄(k)

So we have:

x̄(1) = P x̄(0)

x̄(2) = P x̄(1) = P
(
P x̄(0)

)
= P 2x̄(0)

x̄(3) = P x̄(2) = P
(
P 2x̄(0)

)
= P 3x̄(0)

...

x̄(k) = P kx̄(0)

This means that in general, we can determine the state of the system at the kth step by
computing the kth power of the transition matrix. Recall, this is the solution to the third
problem on the marital status homework assignment. (In practice, however, it is usually
easier to iterate, that is, we use the output from the kth step to find the input for the
(k + 1)th, rather than computing P k each time.)

Homework Assignment:
Read: 90-92 “Stochastic Matrices”
Exercises: §2.5 1-12
Supplement: Markov Processes (exercises)
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II.7. Markov Process Concepts: Equilibrium and Regularity. We begin today by
recalling some definitions from yesterday.

Definition 40. A Markov process is a process in which

(1) The probability of the system being in a particular state at a given point in time
depends only on its state at the immediately preceding observation period.

(2) The probabilities are constant over time.
(3) The set of possible states/outcomes is finite.

Definition 41. A transition probability is an entry pij in a stochastic/transition matrix.
That is, it is a number representing the chance that something in state j right now will be
in state i at the next time interval.

Definition 42. A probability vector is a vector x̄ =




p1

p2
...

pn




(1) whose entries pi are between 0 and 1: 0 6 pi 6 1, and
(2) whose entries pi sum to 1: p1 + p2 + . . . + pn =

∑n
i=1 pi = 1

Definition 43. The state vector of a Markov process at step k is a probability vector

x̄(k) =




p
(k)
1

p
(k)
2
...

p
(k)
n




which gives the breakdown of the population at step k. The state vector x̄(0) is the initial
state vector.

Theorem. If P is the transition matrix of a Markov process, then the state vector x̄(k+1) at
the (k + 1)th step, can be determined by the previous state vector x̄(k) by

x̄(k+1) = P x̄(k) = P k+1x̄(0).

Example 46. Let’s consider the Coca-cola example again. Suppose that when we begin
market observations, the initial state vector is

x̄(0) =

[
1
0

]
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because Coca-Cola is giving away free samples of their product to everyone. (This vector
corresponds to 100% of the people getting the diet version.) Then on month 1 (one month
after the product launch), the state vector is

x̄(1) = P x̄(0) =

[
2
3

1
2

1
3

1
2

] [
1
0

]
=

[
2
3

1
3

]

That is, one-third of the people switched back to the regular version immediately. Now in
the continuing months,

x̄(2) = P x̄(1) =

[
2
3

1
2

1
3

1
2

][
2
3

1
3

]
=

[
2
3
· 2

3
+ 1

2
· 1

3

1
3
· 2

3
+ 1

2
· 1

3

]
=

[
11
18

7
18

]
≈

[
0.611
0.389

]

x̄(3) = P x̄(2) =

[
2
3

1
2

1
3

1
2

][
11
18

7
18

]
=

[
2
3
· 11

18
+ 1

2
· 7

18

1
3
· 11

18
+ 1

2
· 7

18

]
=

[
65
108

43
108

]
≈

[
0.602
0.398

]

x̄(4) = P x̄(3) =

[
2
3

1
2

1
3

1
2

][
65
108

43
108

]
=

[
2
3
· 65

108
+ 1

2
· 43

108

1
3
· 65

108
+ 1

2
· 43

108

]
=

[
389
648

259
648

]
≈

[
0.600
0.400

]

From the fourth day on, the state vector of the system only gets closer to [0.60 0.40]. A very
practical application of this technique might be to answer the question, “If we want our new
product to eventually retain x% of the market share, what portion of the population must
we initially introduce to the product?” In other words, “How much do we need to give away
now in order to make a profit later?”

Example 47. Consider the coffee example again. Suppose that when the survey begins, we
find that Starbuck’s has 20% of the market, Peet’s has 20% of the market, and the other
brands have 60% of the market. Then the initial state vector is

x̄(0) =




0.2
0.2
0.6


 .

The state vector after the first week is

x̄(1) = P x̄(0) =




0.50 0.60 0.40
0.25 0.30 0.30
0.25 0.10 0.30







0.20
0.20
0.60


 =




0.4600
0.2900
0.2500



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Similarly,

x̄(2) = P x̄(1) =




0.50 0.60 0.40
0.25 0.30 0.30
0.25 0.10 0.30







0.4600
0.2900
0.2500


 =




0.5040
0.2770
0.2190




x̄(3) = P x̄(2) =




0.50 0.60 0.40
0.25 0.30 0.30
0.25 0.10 0.30







0.5040
0.2770
0.2190


 =




0.5058
0.2748
0.2194




x̄(4) = P x̄(3) =




0.50 0.60 0.40
0.25 0.30 0.30
0.25 0.10 0.30







0.5058
0.2748
0.2194


 =




0.5055
0.2747
0.2198




x̄(5) = P x̄(4) =




0.50 0.60 0.40
0.25 0.30 0.30
0.25 0.10 0.30







0.5055
0.2747
0.2198


 =




0.5055
0.2747
0.2198




So as k increases (that is, as time passes), we see that the state vector approaches the fixed
vector

x̄ =




0.5055
0.2747
0.2198


 .

This means that in the long run, Starbuck’s will command about 51% of the market, Peet’s
will retain about 27%, and the other brands will have about 22%.

Definition 44. In the last two examples, we have seen that as the number of observation
periods increases, the state vectors converge to a fixed vector. In this case, we say that
the Markov process has reached equilibrium. The fixed vector is called the steady-state
vector.

Remark. Markov processes are generally used to determine the behavior of a system in
the long run; for example, the share of the market that a certain manufacturer can expect
to retain on a somewhat permanent basis. Thus the question of whether or not a Markov
process reaches equilibrium is of paramount importance.

Example 48. The following example shows that not every Markov process reaches an equi-
librium. Let

P =

[
0 1
1 0

]
and x̄(0) =

[
1
3

1
2

]
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Then

x̄(1) = P x̄(0) =

[
0 1
1 0

] [
1
3

2
3

]
=

[
0 + 2

3

1
3

+ 0

]
=

[
2
3

1
3

]

x̄(2) = P x̄(1) =

[
1
3

2
3

]
, and x̄(3) = P x̄(2) =

[
2
3

1
3

]

Thus the state vector oscillates between the vectors[
1
3

2
3

]
and

[
2
3

1
3

]

and does not converge to a fixed vector.

However, if we demand that the transition matrix of a Markov process satisfies a rather
reasonable property, then we obtain a large class of Markov processes, many of which arise
in applications, which do reach equilibrium.

Definition 45. A transition matrix P of a Markov process is called regular iff all the entries
in some power of P are positive; that is, strictly larger than 0. A Markov process is called
regular iff its transition matrix is regular.

Example 49. The Markov processes in the soda and coffee examples are regular, since all
the entries in the transition matrices themselves are regular. That is, if P is the transition
matrix, then the first power of P has all nonzero entries.

To see an example which starts out having an entry of 0, but is still regular, consider

P =

[
0.2 1
0.8 0

]

This transition matrix is regular because

P 2 =

[
0.2 1
0.8 0

] [
0.2 1
0.8 0

]
=

[
0.04 + 0.8 0.2 + 0
0.16 + 0 0.8 + 0

]
=

[
0.84 0.2
0.16 0.8

]
.

From here on (i.e., all successive powers of P ), P will have strictly positive entries. Why?
Notice that subtraction does not appear in the definition of matrix multiplication, and there
are no negative numbers in a transition matrix (by definition). So once the numbers are
greater than 0, they can never go back to being 0. This brings us to our first “deep” result.

Theorem. If P is the transition matrix of a regular Markov process, then

(1) As k increases, P k approaches a matrix

P k k→∞−−−−−−→ B =




b1 b1 . . . b1

b2 b2 . . . b2
...

...
. . .

...
bn bn . . . bn



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all of whose columns are identical. This expression is read “as k increases (as time
passes), P k gets closer and closer to B”.

(2) Every column

b̄ =




b1

b2
...
bn




of B is a probability vector whose entries are all positive (nonzero). That is, bi > 0
and b1 + b2 + . . . + bn = 1.

(3) For any probability vector x̄,

P kx̄
k→∞−−−−−−→ b̄

so that b̄ is a steady-state vector. This means that no matter what initial state we
begin with, the system will tend toward a distribution of

b̄ =




b1

b2
...
bn




as time goes on.
(4) The steady state vector is the unique probability vector satisfying the matrix equation

P b̄ = b̄.

How can we make use of these results? The last part of the theorem actually gives us
a great method for determining the steady-state vector of a system. In the Coca-Cola and
Coffee examples, we looked for the steady-state vectors by computing the powers P kx̄. An
alternative way of finding the steady-state vector is as follows. First, recall that the theorem
tells us that the steady-state vector b̄ satisfies the matrix equation

P b̄ = b̄,

so we can rewrite this equation as
P b̄ = Inb̄,

or
(In − P )b̄ = 0,

using the distributivity property for matrix arithmetic. This last equation is a homogeneous
system, so we know it is consistent. Moreover, the theorem tells us that it will have a unique
solution which is a probability vector, i.e., such that

b1 + b2 + . . . + bn = 1.

Summary: How to find the steady-state vector of a regular transition matrix.

(1) The first method is iterative:
(a) Compute the powers P kx̄ where x̄ is any probability vector.
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(b) Try to determine b̄ as the limit of the P kx̄: multiply x̄ by P , then multiply the
result by P , then multiply the result of that by P , and so on.

(2) The second method is:
(a) Solve the homogeneous system (In − P )b̄ = 0.
(b) From the infinitely many solutions obtained this way, determine the unique

solution whose components satisfy b1 + b2 + . . . + bn = 1.

Remark. The first method usually requires more work.

Example 50. To see how this works, let’s return to the marital status example. For

P =

[
0.70 0.20
0.30 0.80

]
,

we have

(In − P ) =

[
1 0
0 1

]
−

[
0.70 0.20
0.30 0.80

]
=

[
0.30 −0.20

−0.30 0.20

]

This gives the homogeneous system
[

0.30 −0.20
−0.30 0.20

] [
b1

b2

]
=

[
0
0

]

And the reduced row-echelon form of the augmented matrix for this system is
[

0.30 −0.20 0
−0.30 0.20 0

]
∼

[
0.30 −0.20 0
0.00 0.00 0

]

So if we put b2 = t, the solution set for the system is given by (2
3
t, t). The interpretation of

this result is that in the long run, the ratio of married to single women will be about 2 : 3.

Example 51. Now let’s return to the coffee example. For

P =




0.50 0.60 0.40
0.25 0.30 0.30
0.25 0.10 0.30


 ,

we have

(In − P ) =




1 0 0
0 1 0
0 0 1


−




0.50 0.60 0.40
0.25 0.30 0.30
0.25 0.10 0.30


 =




0.50 −0.60 −0.40
−0.25 0.70 −0.30
−0.25 −0.10 0.70




This gives the homogeneous system



0.50 −0.60 −0.40
−0.25 0.70 −0.30
−0.25 −0.10 0.70







b1

b2

b3


 =




0
0
0



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And the reduced row-echelon form of the augmented matrix for this system is


0.50 −0.60 −0.40 0
−0.25 0.70 −0.30 0
−0.25 −0.10 0.70 0


 ∼




1 −1.20 −0.80 0
−0.25 0.70 −0.30 0

0.25 0.10 −0.70 0




2R1 → R1

−R3 → R3

∼



1 −1.20 −0.80 0
−0.25 0.70 −0.30 0

0 0.80 −1.00 0




R2 + R3 → R3

∼



1 −1.20 −0.80 0
−1 2.80 −1.20 0

0 0.80 −1.00 0


 4R2 → R2

∼



1 −1.20 −0.80 0
0 1.60 −2.00 0
0 1.60 −2.00 0


 R1 + R2 → R2

2R3 → R3

∼



1 −1.20 −0.80 0
0 1 −1.25 0
0 0 0 0


 1

1.60
R2 → R2

R3 −R2 → R3

∼



1 0 −2.30 0
0 1 −1.25 0
0 0 0 0




R1 + 1.2R2 → R2

So if we put b3 = t, the solution set for this system is given by (2.3t, 1.25t, t), where t is
any real number. To find the steady-state vector, all we do now is pick the solution whose
components sum to 1, i.e., let

2.3t + 1.25t + t = 1.

Then
4.55t = 1 =⇒ t = 1

4.55
≈ 0.2198

gives the vector

b̄ =




0.5055
0.2747
0.2198


 .

Note that these numbers agree with our previous calculations of P kx̄. The interpretation
of this result is that in the long run, Starbuck’s will retain about 51% of the market, and
Peet’s will retain about 27%.

Homework Assignment:
Read: none
Exercises: none
Supplement: Markov Processes (word problems)



52 Math 023 - Applied Matrix Algebra Lecture Notes

II.8. The Closed Leontief Input-Output Model.
Everything we discuss today will be in reference to the Leontief Closed Model, and will

largely be a review of the second application supplement.
Suppose an economic system has several different industries, each of which has certain

input requirements, as well as some sort of product or output. In an application supplement
from first week, we saw an example of this concerning Farmers, Manufacturers and Clothing
Producers. Let’s reconsider this example with some different numbers; and let’s change
Manufacturers to Carpenters (Carpenters build Housing) and Clothing Producers to Tailors,
for brevity. Assume for convenience that each group produces 1 unit per year of whatever
they produce. Suppose that during the year, the portion of each commodity consumed by
each group is given by

Goods
Consumed by:

Goods Produced by:
Farmers Carpenters Tailors

Farmers 7
16

1
2

3
16

Carpenters 5
16

1
6

5
16

Tailors 1
4

1
3

1
2

Thus the farmers consume 7
16

of their own produce while the carpenters consume 5
16

of the

farmers’ produce and 5
16

of the tailors’ produce, etc. Let p1 be the price of food, p2 be the
price of tools, and p3 the price of clothes. (Each is price per unit). We assume everyone
pays the same amount for each commodity, so the farmers pay just as much for food as the
tailors, even though they grew it. We are interested in determining the prices p1, p2, p3 so
that we have a state of equilibrium, that is, no one makes money and no one loses money.
Apparently, we are in a communist state.

The farmers’ total consumption (or expenditure) is

7
16

p1 + 1
2
p2 + 3

16
p3,

and their income is p1 because they produce one unit of food. If we have expenditures equal
to income, then we equate the values of the different quantities to get

7
16

p1 + 1
2
p2 + 3

16
p3 = p1.

Similarly, for the carpenters we have

5
16

p1 + 1
6
p2 + 5

16
p3 = p2

and for the tailors we have
1
4
p1 + 1

3
p2 + 1

2
p3 = p3.

This system of equations can be written in matrix notation as Ep = p for

E =




7
16

1
2

3
16

5
16

1
6

5
16

1
4

1
3

1
2


 and p =




p1

p2

p3


 , i.e.,




7
16

1
2

3
16

5
16

1
6

5
16

1
4

1
3

1
2







p1

p2

p3


 =




p1

p2

p3


 .
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Now from Ep = p, we use some matrix algebra to obtain a homogeneous system:

Ep = p

Ep = Ip

0 = Ip− Ep

0 = (I − E)p

We know that a homogeneous solution always has the trivial solution (p1 = p2 = p3 = 0 in
this case), but then all prices would be zero, which makes no sense. From the last line above,
we obtain

(I − E) =




7
16

1
2

3
16

5
16

1
6

5
16

1
4

1
3

1
2


−




1 0 0

0 1 0

0 0 1




=



− 9

16
1
2

3
16

5
16

−5
6

5
16

1
4

1
3
−1

2




=



− 9

16
1
2

3
16

9
16

−1
2
− 3

16

1
4

1
3

−1
2


 R3 + R2 → R2

=



− 9

16
1
2

3
16

0 0 0
1
4

1
3
−1

2


 R1 + R2 → R2

=



− 9

16
1
2

3
16

1
4

1
3
−1

2

0 0 0


 R2 ↔ R3

=




3
4
−2

3
−1

4

1
4

1
3
−1

2

0 0 0




(−4
3

)
R1 → R1

=




0 −5
3

5
4

1
4

1
3
−1

2

0 0 0


 (−3) R2 + R1 → R1
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=




1
4

1
3
−1

2

0 −5
3

5
4

0 0 0


 R1 ↔ R2

=




1 4
3
−2

0 1 −3
4

0 0 0


 4R1 → R1,

(−3
5

)
R2 → R2

Now the matrix is in row-echelon form and we can rewrite it as a system of equations:

p1 + 4
3
p2 − 2p3 = 0

p2 − 3
4
p3 = 0

Letting p3 = t, this gives

p2 − 3
4
t = 0 =⇒ p2 = 3

4
t

p1 + 4
3
(3

4
t)− 2t = 0 =⇒ p1 = t

So our solution is (t, 3
4
t, t) or (4t, 3t, 4t) for any t ∈ R. This means that the prices should be

assigned in the ratio 4 : 3 : 4. For example, if we let t = 1000, then food costs $4000 per
unit, tools cost $3000 per unit, and clothes cost $4000 per unit. If we are in Japan, then
food costs Y=474640 per unit, and manufactured goods cost Y=355980 per unit. In Britain, if
one unit of clothes costs £6039, then one unit of manufactured goods costs £4604, etc.

Definition 46. A matrix A with entries aij is said to be nonnegative iff aij > 0 for each i
and j. A matrix A with entries aij is said to be positive iff aij > 0 for each i and j.

Example 52. The transition matrices we discussed previously are all nonnegative matrices,
and we saw that steady-state vector of a regular Markov process is always positive.

Warning! The book presents the following definition in a strange and confusing manner.
You will want to refer to your notes for this material, as the book will likely only provide a
source of confusion.

For the Leontief Closed model, the Exchange Matrix1 is set up as follows: suppose
we have n manufacturers m1,m2, . . . , mn, who produce the goods g1, g2, . . . , gn, respectively.
Consider a fixed unit of time (say, a year for now) and suppose that mi makes exactly xi

units of gi during this time.
In producing gi, manufacturer mi may consume amounts of goods g1, g2, . . . , gn. We set

up the input-output matrix by saying that mi uses eij of gj (in the manufacture of one unit

1Whenever we discuss the Closed model, we will be talking about the Exchange matrix, and whenever we
talk about the Exchange matrix, you may assume we are discussing the Closed model.
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of gi). Thus the first row of the matrix consists of the amounts of g1, g2, . . . , gn consumed by
m1 in the production of g1. The full matrix looks like

E =




e11 e12 . . . e1n

e21 e22 . . . e2n
...

...
. . .

...
en1 en2 . . . enn




Note that for this model to work, we need 0 6 eij 6 1 and that the sum of any column
must be less than or equal to 1: e1j + e2j + . . . + enj 6 1.

Definition 47. An n× n matrix E = [eij] is called an exchange matrix iff it satisfies the
following two properties:

(1) eij > 0 (the matrix is nonnegative).
(2) e1j + e2j + . . . + enj = 1 (each column sums to 1).

Note that these two conditions together imply that eij 6 1.
Question: is every transition matrix an exchange matrix? Yes - although the numbers

have a different interpretation, any matrix satisfying the conditions for being a transition
matrix also satisfies the conditions for being an exchange matrix, and vice versa.

Example 53. The matrix E =




7
16

1
2

3
16

5
16

1
6

5
16

1
4

1
3

1
2


 is an exchange matrix.

Definition 48. If no goods leave the system, and no goods are introduced from an outside
source, then the total consumption must equal its total production, i.e.,

ei1x1 + ei2x2 + . . . + einxn︸ ︷︷ ︸
consumed by mi

= xi︸︷︷︸
produced by mi

and we say the system is closed.

If the price per unit of gk is pk, then manufacturer mi pays ei1p1 + ei2p2 + . . . + einpn for
the goods he uses.

The problem is to determine the prices p1, p2, . . . , pn so that no manufacturer makes money
or loses money. That is, so each manufacturer’s income will equal his expenses. Since mi

manufactures one unit of gi, his income is pi. Then this needs to equal his expenses, giving

ei1p1 + ei2p2 + . . . + einpn = pi.
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In general, we get

e11p1 + e12p2+ . . . + e1npn = p1

e21p1 + e22p2+ . . . + e2npn = p2

...

en1p1 + en2p2+ . . . + ennpn= pn,

which can be written in matrix form as Ep̄ = p̄ or (In − E) p̄ = 0 where

E = [eij] and p̄ =




p1

p2
...

pn


 .

So we can rephrase our problem as trying to find a nonnegative vector p̄ with at least one
positive entry, which satisfies the equation (In − E) p̄ = 0.

Theorem. Given an exchange matrix E, we can always find a nonnegative vector p̄ with at
least one positive entry, such that (In − E) p̄ = 0. The point is: if the matrix is an exchange
matrix, a solution exists.

Remark. In our general problem, we required that each manufacturer’s income equal his
expenses. Instead, we could have required that each manufacturer’s income not exceed his
expenses. This would have led to

Ep̄ 6 p̄.

However, it can be shown that

Ep̄ 6 p̄ =⇒ Ep̄ = p̄.

Thus, if no manufacturer spends more than he earns, everyone’s income equals his expenses.
An economic interpretation of this statement is that in the Leontief closed model, if some
manufacturer is making a profit, then at least one manufacturer is taking a loss.

Example 54. (International Trade) Suppose that n countries c1, c2, . . . cn are engaged in
a trade agreement (eg, NAFTA) with each other, and that a common currency is in use.
We assume that prices are fixed throughout this example, and that cj’s income (which we
call yj) comes entirely from selling its goods either internally or to other countries. We also
assume that some fractions of cj’s income that is spent on imports from ci is a fixed number
eij which does not depend on cj’s income. Since the eij are fractions of yj, we have

eij > 0

e1j + e2j + . . . + enj = 1
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so that E = [eij] is an exchange matrix. We now wish to determine the total income yi for
each country ci. Since the value of ci’s exports to cj is eijyj, the total income of ci is given
by

ei1y1 + ei2y2 + . . . + einyn.

Hence, we must have
ei1y1 + ei2y2 + . . . + einyn = yi.

In matrix notation, we must find a nonnegative vector

ȳ =




y1

y2
...

yn




where at least one of the yi’s is strictly greater than 0 and Eȳ = ȳ, which is our earlier
problem.

Example 55. Suppose that Canada, Mexico, and the USA are trading wood, petroleum,
and metal, respectively, and that the exchange matrix is given by

E =

Can Mex USA


0.1 0.4 0.0
0.6 0.1 0.6
0.3 0.5 0.4




Can
Mex
USA

Then

I3 − E =




0.9 −0.4 0.0
−0.6 0.9 −0.6
−0.3 −0.5 0.6




is the coefficient matrix of a homogeneous system, and this is row-equivalent to


0 −1.9 1.8
−0.6 0.9 −0.6

0.3 0.5 −0.6




3R3 + R1 → R1

∼


−0.6 0.9 −0.6

0 −1.9 1.8
0.6 1.0 −1.2




R1 ↔ R2

2R3 → R3

∼



1 −3
2

1
0 −1.9 1.8
0 1.9 −1.8




− 1
0.6

R1 → R1

R1 + R3 → R3

∼




1 0 −16
38

0 1 −18
19

0 0 0




3
2
R2 + R1 → R1

− 1
1.9

R2 → R2

R2 + R3 → R3

So that if y3 = t, then the solution set will be given by (16
38

t, 18
19

t, t). In other words, prices
should be assigned in the ratio 16 : 36 : 38, or the incomes of the three countries are in the
ratio 16 : 36 : 38 (same thing).

Homework Assignment:
Read: notes only
Exercises: none
Supplement: Leontief Closed Model
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II.9. The Open Leontief Input-Output Model. We begin today by recalling some def-
initions from yesterday.

Definition 49. A matrix A with entries aij is said to be nonnegative iff aij > 0 for each i
and j. A matrix A with entries aij is said to be positive iff aij > 0 for each i and j.

Definition 50. An n×n matrix is called an input-output matrix or an exchange matrix
iff it satisfies the following two properties:

(1) aij > 0 (the matrix is nonnegative).
(2) a1j + a2j + . . . + anj = 1 (each column sums to 1).

The exchange matrix indicates how goods are exchanged within the system.

Definition 51. If no goods leave the system, and no goods are introduced from an outside
source, then the total consumption must equal its total production, i.e.,

ai1x1 + ai2x2 + . . . + ainxn︸ ︷︷ ︸
consumed by mi

= xi︸︷︷︸
produced by mi

and we say the system is closed.

We talked yesterday about the closed model and how the primary problem of the closed
model is to determine prices: if each industry consumes some goods in the course of operation,
then how should we assign prices so that goods may be traded fairly?

The open model is quite different. We are still talking about goods produced by various
sectors of an economy, and we still take into account that some industries consume the
goods of the other industries in the course of operation. However, that is about where
the similarities end. In the open model, we also take external demand into consideration;
that is, how much demand is there for a given industry’s goods, above and beyond that
which is required for the system to sustain itself? In this case, the primary problem become
very different. We no longer care about determining prices; our main concern is trying to
determine how much product is required to meet the demand, and still sustain the system.
We will work with equations that look like

(goods produced by the system)

= (goods consumed by the system) + (goods consumed externally)

which can be paraphrased by saying that of whatever is produced by the system, some will
be consumed by the operation of the system, and some (if any is left) will go to satisfy
external demand for those goods.

Now to formalize this discussion, suppose that we have n goods g1, g2, . . . , gn, and n
manufacturers m1,m2, . . . , mn. We still assume that each manufacturer mi produces only gi

and that gi is produced only by mi.
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Definition 52. Let cij > 0 be the dollar value of gi that has to be consumed in the production
of $1 worth of gj. The matrix C = [cij] is called the consumption matrix. Note that cii

may be positive, which means that we may require some amount of gi to make gi.

Remark. Note the difference between the consumption matrix of the open model and the
exchange matrix of the closed model:

• The exchange matrix expresses portions of one producer’s output required for an-
other’s operation.

• The consumption matrix expresses dollar values of one producer’s output required
for the production of a dollar amount of another’s.

Note also that the entries of the exchange matrix represent roughly the opposite of the entries
in the consumption matrix:

• eij is the amount of gj used in the manufacture of one unit of gi.
• cij is the dollar value of gi consumed in the production of $1 worth of gj.

Definition 53. Let xi be the dollar value of gi (that is, the amount of xi, given in dollars)
produced in a fixed period of time, say 1 year. The vector

x̄ =




x1

x2
...

xn


 (xi > 0)

is called the production vector because it tells how much of each good is produced.

Remark. Note that we are using x’s to represent the production vector, because it is now
“the amount to be produced” which is our unknown.

Now if we wish to determine the total value of the product gi that is consumed2 we have
that the expression

ci1x1 + ci2x2 + . . . + cinxn.

Observe that the above expression is the ith entry of the matrix product Cx̄:

Cx̄ =




c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn







x1

x2
...

xn


 =




c11x1 + c12x2 + . . . + c1nxn

c21x1 + c22x2 + . . . + c2nxn
...

cn1x1 + cn2x2 + . . . + cnnxn




2As determined by the production vector, that is, to make $x1 worth of g1, $x2 worth of g2, and so on.
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Definition 54. The difference between the dollar amount of the gi that is produced and the
total dollar value of gi that is consumed,

xi − (ci1x1 + ci2x2 + . . . + cinxn) ,

is called the net production. Observe that this expression is the ith entry of the matrix

x̄− Cx̄ = (In − C) x̄ =




x1

x2
...

xn


−




c11x1 + c12x2 + . . . + c1nxn

c21x1 + c22x2 + . . . + c2nxn
...

cn1x1 + cn2x2 + . . . + cnnxn




=




x1 − (c11x1 + c12x2 + . . . + c1nxn)
x2 − (c21x1 + c22x2 + . . . + c2nxn)

...
xn − (cn1x1 + cn2x2 + . . . + cnnxn)




The net production tells how much of a good is produced, beyond that which is required to
sustain the system - it indicates how much is available for external demand.

We will return to this matrix in just a moment.

Definition 55. Now suppose that we let di represent the dollar value of outside demand for
gi, and let

d̄ =




d1

d2
...

dn


 (di > 0)

This vector tells us that outside the system, there is a demand for $d1 of g1, $d2 of g2, etc.

Definition 56. We can now state the problem of the Leontief Open Model: Given a
demand vector d̄ > 0, can we find a production vector x̄ such that the outside demand d̄
is met without any surplus? That is, can we find a vector x̄ > 0 such that the following
equation is satisfied?

(In − C)x̄ = d̄

Example 56. Suppose we are considering a simple economic system consisting of Fuel and
Machines. Machines are needed to produce fuel, and fuel is needed to run the machines.
Suppose the consumption matrix of the system is given by

C =

F M[
1
4

1
2

2
3

1
3

]
F

M
=

F M[
$0.25 $0.50
$0.67 $0.33

]
F
M

Then

I2 − C =

[
1 0
0 1

]
−

[
1
4

1
2

2
3

1
3

]
=

[
3
4
−1

2

−2
3

2
3

]
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Now the equation (In − C)x̄ = d̄ becomes
[

3
4
−1

2

−2
3

2
3

][
x1

x2

]
=

[
d1

d2

]

which gives us
[

x1

x2

]
=

[
3
4
−1

2

−2
3

2
3

]−1 [
d1

d2

]
.

Now we use our techniques for finding the inverse of a matrix to determine that

[
3
4
−1

2

−2
3

2
3

]−1

=

[
4 3

4 9
2

]
.

So this gives us [
x1

x2

]
=

[
4 3
4 9

2

] [
d1

d2

]
> 0,

where the inequality (> 0) at the end follows from the fact that d1 > 0 and d2 > 0.
Thus, we can obtain a production vector for any given demand vector. If there is a demand

for $8 worth of fuel and $6 worth of machines, then

d̄ =

[
8
6

]

and the optimal production is

x̄ =

[
4 3
4 9

2

] [
8
6

]
=

[
32 + 18
32 + 27

]
=

[
50
59

]
.

Summary. Given a consumption matrix C and a demand vector d̄, we can find the
production vector x̄ by evaluating

x̄ = (In − C)−1d̄.

For C =

[
1
4

1
2

2
3

1
3

]
and d̄ =

[
8
6

]
we find that x̄ =

[
50
59

]
.

This means that in order to produce $8 of fuel and $6 of machines for sale on the free market,
the system needs to produce $50 worth of fuel (because it will use $42 worth of fuel during
production). It also needs to produce $59 worth of machines, in order to have $6 worth left
over to sell. (Yes, this business does not seem particularly efficient ...)

In general, if (In − C)−1 exists and is nonnegative, then x̄ = (In − C)−1d̄ is a production
vector (and hence is also nonnegative) for any given demand vector. However, in general (eg,
if these conditions are not satisfied) there may not be a solution to the equation (In−C)x̄ = d̄.
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Example 57. To see an example of this, consider the consumption matrix

C =

[
1
2

1
2

1
2

3
4

]

Then

I2 − C =

[
1 0
0 1

]
−

[
1
2

1
2

1
2

3
4

]
=

[
1
2

−1
2

−1
2
−1

4

]

and

(I2 − C)−1 =
1

1
8
− 1

4

[
1
4

1
2

1
2

1
2

]
= −8

[
1
4

1
2

1
2

1
2

]
=

[ −2 −4
−4 −4

]

Now if we are given some demand vector d̄ =

[
d1

d2

]
(di > 0), then

(I2 − C)−1 d̄ =

[ −2 −4
−4 −4

] [
d1

d2

]
=

[ −2d1 − 4d2

−4d1 − 4d2

]
= x̄.

But this x̄ is not a production vector except for the case when d̄ = 0. Thus the problem has
no solution. If d̄ = 0, then we do have a solution; namely, x̄ = 0. The interpretation of this
result is: if there is no outside demand, then nothing is produced. This example brings us
to the idea of when a consumption matrix can be considered worthwhile.

Definition 57. An n× n consumption matrix C is called productive iff (In −C)−1 exists
and (In − C)−1 > 0. That is, C is productive iff (In − C) is invertible and (In − C)−1

has no negative entries. In this case, we also sometimes say the entire Leontief model is
productive.

Remark. It follows that if C is productive, then for any demand vector d̄ > 0, the equation
(In − C)x̄ = d̄ has a unique solution x̄ > 0.

Example 58. Consider the consumption matrix C =

[
1
2

1
3

1
4

1
3

]
Then

I2 − C =

[
1 0
0 1

]
−

[
1
2

1
3

1
4

1
3

]
=

[
1
2
−1

3

−1
4

2
3

]
, and

(I2 − C)−1 =
1

1
3
− 1

12

[
2
3

1
3

1
4

1
2

]
= 4

[
2
3

1
3

1
4

1
2

]

Thus C is productive. If d̄ > 0 is a demand vector, then the equation (In − C)x̄ = d̄ has
the unique solution x̄ = (In − C)−1d̄ > 0.

Homework Assignment: Leontief Open Model handout
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III. Determinants

III.1. The Determinant of a Matrix.

Every square matrix is associated with a real number called the determinant. The value
of this number will tell us if the matrix is invertible.

Definition 58. The determinant of a 2×2 matrix A =

[
a b
c d

]
is given by |A| = ad− bc.

Remark. The easy way to remember this formula is as the difference of the products of the
diagonals. This formula should be familiar to you - we saw it before in our discussion of
inverses. In fact, we can now rephrase our criterion for invertibility as

“A 2× 2 matix A is invertible iff |A| 6= 0.”

The determinant of A is written as |A| or det(A).

Example 59. Let A =

[ −1 0
2 3

]
. Then the determinant of A is

|A| =
∣∣∣∣
−1 0

2 3

∣∣∣∣ = −1(3) + 2(0) = −3.

Let B =

[
1
4

2

3 −4

]
. Then the determinant of B is

|B| =
∣∣∣∣∣

1
4

2

3 −4

∣∣∣∣∣ = 1
4
(−4) + 3(2) = 5.

The determinant of a matrix can be positive, negative, or zero.

Remark. So far, we have only defined determinants for 2 × 2 matrices. How should they
be defined for larger matrices? There is an inductive definition for the determinant of an
n× n matrix that will work for any n; however, in this class we will never need to calculate
determinants for matrices larger than 3× 3. Fortunately, there is a much easier formula for
the determinant of 3× 3 matrices.

Definition 59. The determinant of a 3× 3 matrix A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 is given by

|A| =a11a22a33 + a12a23a31 + a13a21a32

−a31a22a13 − a32a23a11 − a33a21a12

which looks ornery, but can easily be remembered by the following diagram:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32
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Example 60. If

A =




2 5 4
3 1 2
5 4 6


 ,

then we can find the determinant |A| as follows:

(1) First write

2 5 4 2 5
3 1 2 3 1
5 4 6 5 4

(2) Then we get

|A| = 2 · 1 · 6 + 5 · 2 · 5 + 4 · 3 · 4 − 5 · 1 · 4 − 4 · 2 · 2 − 6 · 3 · 5
= 12 + 50 + 48− 20− 16− 90

= −16

Remark. A moment ago, I mentioned that this is actually a shortcut for finding the deter-
minant of a 3 × 3 matrix. For completion, I would like to give you an idea of what’s going
on behind the scenes. The full method uses minors and cofactors, and the book talks about
these in detail, but I think it will suffice to illustrate the technique by example. Suppose we
want to find the determinant of the same matrix,

A =




2 5 4
3 1 2
5 4 6


 .

(1) Begin by picking any row or column. Suppose we choose the first column.
(2) Write down the first entry (2). Now draw a line through the row and the column

containing that entry.
(3) Write the remaining (uncrossed) numbers as their own, smaller matrix:

A11 =

[
1 2
4 6

]
.

(4) Proceed to the next number in the column (3). Again, draw a line through the row
and the column containing it.

(5) Write the remaining (uncrossed) numbers as their own, smaller matrix:

A21 =

[
5 4
4 6

]
.

(6) Proceed to the next number in the column (5). Again, draw a line through the row
and the column containing it.

(7) Write the remaining (uncrossed) numbers as their own, smaller matrix:

A31 =

[
5 4
1 2

]
.
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(8) Now the determinant can be found as

|A| = a11A11 − a21A21 + a31A31

= 2

∣∣∣∣
1 2
4 6

∣∣∣∣− 3

∣∣∣∣
5 4
4 6

∣∣∣∣ + 5

∣∣∣∣
5 4
1 2

∣∣∣∣
= 2 (6− 8)− 3 (30− 16) + 5 (10− 4)

= −4− 42 + 30

= −16

This method works for any square matrix, regardless of size, and that is its chief advantage.
Clearly, however, it involves much more work, even for the case of 3× 3 matrices.

Note: the answer is independent of whichever row or column you choose. Try verifying
the determinant of this matrix using a different row or column, to see how this works.

Definition 60. A triangular or upper triangular matrix is one in which all entries below
the main diagonal are 0. A lower triangular matrix is one in which all entries above the
main diagonal are 0. An example of an upper triangular matrix would be

A =




7 1 4
0 2 1
0 0 2


 .

An example of an lower triangular matrix would be

A =



−1 0 0

3 2 0
1 −2 1


 .

Definition 61. A diagonal matrix is one in which all nonzero entries lie on the main
diagonal. An example of a diagonal matrix would be

A =



−2 0 0

0 3 0
0 0 1


 .

A diagonal matrix is both upper and lower triangular.

Remark. It should be clear by brief inspection that the determinant of a triangular or
diagonal matrix is very easy to calculate - it just consists of the product of the entries on
the main diagonal. (Add the diagram to the above examples!)

Homework Assignment:
Read: pp. 111-112
Exercises: §3.1 #3-10, 19-22, 25-26 (Not cofactors)
Supplement: none
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III.2. Evaluation of a Determinant Using Elementary Operations.

Example 61. Note that if we have many zeroes in the matrix, then it will be very easy to
calculate the determinant. If we consider the matrix

A =




2 3 0
4 5 0
1 0 3


 ,

Then the diagram

2 3 0 2 3
4 5 0 4 5
1 0 3 1 0

shows that only the products 2 · 5 · 3 and 3 · 4 · 5 do not contain a zero. So the determinant
is easily calculated as

2 · 5 · 3− 3 · 4 · 5 = 30− 60 = −30.

The conclusion to draw is that we would much rather take the determinant of a matrix which
contains many zeroes. Fortunately, we have some tools which allow us to convert matrices
without zeroes into matrices with zeroes - elementary row operations. Unfortunately, the
row operations change the value of the determinant.

Theorem. Let A and B be square matrices.

(1) If B is obtained from A by interchanging two rows of A, then

|B| = −|A|.

(2) If B is obtained from A by multiplying a row of A by a nonzero constant c, then

|B| = c|A|.

(3) If B is obtained from A by adding a multiple of one row of A to another, then

|B| = |A|.

Example 62. Suppose

A =




2 1 3
4 2 1
6 −3 4



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and we wish to evaluate the determinant |A|. Then∣∣∣∣∣∣

2 1 3
4 2 1
6 −3 4

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2 1 3
0 0 −5
6 −3 4

∣∣∣∣∣∣
−2R1 + R2 → R2

=

∣∣∣∣∣∣

2 1 3
0 0 −5
0 −6 −5

∣∣∣∣∣∣ −3R1 + R3 → R3

= (−1)

∣∣∣∣∣∣

2 1 3
0 −6 −5
0 0 −5

∣∣∣∣∣∣
R2 ↔ R3

=(−1)(2)(−6)(−5)

=− 60

Theorem. Conditions that yield a zero determinant.
If we are considering a matrix A, then |A| = 0 whenever

(1) An entire row or column consists of zeroes.
(2) One row is a multiple of another. In particular, if two rows are equal.

Example 63. Let’s practice by evaluating the following determinants by inspection:

(1)

∣∣∣∣∣∣

0 0 3
0 4 1
2 3 1

∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣

2 3 1
0 4 1
0 0 3

∣∣∣∣∣∣
= (−1) (2) (4) (3) = −24

(2)

∣∣∣∣∣∣

1 1 2
0 2 3
2 2 5

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 2
0 2 3
0 0 1

∣∣∣∣∣∣
= 2

(3)

∣∣∣∣∣∣

0 0 1
3 0 0
0 2 0

∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣

3 0 0
0 0 1
0 2 0

∣∣∣∣∣∣
= (−1)2

∣∣∣∣∣∣

3 0 0
0 2 0
0 0 1

∣∣∣∣∣∣
= 6

Homework Assignment:
Read: pp. 120-123 (skip column operations), 124-126
Exercises: §3.2 #6,7,9,10,15-22
Supplement: none
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III.3. Properties of Determinants.

Theorem. Let A and B be square matrices. Recall that we had the following results:

(1) If B is obtained from A by interchanging two rows of A, then

|B| = −|A|.
(2) If B is obtained from A by multiplying a row of A by a nonzero constant c, then

|B| = c|A|.
(3) If B is obtained from A by adding a multiple of one row of A to another, then

|B| = |A|.

Remark. We will now see some of the algebraic properties of determinants. The chief
motivation for this section is the development of some tools which will provide easier ways
to compute determinants.

Theorem. If A and B are both n× n matrices, then |AB| = |A| · |B|.
Example 64. Let

A =




2 3 0
1 4 2
2 1 1


 and E =




0 1 0
1 0 0
0 0 1


 .

Then we have that

|A| =
∣∣∣∣∣∣

2 3 0
1 4 2
2 1 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

0 −5 −4
1 4 2
0 −7 −3

∣∣∣∣∣∣
= (−1)3

∣∣∣∣∣∣

1 4 2
0 5 4
0 7 3

∣∣∣∣∣∣
= (−1) (15− 14) = −1

and

|E| =
∣∣∣∣∣∣

0 1 0
1 0 0
0 0 1

∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
= −1

So |E| · |A| = −1(−1) = 1. Also,

|EA| =
∣∣∣∣∣∣

1 4 2
2 3 0
2 1 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 4 2
0 −5 −4
0 −7 −3

∣∣∣∣∣∣
= (−1)2

∣∣∣∣∣∣

1 4 2
0 5 4
0 7 3

∣∣∣∣∣∣
= 1

The point of this example is to illustrate why the formula |AB| = |A| · |B| explains the rules
we had previously for how elementary row operations change the determinant of a matrix.
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Example 65. Consider the following elementary matrices and their determinants:

E1 =




0 1 0
1 0 0
0 0 1


 |E1| =

∣∣∣∣∣∣

0 1 0
1 0 0
0 0 1

∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
= −1

E2 =




1 0 0
0 1 0
0 0 c


 |E2| =

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 c

∣∣∣∣∣∣
= c

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
= c

E3 =




1 0 c
0 1 0
0 0 1


 |E3| =

∣∣∣∣∣∣

1 0 c
0 1 0
0 0 1

∣∣∣∣∣∣
= 1

and recall that elementary matrices represent elementary row operations.

Theorem. If A is an n× n matrix and c is a scalar, then |cA| = cn|A|.

Example 66. Let A =




1 2 0
0 −1 2
2 −2 0


 and c = 5. Then

|cA| =
∣∣∣∣∣∣

5 10 0
0 −5 10
10 −10 0

∣∣∣∣∣∣
= 5

∣∣∣∣∣∣

1 2 0
0 −5 10
10 −10 0

∣∣∣∣∣∣
= 52

∣∣∣∣∣∣

1 2 0
0 −1 2
10 −10 0

∣∣∣∣∣∣
= 53

∣∣∣∣∣∣

1 2 0
0 −1 2
2 −2 0

∣∣∣∣∣∣

Remark. It is worth noting that there is no formula for |A+B| in terms of |A| and |B|. To
find |A + B|, you must compute A + B and then find its determinant.

Example 67. Let A =

[
0 3

−1 2

]
and B =

[
1 −1
0 4

]
. Then

|A| = 3 and |B| = 4

but

|A + B| =
∣∣∣∣

1 2
−1 6

∣∣∣∣ = 6 + 2 = 8.

Theorem. If A is a square matrix, then |A| = |AT |.

Example 68. To see how this might be useful, recall that the transpose converts rows to
columns and vice versa. Suppose you have

A =




2 1 3
0 −2 −6
1 −1 −3






70 Math 023 - Applied Matrix Algebra Lecture Notes

and you need to find |A|. Notice that the third column of the matrix is a multiple of the
second. Using the theorem,

|A| = |AT | =
∣∣∣∣∣∣

2 0 1
1 −2 −1
3 −6 −3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2 0 1
1 −2 −1
0 0 0

∣∣∣∣∣∣
= 0.

Theorem.

(1) A square matrix A is invertible iff |A| 6= 0. We saw this rule earlier for 2×2 matrices.
Now we point out that it is true in general (for all square matrices).

(2) If |A| 6= 0, that is, if A is invertible, then we have the formula

|A−1| = 1

|A| or |A−1| = |A|−1.

Remark. In the last section, we had a theorem which gives a couple of conditions for when
a determinant of a matrix is zero. In light of this theorem, we can consider these conditions
as criteria for determining if a matrix is not invertible. In other words, if

(1) an entire row or column consists of zeroes, or
(2) one row is a multiple of another,

then we know the matrix is not invertible.

Example 69. To see how this theorem can simplify finding a determinant, consider the
following matrix A.

A =




2 13 −3
0 2 −11
0 0 7




If you were asked to find |A−1|, you could do it two ways.

(1) Compute

A−1 =




1
2
−13

4
−137

28

0 1
2

11
14

0 0 1
7




by hand, and find its determinant as |A−1| = 1
2
· 1

2
· 1

7
= 1

28
.

(2) Use the theorem |A−1| = |A|−1 to get |A|−1 = 1
|A| = 1

2·2·7 = 1
28

.

Theorem. Equivalent conditions for a matrix to have an inverse.
If A is an n× n matrix, then the following statements are equivalent:

(1) A is invertible.
(2) Ax̄ = b̄ has a unique solution for every n× 1 matrix b.
(3) Ax̄ = 0 has only the trivial solution.
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(4) A is row-equivalent to In.
(5) A can be written as the product of elementary matrices.
(6) |A| 6= 0.

Example 70. Suppose A =




2 0 0
4 −2 0
0 −1 −3


 and b̄ =




0
0
0


 . Solve Ax̄ = b̄.

We compute

|A| =
∣∣AT

∣∣ =

∣∣∣∣∣∣

2 4 0
0 −2 −1
0 0 −3

∣∣∣∣∣∣
= 2 (−2) (−3) = 12 6= 0

and conclude x̄ =




0
0
0


 .

We have used (6) =⇒ (3).

Example 71. Suppose you are given the matrices

A =




2 0 0
0 1 0
0 0 1


 , B =




1 2 0
0 1 0
0 0 1


 , and C =




0 1 0
1 0 0
0 0 1


 .

Then you know ABCx̄ =



−1

2
3


 , will have a unique solution. (Why?)

We have used (5) =⇒ (2).

Homework Assignment:
Read: pp. 129-135
Exercises: §3.3 #1-6, 23-28
Supplement: Determinants
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III.4. Applications of Determinants: Cramer’s Rule.

Theorem. Let Ax̄ = b̄ be a system of n linear equations in n variables where the coefficient
matrix A has a nonzero determinant. Then the solution to the system is given by

x1 =
|A1|
|A| , x2 =

|A2|
|A| , . . . , xn =

|An|
|A| ,

where Ai is A, but with the ith column replaced by b̄.

Example 72. The following system of equations may be solved using Cramer’s rule.

−2x1 + 3x2 − x3 = 1

x1 + 2x2 − x3 = 4

−2x1 − x2 + x3 =−3

We begin with A =



−2 3 −1

1 2 −1
−2 −1 1


 and b̄ =




1
4

−3




(1) First, compute |A|:

|A| =
∣∣∣∣∣∣

0 7 −3
1 2 −1
0 3 −1

∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣

1 2 −1
0 7 −3
0 3 −1

∣∣∣∣∣∣
= (−1) ((−7)− (−9)) = −2

Since |A| 6= 0, we know we can use Cramer’s rule.
(2) Now we compute the Cramer determinants as

|A1| =
∣∣∣∣∣∣

1 3 −1
4 2 −1

−3 −1 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

−2 2 0
1 1 0

−3 −1 1

∣∣∣∣∣∣
= −2− (2) = −4

|A2| =
∣∣∣∣∣∣

−2 1 −1
1 4 −1

−2 −3 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

−4 −2 0
−1 1 0
−2 −3 1

∣∣∣∣∣∣
= (−4)− (2) = −6

|A3| =
∣∣∣∣∣∣

−2 3 1
1 2 4

−2 −1 −3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

0 7 9
1 2 4
0 3 5

∣∣∣∣∣∣
= 27− 35 = −8

(3) Then the solutions to the original equation are given by

x1 =
|A1|
|A| =

−4

−2
= 2

x2 =
|A2|
|A| =

−6

−2
= 3

x3 =
|A3|
|A| =

−8

−2
= 4.
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Example 73. Consider

x1 + 2x2 + x3 = 5

2x1 + 2x2 + x3 = 6

x1 + 2x2 + 3x3 = 9

We begin with A =




1 2 1
2 2 1
1 2 3


 and b̄ =




5
6
9




(1) First, we compute

|A| =
∣∣∣∣∣∣

1 2 1
2 2 1
1 2 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 2 1
0 −2 −1
0 0 2

∣∣∣∣∣∣
= −4

(2) Now we compute the Cramer determinants as

|A1| =
∣∣∣∣∣∣

5 2 1
6 2 1
9 2 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

5 2 1
1 0 0
4 0 2

∣∣∣∣∣∣
= −4

|A2| =
∣∣∣∣∣∣

1 5 1
2 6 1
1 9 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 5 1
1 1 0
0 4 2

∣∣∣∣∣∣

=

∣∣∣∣∣∣

0 4 1
1 1 0
0 4 2

∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣

1 1 0
0 4 1
0 0 1

∣∣∣∣∣∣
= −4

|A3| =
∣∣∣∣∣∣

1 2 5
2 2 6
1 2 9

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 2 5
1 0 1
0 0 4

∣∣∣∣∣∣
= −8

(3) Then the solutions to the original equation are given by

x1 =
|A1|
|A| =

−4

−4
= 1

x2 =
|A2|
|A| =

−4

−4
= 1

x3 =
|A3|
|A| =

−8

−4
= 2

Homework Assignment:
Read: pp. 143-146 “Cramer’s Rule”
Exercises: §3.4 #29-34,39-44
Supplement: Determinants
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IV. Vectors and Vector Spaces

IV.1. Vectors.

Remark. So far, we have discussed vectors mainly using the notation

x̄ =




x1

x2
...

xn




Today, I’m going to change the notation to make it more suggestive of something familiar,
and we will talk about the interpretations.

We can write a 2-vector x̄ =

[
x1

x2

]
as an ordered pair x̄ = (x1, x2) and consider it in

either of two equivalent ways:

(1) as the coordinates of a point in the plane, or
(2) as the coordinates of the end of a line segment which begins at the origin.

It is usually easier to use the first interpretation when performing arithmetic operations with
vectors. However, the interpretation of a vector as a directed line segment is what makes it
an invaluable tool for the study of problems involving forces, velocities, and other directed
quantities. Here I use the term “directed” to indicate that there is a definite beginning and
end associated with the quantity.

Also, the second interpretation occasionally helps to visualize how components of the
vectors are changing, and how vectors relate to each other.

Definition 62. A note on terminology. We sometimes refer to the plane as R2, that is,
2-dimensional space. The R refers to “real numbers”, indicating that the components of
vectors in the plane are positive or negative real numbers (or 0). Although complex or
imaginary numbers are an essential and powerful tool for the further study of linear algebra,
will not be discussing them in this class.

Definition 63. For vectors, we often refer to the entries as coordinates. For example, if
we take a vector v̄ = (v1, v2) plotted on the standard coordinate axes, then v1 is the first
coordinate or x1-coordinate, and v2 is the second coordinate or x2-coordinate.

Example 74. For example, we can take the vector x̄ =

[
3
4

]
to be the point (3, 4); the

point with x1-coordinate 3 and x2-coordinate 4. Since x̄ is a vector with 2 components which
are real numbers, we say x̄ is an element/member of R2, written x̄ ∈ R2.



Lecture Notes Math 023 - Applied Matrix Algebra 75

Remark. Recall that we have a couple of operations defined for vectors in R2:

vector addition: The sum of ū and v̄ is the vector given by

ū + v̄ = (u1, u2) + (v1, v2) = (u1 + v1, u2 + v2).

scalar multiplication: The multiple of a vector v̄ by the scalar c is the vector

cv̄ = c(v1, v2) = (cv1, cv2)

Putting these together with c = −1 gives us the difference of ū and v̄ as

ū− v̄ = ū + (−1)v̄

Now these ideas are perfectly compatible with the geometric interpretation of vectors.

Example 75. Given ū = (4,−1) and v̄ = (1, 3), we can interpret the sum of these vectors
as

ū + v̄ = (4,−1) + (1, 3) = (4 + 1,−1 + 3) = (5, 2)

by bringing the tail (initial point) of one vector to the head (terminal point) of the other
and drawing the resulting triangle. The new vector is the sum.

We can interpret the difference of these vectors as

ū− v̄ = (4,−1)− (1, 3) = (4,−1) + (−1,−3) = (4− 1,−1− 3) = (3,−4)

by bringing the head of the second to the head of the first, and drawing the resulting vector
w̄ to the tail of v̄. Now w̄ + v̄ = ū.

Note that we can also take the difference

v̄ − ū = (1, 3)− (4,−1) = (1, 3) + (−4, 1) = (1− 4, 3 + 1) = (−3, 4)

Evaluated geometrically, we bring the head of the second to the head of the first, and drawing
the resulting vector −w̄ to the tail of v̄. Now −w̄ + ū = v̄.

Example 76. We’ve been talking primarily about 2-vectors, but it is important to realize
that all these ideas extend to 3-vectors as well.

Given ū = (3, 1, 1) and v̄ = (2, 1,−1), we can interpret the sum of these vectors as

ū + v̄ = (3, 1, 1) + (1, 2,−1) = (3 + 1, 1 + 2, 1− 1) = (4, 3, 0)

by bringing the tail (initial point) of one vector to the head (terminal point) of the other
and drawing the resulting triangle. The new vector is the sum.

Similarly, we can talk about the difference of vectors just as before. The only difference
is that the resulting triangle no longer lies flat in the plane - it is like a triangular sheet
dangling diagonally in 3-space, that is, in R3. Note: R3 is just like R2, but now we consider
3 dimensions instead of just 2.
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Definition 64.
R2 is the set of all vectors with 2 entries, all of which are real numbers, with vector addition

and scalar multiplication as defined just above. Some members of R2 are (2, 0), (−1, 3), and
(3, 3).
R3 is the set of all vectors with 3 entries, all of which are real numbers, with vector

addition and scalar multiplication as defined just above. Some members of R3 are (1, 1,−2),
(4, 0,−2).

Theorem. (Closure) For vectors ū, v̄,∈ Rn, and scalar c ∈ R,

(1) ū + v̄ is a vector in Rn, and
(2) cū is a vector in Rn.

Definition 65. Recall that a linear combination of the vectors v̄1, v̄2, . . . , v̄n is a sum of
the form

x̄ = c1v̄1 + c2v̄2 + . . . + cnv̄n

Here, we have written x̄ as a linear combination of the v̄i.

Example 77. Given x̄ = (9,−4, 17), v̄1 = (1,−1, 2), v̄2 = (−2, 3,−5), and v̄3 = (3, 0, 5),
find c1, c2, c3 such that

c1v̄1 + c2v̄2 + c3v̄3 = x̄.

So what is this question asking? How do we find the coefficients which allow us to write x̄
as a linear combination of these other vectors, the v̄i? Well, this linear combination looks
like

c1(1,−1, 2) + c2(−2, 3,−5) + c3(3, 0, 5) = (9,−4, 17),

or in our former notation,

c1




1
−1

2


 + c2



−2

3
−5


 + c3




3
0
5


 =




9
−4
17


 .

But using our rules for vector arithmetic, this is just


1c1

−1c1

2c1


 +



−2c2

3c2

−5c2


 +




3c3

0c3

5c3


 =




9
−4
17


 , or




1c1 − 2c2 + 3c3

−1c1 + 3c2 + 0c3

2c1 − 5c2 + 5c3


 =




9
−4
17


 , or

1c1 − 2c2+3c3 = 9

−1c1 + 3c2+0c3 =−4

2c1 − 5c2+5c3 = 17
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We can even rewrite this system as


1 −2 3
−1 3 0

2 5 5







c1

c2

c3


 =




9
−4
17


 , and then use the inverse 1

2




15 −5 −9
5 −1 −3

−1 1 1




to get




c1

c2

c3


 = 1

2




15 −5 −9
5 −1 −3

−1 1 1







9
−4
17


 =




1
−1

2




so for c1 = 1, c2 = −1, c3 = 2, we have

c1(1,−1, 2) + c2(−2, 3,−5) + c3(3, 0, 5) = (1,−1, 2)− (−2, 3,−5) + 2(3, 0, 5) = (9,−4, 17).

The purpose of this example is to illustrate how problems involving vector arithmetic and
linear combinations of vectors can be rewritten and solved using the tools you have already
learned.

Example 78. Given x̄ = (1, 1), v̄1 = (1, 2), and v̄2 = (2, 4), find c1, c2 such that

c1v̄1 + c2v̄2 = x̄.

Note that any linear combination of these vectors would be of the form

c1

[
1
2

]
+ c2

[
2
4

]
=

[
c1

2c1

]
+

[
2c2

4c2

]
=

[
c1 + 2c2

2c1 + 4c2

]
=

[
c1 + 2c2

2 (c1 + 2c2)

]
,

and hence the second entry is always twice the first. Since this is true for any linear combi-
nation, it is impossible for c1v̄1 + c2v̄2 = [ 1

1 ], in other words, this system is inconsistent.

Example 79. (Revenue Monitoring). Computers store lists of information in data structures
called “arrays” which are essentially n-vectors, where n is the number of items in the list.
While computers will help you manipulate, analyze, and compute using vectors and matrices,
the study of linear algebra is what will enable you to know what to ask the computer to do.

Suppose that a store handles 100 different items. The inventory on hand can be described
by the inventory vector ū. ū is a 100-vector, i.e., a vector in R100. The number of items sold
at the end of the week can be described by the sales vector v̄, which is also a vector in R100

(any item which did not sell at all shows up as a 0). Then the inventory at the end of the
week is given by

ū− v̄.

If the store receives a new shipment of goods, represented by the vector w̄, then its new
inventory would be

ū− v̄ + w̄.

Homework Assignment:
Read: pp. 161-168
Exercises: §4.1 #29-34,39-44
Supplement: none
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IV.2. Vector Spaces.

Definition 66. A vector space is any set V satisfying the following axioms for vectors
ū, v̄, w̄,∈ V , and scalars c, d ∈ R:

(1) ū + v̄ ∈ V (Closure under vector addition)
(2) ū + v̄ = v̄ + ū
(3) (ū + v̄) + w̄ = ū + (ū + w̄)
(4) V has a zero vector 0 such that ū + 0 = ū
(5) For any ū ∈ V , there is v̄ ∈ V such that ū + v̄ = 0 (v̄ = −ū)
(6) cū ∈ V , for any c ∈ R (Closure under scalar multiplication)
(7) c(ū + v̄) = cū + cv̄
(8) (c + d)ū = cū + dū
(9) c(dū) = (cd)ū

(10) 1(ū) = ū

Example 80. §4.2 #18.

Is A = {(x1, x2)
... x1, x2 ∈ R, x1 > 0} a vector space under the standard operations of R2?

No, it fails axiom (5) as follows: Let ū = (1, 4). Then ū + v̄ = 0 =⇒ v̄ = (−1,−4). But
v̄ = (−1,−4) is not a member of A because v1 < 0.

Note that (5) is actually a special case of (6): the case c = −1. Thus A fails (6), too.

Example 81. §4.2 #25.c)

Is the set B = {(x1, x2)
... x1, x2 ∈ R} with the following operations a vector space?

x̄ + ȳ = (x1, x2) + (y2, y2) = (x1 + y1, x2 + y2)

c(x1, x2) =
(√

cx1,
√

cx2

)

No, it fails axiom (6) of the definition: if c < 0, then both coordinates of c(x1, x2) =
(
√

cx1,
√

cx2) are not in R because the square root of a negative number is imaginary. Hence
the vector (

√
cx,

√
cy) is not in B.

Example 82. Is C = {(x1, x2, x3)
... x1, x2, x3 ∈ R, x2 = 0} a vector space under the standard

operations of R3?
Yes. I will leave it to you to check that all 10 properties hold, but this should be pretty

clear. For example, if x̄ = (x1, 0, x3) and ȳ = (y1, 0, y3), then

(1) x̄ + ȳ = (x1, 0, x3) + (y1, 0, y3) = (x1 + y1, 0, x3 + y3) ∈ C
(2) x̄ + ȳ = (x1 + y1, 0, x3 + y3) = (y1 + x1, 0, y3 + x3) = ȳ + x̄

...

Homework Assignment:
Read: pp. 170-171
Exercises: §4.2 1,7,17,18,25,28,29,31,32ac
Supplement: none
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IV.3. Subspaces.

Definition 67. The notion of closure leads naturally to the idea of a subspace. A vector
subspace is a subset of a vector space that is itself a vector space (satisfies the axioms).

Remark. The easiest way to tell if a subset is actually a subspace, is to see if the closure
conditions hold. That is, suppose we have some vector space V and it has some subset W
and we wish to determine whether or not U is a subspace. You need to answer the questions

(1) If we take any two vectors v̄1 and v̄2 in U , is v̄1 + v̄2 a member of U?
(2) If we take any vector v̄ in U , and any number c, is cv̄ a member of U?

Theorem.

(1) V is a 2-dimensional subspace of R3 iff V is a plane passing through the origin.
(2) V is a 1-dimensional subspace of R3 iff V is a line passing through the origin.
(3) V is a 1-dimensional subspace of R2 iff V is a line passing through the origin.

Example 83. Recall the previous example:

C = {(x, y, z)
... x, y, z ∈ R, x2 = 0}

This is a copy of R2 that lies inside R3; it corresponds to the plane defined by y = 0, i.e.,
the xz-plane. Since it is a plane through the origin, it is a subspace of R3.

Example 84. The xy-plane and yz-plane are also subspaces of R3. How do we see this?
If we choose one of these planes, then any pair of vectors that lie in that plane will add to
form another vector which also lies in that plane. Any scalar multiple of those vectors will
also still lie in that plane.
This subspace can be thought of as the subspace obtained by setting a particular coordinate
to 0. For example, the xy-plane is the subspace consisting of all vectors in R3 whose third
coordinate is 0. The xz-plane is the subspace of all vectors in R3 whose second coordinate
is 0.

Example 85. Consider the set of all vectors x̄ = (x1, x2, x3) such that 2x1 + 3x2 + 4x3 = 0.
This is a plane passing through the origin like so:

Homework Assignment:
Read: pp. 178-179, Example 4 on p.180, and 181-184
Exercises: §4.3 #7, 8, 10, 15-20, 24
Supplement: none
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Review

Review for Midterm 2
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V. Vector Operations

V.1. Magnitude.

Remark. Until now, we have discussed only the operations of vector addition and scalar
multiplication. We have not discussed methods of multiplying vectors together, or any other
operations unique to vectors.

Definition 68. The length or magnitude of a vector v̄ = (v1, v2, . . . , vn) is defined to be

‖v̄‖ =
√

v2
1 + v2

2 + . . . + v2
n

While this might initially appear strange, it is exactly in keeping with what we have seen so
far.

• The magnitude of a real number x is more commonly called its absolute value, and
is written

‖x‖ = |x| =
√

x2

• The magnitude of a 2-vector v̄ = (x, y) can be found by the Pythagorean theorem as

‖v̄‖ =
√

x2 + y2

• The magnitude of a 3-vector v̄ = (x, y, z) can be found by repeated applications of
the Pythagorean theorem as

‖v̄‖ =

√√
x2 + y2

2
+ z2

=
√

x2 + y2 + z2

In general, this shows how to find the length of a vector with n components. This definition
also shows that the length of a vector is never negative, ‖v̄‖ > 0, and that ‖v̄‖ = 0 iff v̄ = 0.

Example 86. ū = (2, 2, 0,−1) is a vector in R4. What is the length of ū?

‖ū‖ =
√

22 + 22 + 02 + (−1)2 =
√

4 + 4 + 1 =
√

9 = 3

Theorem. Geometry of 2× 2 determinants. The absolute value of the determinant
∣∣∣∣

a b
c d

∣∣∣∣
is the area of the parallelogram whose adjacent sides are the vectors ū1 = (a, b) and ū2 =
(c, d). Note that since |A| = |AT |, we could just as easily have used the columns instead of
the rows and considered the parallelogram formed by v̄1 = (a, c) and v̄2 = (b, d).
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Example 87. What is the area of the parallelogram whose sides are the vectors ū = (−2, 3)
and v̄ = (1, 1)? ∣∣∣∣

−2 3
1 1

∣∣∣∣ = −2 (1)− 1 (3) = −5

So the area of the parallelogram is 5.

Theorem. Geometry of 3× 3 determinants. The absolute value of the determinant∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
is the area of the parallelepiped whose adjacent sides are the vectors ā = (a1, a2, a3), b̄ =
(b1, b2, b3), and c̄ = (c1, c2, c3).

Remark. In light of this, we can interpret |A| as an indication of the size of A, just as we
interpret ‖v̄‖ as the size of v̄, and the following theorem should come as no great surprise.

Theorem. Let v̄ = (v1, v2, . . . , vn) be a vector in Rn and let c be a scalar. Then

‖cv̄‖ = |c| · ‖v̄‖ .

We prove this as follows:

‖cv̄‖ = ‖(cv1, cv2, . . . , cvn)‖ def of scalar multiplication

=

√
(cv1)

2 + (cv2)
2 + . . . + (cvn)2 def of ‖ · ‖

=
√

c2v2
1 + c2v2

2 + . . . + c2v2
n (ab)2 = a2b2

=
√

c2 (v2
1 + v2

2 + . . . + v2
n) factor out the c2

=
√

c2

√
v2

1 + v2
2 + . . . + v2

n

√
ab =

√
a
√

b

= |c| · ‖v̄‖ def of |c| and ‖v̄‖

Definition 69. If ‖v̄‖ = 1, then we say that v̄ is a unit vector.

Theorem. If v̄ is a nonzero vector in Rn, then the vector

ū =
v̄

‖v̄‖
has length 1 and has the same direction as v̄. Consequently, it is called the unit vector in
the direction of v̄.
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Example 88. Find the unit vector in the direction of v̄ = (−2, 2, 1).

v̄

‖v̄‖ =
(−2, 2, 1)√

(−2)2 + 22 + 12

=
(−2, 2, 1)√
4 + 4 + 1

=
1√
9

(−2, 2, 1) =

(−2

3
,
2

3
,
1

3

)

Definition 70. What is the distance between two vectors ū and v̄? If this question seems
strange to you, remember that we can consider vectors to be points in Rn. In this way, we
can rephrase the question as, what is the distance between two points (u1, u2, . . . , un) and
(v1, v2, . . . , vn) in Rn?

We define the distance from ū to v̄ as d (ū, v̄) = ‖ū− v̄‖ .

Example 89. Let ū = (0, 3, 1, 1) and v̄ = (−1, 2, 0, 2) be vectors in R4. Then the distance
from ū to v̄ is

d (ū, v̄) = ‖ū− v̄‖
= ‖(0, 3, 1, 1)− (−1, 2, 0, 2)‖
= ‖(1, 1, 1,−1)‖

=

√
12 + 12 + 12 + (−1)2

=
√

4

= 2

V.2. Dot Product.

Definition 71. The dot product of ū = (u1, u2, . . . , un) and v̄ = (v1, v2, . . . , vn) is

ū · v̄ = u1v1 + u2v2 . . . , unvn

Example 90. Let ū = (0, 3, 1, 1) and v̄ = (−1, 2, 0, 2) be vectors in R4. Then the dot
product of ū and v̄ is given by

ū · v̄ = (0, 3, 1, 1) · (−1, 2, 0, 2)

= 0 (−1) + 3 (3) + 1 (0) + 1 (2)

= 9 + 2

= 11

Remark. The dot product should seem very familiar to you. Since the vector ū = (u1, u2, . . . un)
can also be represented as

ū =




u1

u2
...

un


 ,
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we can also define the dot product of ū = (u1, u2, . . . un) and v̄ = (v1, v2, . . . vn) as

ū · v̄ = ūT v̄ =
[

u1 u2 . . . un

]



v1

v2
...

vn


 =

[
u1v1 + u2v2 + . . . + unvn

]
.

In fact, if we consider the matrix

A =




a1 a2 a3

b1 b2 b3

c1 c2 c3


 =




ā
b̄
c̄




as a column of row vectors (so ā = (a1, a2, a3) is considered as a row vector, for example),
then for

x̄ =




x1

x2

x3


 ,

the matrix product can be written as

Ax̄ =




ā · x̄
b̄ · x̄
c̄ · x̄


 ,

and in fact this is the definition some books use for matrix multiplication.

Example 91. Recall the store that we talked about earlier, where the sales vector v̄ ∈ R100

describes the number of each item sold at the end of the week. Suppose that p̄ is a vector
in R100 which gives the price of each of the 100 items. Then the dot product

v̄ · p̄
gives the total revenue received at the end of the week.

Example 92. A large steel manufacturer, who has 2000 employees, lists each employee’s
salary as a component of a vector ū ∈ R2000. If an 8% across-the-board salary increase has
been approved, find an expression in terms of ū that gives all the new salaries.

1.08ū

Example 93. The vector ū = (20, 30, 80, 10) gives the number of receivers, CD play-
ers, speakers, and cassette recorders that are on hand in a stereo shop. The vector v̄ =
(200, 120, 80, 70) gives the price (in dollars) of each receiver, CD player, speaker, and cas-
sette recorder, respectively. What does ū · v̄ represent?

The dollar value of the merchandise in stock.
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Example 94. A brokerage firm records the high and low values of the price of IBM stock
each day. The information for a given week is presented in two vectors, t̄ and b̄ in R5, giving
the high and low values, respectively. What expression gives the average daily values of the
price of IBM stock for the entire 5-day week? That is, what vector gives the daily averages?

1
2

(
t̄ + b̄

)

Theorem. Properties of the Dot Product.
Let c be a scalar, and ū, v̄, w̄ be vectors in Rn.

(1) ū · v̄ = v̄ · ū
(2) ū · (v̄ + w̄) = ū · v̄ + ū · w̄
(3) c (ū · v̄) = (cū) · v̄ = ū · (cv̄)
(4) v̄ · v̄ = ‖v̄‖2

(5) v̄ · v̄ > 0, and v̄ · v̄ = 0 iff v̄ = 0.
(6) |ū · v̄| 6 ‖ū‖ · ‖v̄‖
(7) ū · v̄ = 0 iff ū and v̄ are orthogonal (perpendicular).
(8) The angle between ū and v̄ is given by

θ = arccos ū·v̄
‖ū‖·‖v̄‖ = cos−1 ū·v̄

‖ū‖·‖v̄‖
(9) ‖ū + v̄‖ 6 ‖ū‖+ ‖v̄‖

(10) ‖ū + v̄‖2 = ‖ū‖2 + ‖v̄‖2 iff ū and v̄ are orthogonal.

The first three properties are just the same as for matrix multiplication, the fourth is repeated
here for completeness. The fifth tells about the dot product of a vector with itself and doesn’t
come up much, it’s also just listed here for completeness. The sixth and ninth are important,
but more for physics and math - their use to you is primarily as an estimate, and they are
not integral to this course.

(7) is actually a special case of (8), and both of these are very useful. And what about
(10)? This is the Pythagorean Theorem.

Homework Assignment:
Read: pp. 250-261
Exercises: §5.1 #5-8, 13-16, 19-20, 25-28, 31-32, 43, 45, 55-58
Supplement: none
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VI. Linear Transformations

VI.1. Introduction to Linear Transformations.

Remark. For what we are going to discuss next, it will be important to understand how
matrices correspond to transformations of space.

Definition 72. A function or mapping T from the set X to the set Y is a rule whereby
every element of X is assigned to exactly one element of Y . This is denoted by:

T : X → Y

T : x 7→ y

T (x) = y

The set X is called the domain and the set Y is called the codomain or range. We refer
to the subset T (X) of Y as the image of X under T . Similarly, if T (x) = y, then we refer
to y as the image of x under T . In general, for any subset A ⊆ X, we call T (A) the image
of A under f .

The inverse idea of image is preimage. For a point y ∈ Y , the preimage of y under T
is the set of all points in X that get mapped to y, and it is denoted:

T−1(y) = {x ∈ X such that T (x) = y}.
In general, for any subset B ⊆ Y , the preimage of B is the set of all points X that get
mapped into B:

T−1(B) = {x ∈ X such that T (x) ∈ B}.
Remark. You may be wondering why I’m using the letter T instead of the letter f to talk
about functions. The reason is that we are going to be discussing a special type of function
called a linear transform. In mathematics, we frequently use the term ”space” to refer to
a set with a certain kind of structure. In this class, we are primarily concerned with sets
whose elements are n-tuples like v̄ = (v1, v2, . . . , vn), and where the structure is given by
vector addition and scalar multiplication. These two operations put structure on the set, a
kind of structure we call a “vector space”. Thus, when we study functions on vector spaces,
it makes sense to study those functions which preserve the properties of vector spaces. A
linear transformation is this kind of function.

Definition 73. For vector spaces V and W , a linear transformation is a function T :
V → W which satisfies

(1) T (ū + v̄) = T (ū) + T (v̄)
(2) T (cū) = cT (ū

for all vectors ū, v̄ ∈ V and all scalars c ∈ R. A linear transformation is a function that
preserves the properties of a vector space. In fact, if V is a vector space and T is a linear
transformation, then the image (T (V )) of V is also a vector space.
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Example 95. Suppose we wish to determine whether T : R2 → R3 defined by

T (x1, x2) = (x2, x1 − x2, 2x1 + x2)

is a linear transformation. To test for preservation of addition (property 1), we let ū =
(u1, u2) and v̄ = (v1, v2), and compute:

T (ū + v̄) = T (u1 + v1, u2 + v2)

= (u2 + v2, (u1 + v1)− (u2 + v2), 2(u1 + v1) + (u2 + v2))

= (u2 + v2, (u1 − u2) + (v1 − v2), (2u1 + u2) + (2v1 + v2))

= (u2, u1 − u2, 2u1 + u2) + (v2, v1 − v2, 2v1 + v2)

= T (ū) + T (v̄)

So vector addition is preserved. Now we let c ∈ R and check scalar multiplication:

T (cū) = T (cu1, cu2)

= (cu2, cu1 − cu2, 2cu1 + cu2)

= c (u2, u1 − u2, 2u1 + u2)

= cT (ū)

So scalar multiplication is also preserved and T is in fact a linear transformation.

Theorem. For a linear transformation T : V → W of vector spaces:

(1) T (0̄) = 0̄
(2) T (−v̄) = −T (v̄)
(3) T (ū− v̄) = T (ū)− T (v̄)
(4) T (c1v̄1 + c2v̄2 + . . . + cnv̄n) = T (c1v̄1) + T (c2v̄2) + . . . + T (cnv̄n).

These properties follow immediately from the definition of linear transformation.

The next theorem shows the close connection between linear transformations and matrices.

Theorem. Let A be an m× n matrix. Then the function T defined by

T (v̄) = Av̄

is a linear transformation from Rn into Rm. Conversely, if T : Rn → Rm is a linear transfor-
mation of Rn into Rm, then there exists a unique matrix A such that

T (v̄) = Av̄,

for every v̄ ∈ Rn.

Example 96. §6.1, 20. For the linear transformation given by

A =




0 1 −2 1
−4 4 5 0

0 1 3 1


 ,

find
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a) T (1, 0, 2, 3) =




0 1 −2 1
−4 4 5 0

0 1 3 1







1
0
2
3


 =




0 + 0− 4 + 3
−4 + 0 + 10 + 0

0 + 0 + 6 + 3


 =



−1

6
9




b) The preimage of (0, 0, 0).
So we need to find x̄ = (x1, x2, x3, x4) such that T (x̄) = Ax̄ = (0, 0, 0):

T (x̄) =




0 1 −2 1
−4 4 5 0

0 1 3 1







x1

x2

x3

x4


 =




x2−2x3+x4

−4x1+4x2+5x3

x2+3x3+x4


 =




0
0
0




Thus we can find the preimage of (0, 0, 0) by solving this homogeneous system (i.e.,
by putting A into RRE):




0 1 −2 1
−4 4 5 0

0 1 3 1


 ∼



−4 4 5 0

0 1 −2 1
0 0 1 0




R1 ↔ R3

−R2 + R3 → R3

1
5
R3 → R3

∼


−4 4 0 0

0 1 0 1
0 0 1 0




2R3 + R2 → R2

−5R3 + R1 → R1

−4R2 + R1 → R1

∼



1 0 0 1
0 1 0 1
0 0 1 0


 −4R2 + R1 → R1

−1
4
R1 → R1

So x3 = 0. Let x4 = t. Then x1, x2 = −t and the preimage of (0, 0, 0) is the set

T−1 = {(−t,−t, 0, t)
... t ∈ R} = {(−t,−t, 0, t)},∀t ∈ R.

Example 97. §6.5, 1. Let T : R2 → R2 be a reflection in the x-axis. Find the images of the
following vectors.

a) (1, 2). (Sketch). Then T (1, 2) = (1,−2).

b) (−2,−2). (Sketch). Then T (−2,−2) = (−2, 2).

c) (4, 0). (Sketch). Then T (4, 0) = (4, 0).

So reflection in the x-axis amounts to changing the sign of the y-component (with no change
if the y-component is 0).

Example 98. §6.5, 2. Let T : R2 → R2 be a reflection in the line y = x. Find the images
of the following vectors.

a) (1, 2). (Sketch). Then T (1, 2) = (2, 1).
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b) (−2,−2). (Sketch). Then T (−2,−2) = (−2,−2).

c) (4, 0). (Sketch). Then T (4, 0) = (0, 4).

So reflection in the line y = x amounts to swapping the x and y components (with no change
if they are equal)).

Example 99. The linear transformation T : R2 → R2 given by the matrix

A =

[
cos θ − sin θ
sin θ cos θ

]

has the effect of rotating every vector in R2 counterclockwise about the origin, by the angle
θ. Let us consider the angle θ = π

4
= 90◦. Then

A =

[ √
2

2
−
√

2
2√

2
2

√
2

2

]
=

√
2

2

[
1 −1
1 1

]

Find the images of the following vectors.

a) (1, 2). (Sketch). Then

T (1, 2) =
√

2
2

[
1 −1
1 1

] [
1
2

]
=

√
2

2

[ −1
3

]
.

Note: ‖T (1, 2)‖ =

√(
−
√

2
2

)2

+
(

3
√

2
2

)2

=
√

20
4

=
√

5 =
√

1 + 22 = ‖(1, 2)‖

b) (−2,−2). (Sketch). Then

T (−2,−2) =
√

2
2

[
1 −1
1 1

] [ −2
−2

]
=

√
2

2

[
0

−4

]
=

[
0

−2
√

2

]
.

Note: ‖T (−2,−2)‖ =

√(−2
√

2
)2

=
√

8 =
√

4 + 4 =
√

(−2)2 + (−2)2 = ‖(−2,−2)‖

c) (4, 0). (Sketch). Then

T (4, 0) =
√

2
2

[
1 −1
1 1

] [
4
0

]
=

√
2

2

[
4
4

]
=

[
2
√

2

2
√

2

]
.

Note: ‖T (4, 0)‖ =

√(
2
√

2
)2

+
(
2
√

2
)2

=
√

8 + 8 =
√

16 = 4 = ‖(4, 0)‖
Rotations in Rn preserve vector length as well as the angle between any two vectors:
T (ū) ∠ T (v̄) = ū∠ v̄.

What would be the effect (on any vector) of the linear transformation given by the matrix

A =
√

2

[
1 −1
1 1

]
? Note: B = 2A.
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Homework Assignment:
Read: pp. 325-333(skip examples 7,10,11)
Exercises: §6.1 1-9,20-24
Supplement: none

VI.2. The Geometry of Linear Transformations in the Plane.

VI.2.1. The Geometry of Elementary Matrices.
We consider the geometric effect that the elementary matrices have on the test vectors

ū = (0, 1), v̄ = (1, 1), w̄ = (1, 0).

(1) Row operation 1:

A =

[
0 1
1 0

]
Reflection in the line y = x

T (x̄) = Ax̄ has the effect of reflecting x̄ in the line y = x, just as in §6.5, #2:

Aū =

[
0 1
1 0

] [
0
1

]
=

[
1
0

]

Av̄ =

[
0 1
1 0

] [
1
1

]
=

[
1
1

]

Aw̄ =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]

(2) Row operation 2:

B =

[
k 0
0 1

]
Horizontal stretch

C =

[
1 0
0 k

]
Vertical stretch

Bū =

[
0
1

]
, Bv̄ =

[
k
1

]
, Bw̄ =

[
k
0

]

So for k = 5, the square is expanded by a factor of 5 to the right.
For k = −2, the square is expanded by a factor of 2 to the left.

Similarly,

Cū =

[
0
k

]
Cv̄ =

[
1
k

]
, Cw̄ =

[
1
0

]

So for k = 5, the square is expanded upward by a factor of 5.
For k = −1, the square is stretched downward by a factor of 1. This is the same as
reflecting downward through the x-axis.
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(3) Row operation 3:

D =

[
1 k
0 1

]
Horizontal shear

F =

[
1 0
k 1

]
Vertical shear

Dū =

[
k
1

]
, Dv̄ =

[
1 + k

1

]
, Dw̄ =

[
1
0

]

and

F ū =

[
1
0

]
, F v̄ =

[
1

1 + k

]
, F w̄ =

[
1
k

]

Thus you can see how D shears the square horizontally and F shears the square
vertically.

Homework Assignment:
Read: pp. 366-369
Exercises: §6.5 1,2,9-18 (sketch)
Supplement: none
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VII. Eigenvalues and Eigenvectors

VII.1. The Eigenvalue Problem.
In each of the previous two examples, we saw that there were some vectors that remained

fixed (i.e. T (v̄) = v̄) during a linear transformation:

(1) For reflection in the x-axis, any vector lying on the x-axis remains fixed.
(2) For reflection in the line y = x, any vector lying on the line y = x remains fixed.

Written formally, these were examples of linear transformations T whose matrices A satisfy

Ax̄ = x̄.

This is the beginnings of one of the most important problems of linear algebra: the eigenvalue
problem. Namely, for a matrix A, are there some vectors for which

Ax̄ = λx̄

for some λ ∈ R?
Note that when λ = 1, this is just the same as asking if there are any vectors fixed by

A. Since it is always the case that T (0̄) = 0̄, for any linear transformation T , we generally
ignore this case: we are interested only in nonzero vectors for which Ax̄ = λx̄. Also, we will
only be talking about n× n matrices for this section.

Definition 74. Suppose A is an n × n matrix such that Ax̄ = λx̄ for some scalar λ ∈ R.
Then we say that x̄ is an eigenvector of A and that λ is an eigenvalue of A.

An eigenvector of A is a vector whose direction does not change under the linear transfor-
mation T (x̄) = Ax̄. Only the length of x̄ changes, and the factor by which it changes is the
corresponding eigenvalue λ.

Sometimes, eigenvalues are called characteristic values and eigenvectors are called char-
acteristic vectors.

Example 100. §7.1, 2.

(1) Ax̄ =

[
4 −5
2 −3

] [
1
1

]
=

[
4− 5
2− 3

]
=

[ −1
−1

]
= (−1)

[
1
1

]
Thus Ax̄ = (−1)x̄, so

x̄ = (1, 1) is an eigenvector of A with eigenvalue −1.

(2) Ax̄ =

[
4 −5
2 −3

] [
5
2

]
=

[
20− 10
10− 6

]
=

[
10
4

]
= 2

[
5
2

]
Thus Ax̄ = (−1)x̄, so

x̄ = (5, 2) is an eigenvector of A with eigenvalue 2.

So it is fairly straightforward to verify that a given vector is an eigenvector of a given
matrix, but how does one find the eigenvectors and eigenvalues in the first place?

Definition 75. For an n×n matrix A, the eigenvalue problem is to determine the eigenvalues
of A and find their corresponding eigenvectors.
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Remark. Just as finding the steady-state vector of a Markov process involved solving the
system

P x̄ = x̄

by finding a probability vector which satisfied

(In − P )x̄ = 0̄,

we find eigenvectors by solving
Ax̄ = λx̄,

that is, by finding vectors x̄ which satisfy

(λIn − A)x̄ = 0̄.

Recall that this homogeneous system of equations has nonzero solutions if and only if the
coefficient matrix (λIn − A) is not invertible, that is, if and only if |λIn − A| = 0. This is
because if (λIn − A) were invertible, the equation

(λIn − A)x̄ = 0̄

would have the unique solution given by

x̄ = (λIn − A)−10̄ = 0̄.

Theorem. Let A be an n× n matrix. Then

(1) An eigenvalue of A is a scalar λ such that |λIn − A| = 0.
(2) The eigenvectors of A corresponding to λ are the nonzero solutions of (λIn−A)x̄ = 0̄.

This theorem gives us a method for solving the eigenvalue problem!

Definition 76. |λIn − A| = λn + cn−1λ
n−1 + . . . + c1λ + c0 is the characteristic polynomial

of A. When we set it equal to 0, it is called the characteristic equation of A:

|λIn − A| = 0.

The eigenvalues of A are the roots of the characteristic polynomial of A. Thus, A can have
at most n distinct eigenvalues.

Example 101. We will find the eigenvalues and eigenvectors of the matrix

A =




1 0 0
−8 4 −6

8 1 9


 .

The characteristic polynomial of A is

|λI − A| =
∣∣∣∣∣∣

λ− 1 0 0
8 λ− 4 6

−8 −1 λ− 9

∣∣∣∣∣∣
= (λ− 1)(λ− 4)(λ− 9)− (−1)(6)(λ− 1)

= (λ− 1)(λ2 − 13λ + 42)

= (λ− 1)(λ− 6)(λ− 7)
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Thus the eigenvalues of A are λ1 = 1, λ2 = 6, and λ3 = 7.
For λ1 = 1, we have

λ1I−A =




0 0 0
8 −3 6

−8 −1 −8


 ∼




0 0 0
0 4 2
8 1 8


 ∼




8 1 8
0 4 2
0 0 0


 ∼




1 1
8

1

0 1 1
2

0 0 0


 ∼




1 0 15
16

0 1 1
2

0 0 0




So if x3 = t, then we have x2 = −1
2
t, and x1 = −15

16
t. Thus, the eigenvalue λ1 = 1 has

eigenvectors given by

x̄1 =



−15

16
t

−1
2
t

t


 = t




15
8

−16


 , ∀t ∈ R.

For λ2 = 6, we have

λ2I − A =




5 0 0
8 2 6

−8 −1 −3


 ∼




1 0 0
0 2 6
0 −1 −3


 ∼




1 0 0
0 1 3
0 0 0




So if x3 = s, then we have x2 = −3s, and x1 = 0. Thus, the eigenvalue λ2 = 6 has
eigenvectors given by

x̄2 =




0
−3s

s


 = s




0
−3

1


 ,∀s ∈ R.

For λ3 = 7, we have

λ3I − A =




6 0 0
8 3 6

−8 −1 −2


 ∼




1 0 0
0 3 6
0 −1 −2


 ∼




1 0 0
0 1 2
0 0 0




So if x3 = r, then we have x2 = −2r, and x1 = 0. Thus, the eigenvalue λ3 = 6 has
eigenvectors given by

x̄3 =




0
−2r

r


 = r




0
−3

1


 ,∀r ∈ R.

Example 102. Find the eigenvalues and eigenvectors of

A =




2 1 0
−1 0 1

1 3 1


 .
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The characteristic polynomial of A is

|λI − A| =
∣∣∣∣∣∣

λ− 2 −1 0
1 λ −1

−1 −3 λ− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

λ− 2 −1 0
1 λ −1
0 λ− 3 λ− 2

∣∣∣∣∣∣
= λ(λ− 2)(λ− 2)− (λ− 3)(−1)(λ− 2)− (λ− 2)(1)(−1)

= (λ− 2) (λ(λ− 2) + (λ− 3) + 1) = (λ− 2)
(
λ2 − 2λ + λ− 2

)

= (λ− 2)
(
λ2 − λ− 2

)
= (λ− 2)(λ− 2)(λ + 1)

Thus the eigenvalues of A are λ1 = −1, λ2, λ3 = 2. This is an example of a repeated eigenvalue
or eigenvalue of multiplicity 2.

For λ1 = −1, we have

λ1I−A =



−3 −1 0

1 −1 −1
−1 −3 −2


 ∼




3 1 0
1 −1 −1
0 −4 −3


 ∼




3 1 0
1 −1 −1
0 1 3

4


 ∼




3 0 −3
4

1 0 −1
4

0 1 3
4


 ∼




1 0 −1
4

0 1 3
4

0 0 0




So if x3 = t, then we have x2 = −3
4
t, and x1 = 1

4
t. Thus, the eigenvalue λ1 = −1 has

eigenvectors given by

x̄1 =




1
4
t

−3
4
t

t


 = t




1
−3

4


 ,∀t ∈ R.

For λ2 = λ3 = 2, we have

λ2I − A =




0 −1 0
1 2 −1

−1 −3 1


 ∼




0 1 0
1 0 −1

−1 0 1


 ∼




1 0 −1
0 1 0
0 0 0




So x2 = 0, and if x3 = s, then x1 = s also. Thus, the eigenvalue λ2 = λ3 = 2 has eigenvectors
given by

x̄2 =




s
0
s


 = s




1
0
1


 ,∀s ∈ R.

Homework Assignment:
Read: pp. 379-385
Exercises: §7.1 #1-5,10-11,15-20
Supplement: none
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VII.2. Applications of Eigenvalues: Population Growth.

Remark. We will use eigenvector to study a generalization of Markov processes. Recall that
finding the steady-state vector of a Markov process involved solving the system

P x̄ = x̄

by finding a probability vector which satisfied

(In − P )x̄ = 0̄.

Now we will be solving systems which look like

Ax̄ = λx̄

by trying to find vectors which satisfy

(λIn − A)x̄ = 0̄.

The key point that separates this material from the previous material on Markov processes
is that we now allow the total population to grow over time.

Example 103. (Fibonacci’s Rabbits)
Suppose that newly born pairs of rabbits produce no offspring during the first month of their
lives, but each pair produces one new pair each subsequent month. Starting with

x̄(0) =

[
1
0

]
young

adults,

pairs of rabbits, find the number of pairs x̄(k) after k months, assuming that no rabbit dies.
After kth months, the total number of pairs of rabbits is

Pk = (number of pairs alive the previous month)

+ (number of pairs newly born in the kth month)

= (number of pairs alive in the (k − 1)th month)

+ (number of pairs alive in the (k − 2)th month)

= Pk−1 + Pk−2

This is known as Fibonacci’s relation: Pk = Pk−1 + Pk−2

and generates the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .
We can write Fibonacci’s relation in matrix form as

x̄(k) =

[
Pk−1

Pk

]
=

[
0 1
1 1

] [
Pk−2

Pk−1

]
= Ax̄(k−1)

To see this, note that

Ax̄(k−1) =

[
0 1
1 1

] [
Pk−2

Pk−1

]
=

[
Pk−1

Pk−1 + Pk−2

]
young
adults
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So that

x̄(0) =

[
1
0

]
P0 = 1 + 0 = 1

x̄(1) = Ax̄(0) =

[
0 1
1 1

] [
1
0

]
=

[
0
1

]
P1 = 0 + 1 = 1

x̄(2) = Ax̄(1) =

[
0 1
1 1

] [
0
1

]
=

[
1
1

]
P2 = 1 + 1 = 2

x̄(3) = Ax̄(2) =

[
0 1
1 1

] [
1
1

]
=

[
1
2

]
P3 = 1 + 2 = 3

x̄(4) = Ax̄(3) =

[
0 1
1 1

] [
1
2

]
=

[
2
3

]
P4 = 2 + 3 = 5

As with Markov processes, it is clear that

x̄(1) = Ax̄(0)

x̄(2) = Ax̄(1) = A(Ax̄(0)) = A2x̄(0)

x̄(3) = Ax̄(2) = A2(Ax̄(0)) = A3x̄(0)

...

x̄(k) = Akx̄(0)

In general, we can set up a population growth problem by representing the number of
population members (pairs of rabbits in the previous example) at time step k with the age
distribution vector :

x̄(k) =




x1

x2
...

xn




Number in first age class
Number in second age class
...
Number in nth age class

and the age transition matrix :

A =




b1 b2 b3 · · · bn−1 bn

p1 0 0 · · · 0 0
0 p2 0 · · · 0 0
0 0 p3 · · · 0 0
...

...
...

...
...

0 0 0 · · · pn−1 (pn)




.

The numbers b1 across the first row represent the average number of offspring produced
by a member of the ith age class. For our rabbits example, the young produce 0 offspring,
and the adults have a 100% chance of producing 1 pair of offspring.

The numbers pi = ai+1,i represent the probability that a member of the ith age class will
survive to become a member of the (i + 1)th age class. In our example, we are assuming the
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rabbits never die, so a21 = 1 indicates that each young rabbit has a 100% chance of growing
into an adult rabbit, and a22 = 1 indicates that each adult rabbit has a 100% chance of
sticking around as an adult rabbit.

Example 104. Suppose that a population of rabbits raised in a research lab has the following
characteristics:

(a) Half of the rabbits survive their first year. Of those, half survive their second year.
The maximum lifespan is 3 years.

(b) During the first year, the rabbits produce no offspring. The average number of
offspring is 6 during the second year and 8 during the third year.

(c) There are currently 24 newborn rabbits, 24 one-year-old rabbits, and 20 three-year-
old rabbits.

From (a), we obtain

A =




b1 b2 b3

0.5 0 0
0 0.5 0


 .

From (b), we complete the age transition matrix as

A =




0 6 8
0.5 0 0
0 0.5 0


 .

From (c), we obtain the initial age distribution vector

x̄(0) =




24
24
20


 .

How many rabbits will be in each age class after 1 year?

x̄(1) = Ax̄(0) =




0 6 8
0.5 0 0
0 0.5 0







24
24
20


 =




144 + 160
0.5(24)
0.5(24)


 =




304
12
12




newborn
1-year
2-year

And the total number of rabbits is P1 = 304 + 12 + 12 = 328.
What is the stable age distribution for this population of rabbits?
This requires solving Ax̄ = λx̄:

|λI − A| =
∣∣∣∣∣∣

λ −6 −8
−0.5 λ 0

0 −0.5 λ

∣∣∣∣∣∣
= λ3 − 2− 3λ = (λ + 1)2(λ− 2)

So we have eigenvalues λ1, λ2 = −1 and λ3 = 2. Since it does not make sense to have a
negative number as part of an age distribution, choose the positive eigenvalue λ3 = 2:

λ3I−A =




2 −6 −8
−0.5 2 0

0 −0.5 2


 ∼




2 −6 −8
−1 4 0

0 −1 4


 ∼




2 0 −32
−1 0 16

0 1 −4


 ∼




1 0 −16
0 1 −4
0 0 0



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So for x3 = t, we get x2 = 4t and x1 = 16t. Thus, the eigenvector is

x̄ = t




16
4
1


 = t




16
21

4
21

1
21


 ≈




76.2%

19.0%

4.8%




newborn

1-year

2-year

So even though the population will continue to grow over time, the population will on average
(and in the long run) consist of 76% newborns, 19% 1-year-olds, and 5% 2-year-olds.

Homework Assignment:
Read: pp. 414-416
Exercises: §7.4 #2,3,6,7,9
Supplement: none


