Contact 3-Manifolds and Geometric Topology

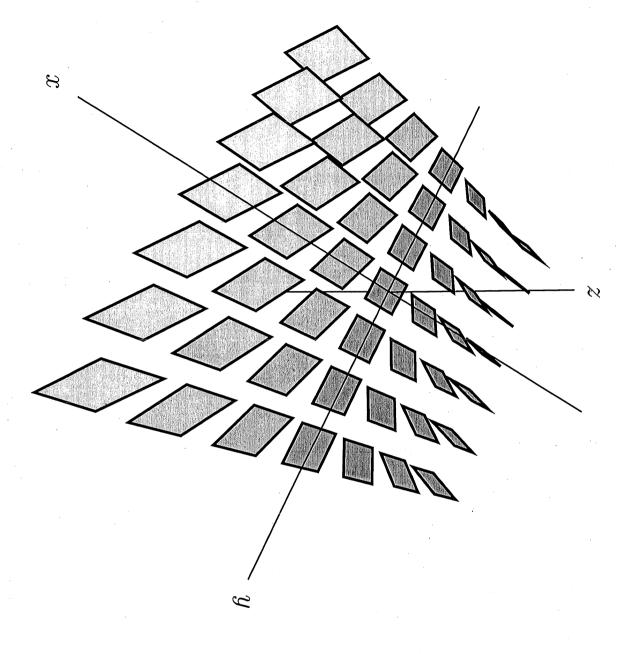
Hansjörg Geiges

Topology Festival Cornell University

May 3, 2008

contact structure on M^3 : $\xi = \ker \alpha$ with $\alpha \wedge d\alpha \neq 0$

Darboux theorem: Locally $\alpha = dz + x dy$



Theorem of Martinet: Every closed, orientable M^3 admits a contact structure

Proofs:

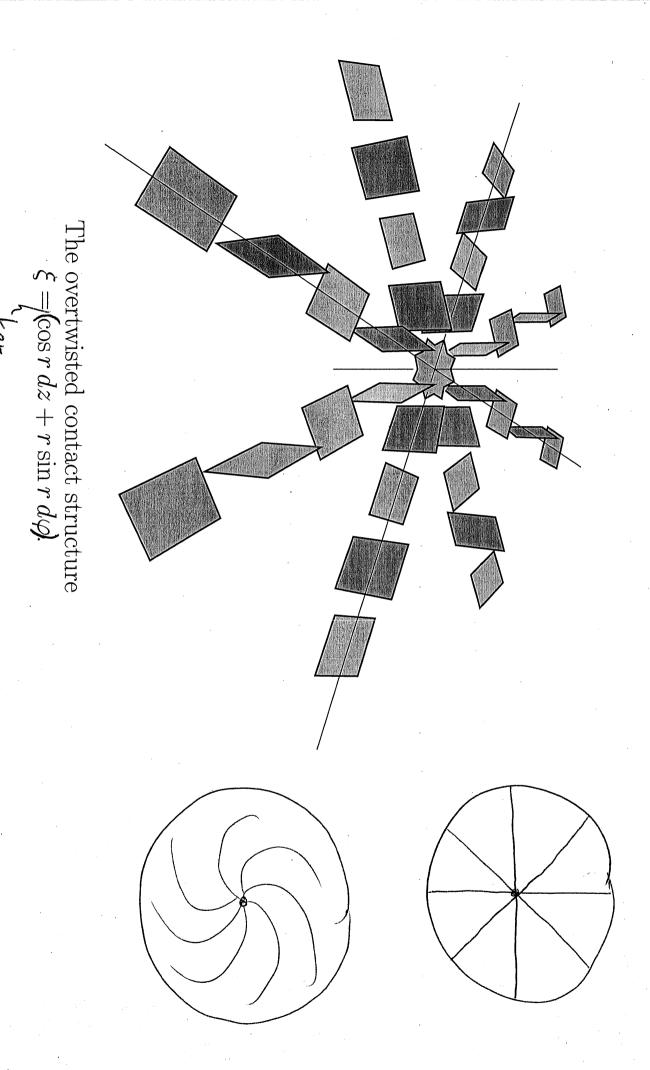
- surgery along transverse knots (Martinet, 1971)
- open books (Thurston-Winkelnkemper, 1975)
- branched covers (Gonzalo, 1987)
- surgery along Legendrian knots (Ding-G-Stipsicz, 2004)

is overtwisted if $\exists \Delta \hookrightarrow (M, \xi)$ with $T_p\Delta = \xi_p$ for all $p \in \partial \Delta$

 ξ is **tight** if it is not overtwisted.

Examples of tight contact structures:

- $\xi_{\rm St} = \ker(dz + x \, dy)$ on ${\bf R}^3$
- $\xi_{St} = \ker(x dy y dx + z dt t dz)$ on S^3
- $\xi_n = \cos(n\theta) dx \sin(n\theta) dy$ on T^3 , $n \in \mathbb{N}$
- $z d\theta + x dy y dx$ on $S^1 \times S^2$



Two classical theorems of Eliashberg

homotopical. (1989) Classification of overtwisted contact structures is

up to isotopy. (1992) Standard contact structure on S^3 is unique tight one

Application: Proof of **Cerf's Theorem** $\Gamma_4 = 0$

Prime decomposition theorem for tight contact 3-manifolds

the summands are unique up to order and contactomorphism nected sum of prime tight contact 3-manifolds (Colin, 1997); (Ding-G, 2008). Every closed tight contact 3-manifold can be written as a con-

3-manifolds **Remark:** The uniqueness statement fails for overtwisted contact

Surgery presentation theorem for contact 3-manifolds

contact (± 1) -surgery along a Legendrian link (Ding-G, 2004). Every closed contact 3-manifold can be obtained from (S^3,ξ_{St}) by

Symplectic fillings

- A compact symplectic manifold (W^4, ω) is a **weak filling** of (M^3,ξ) if $\partial W=M$ as oriented manifolds and $\omega|_{\xi}>0$.
- A compact symplectic manifold (W^4, ω) is a **strong filling** of (M^3,ξ) if $\partial W=M$ and $\xi=\ker(i_X\omega)$ with X a Liouville vector field for ω , defined near ∂W , pointing outwards

Liouville vector field: $L_{X}\omega \equiv d(i_{X}\omega) = \omega$

$$(i_{X}\omega) \wedge d(i_{X}\omega) = (i_{X}\omega) \wedge \omega = (i_{X}\omega^{2})/2 \neq 0$$
 on M transverse to X

of (S^3, ξ_{st}) e.g. $W=D^4$, $\omega=dx\wedge dy+dz\wedge dt$, $X=r\partial_r$ defines strong filling

clear

strong filling

Eliashberg, 1996

Ding-G, 2001

weak filling

Etnyre—Honda

2002

Lisca-Stipsicz,

Ghiggini, 2004/5

1985

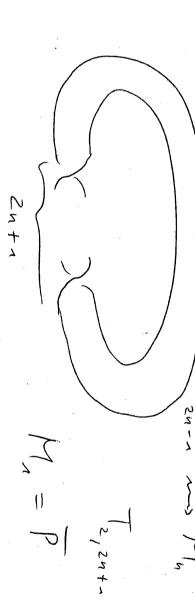
Eliashberg, Gromov,

tight

Tight contact structures on Seifert fibred 3-manifolds

structure for at least one choice of orientation (Gompf, 1998). Every Seifert fibred 3-manifold admits a (positive) tight contact

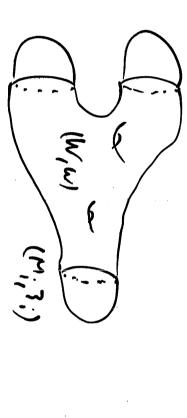
 $P\#\overline{P}$ does not admit any tight contact structure (Etnyre–Honda,



tive tight contact structure are the M_n (Lisca-Stipsicz, 2007) The only oriented Seifert 3-manifolds that do not admit a posi-

Concave fillings and symplectic caps

- All contact 3-manifolds admit a strong concave filling (Gay, 2002)
- Weak fillings can be capped off (Eliashberg, Etnyre, 2004; Özbağcı–Stipsicz (G), 2006).



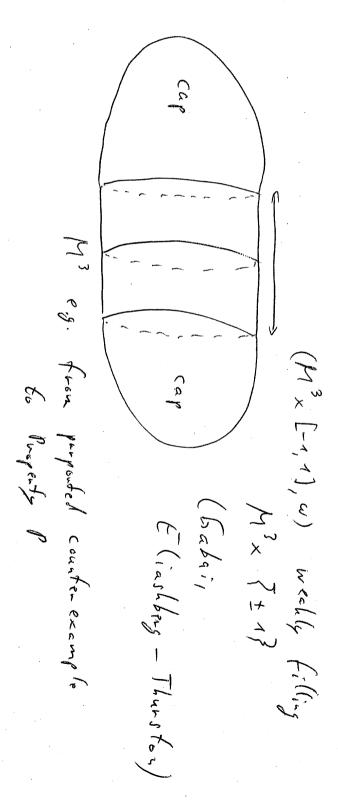
symplectic

y-menifold

Symplectic capping-off enters the proofs of these results:

- 2004) Nontrivial knots have property P (Kronheimer-Mrowka,
- seq.) by surgery (Kronheimer–Mrowka···Ozsváth–Szabó, 2007 et The unknot, trefoil and figure eight knot are determined
- fert genus of knots (Ozsváth–Szabó, 2004) Heegaard Floer invariants detect minimal genus of surfaces representing $eta \in H_2(M^3)$ (Thurston norm) and minimal Sei-

General strategy of proof



Key tools in contact topological part

Convex surface theory (Giroux, 1991)

Open book decompositions (Giroux, 2002).

Convex surfaces

near and transverse to Σ . Then $\Sigma \subset (M^3, \xi)$ is **convex** if there is a contact vector field Y defined

$$\xi = \ker(\beta + u \, dt)$$

near Σ . Contact condition: $u d\beta + \beta \wedge du > 0$ (*).

The **dividing set** of a convex surface Σ is

$$\Gamma := \{ p \in \Sigma \colon Y(p) \in \xi_p \} = \{ p \in \Sigma \colon u(p) = 0 \}.$$

 $(*)\Rightarrow du \neq 0$ along Γ , so this is a 1-dim. submanifold

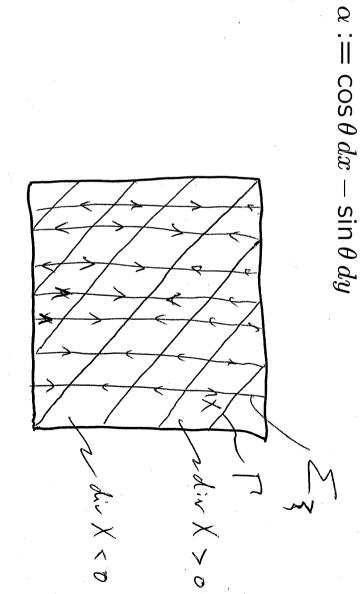
 Γ essentially determines the germ of ξ near Σ .

Example of a convex surface

 $\Sigma := S^1 \times \partial D^2 \subset S^1 \times \mathbf{R}^2,$

$$Y := x \, \partial_x + y \, \partial_y \Rightarrow L_Y \alpha = \alpha$$

$$= \{x \cos \theta - y \sin \theta = 0\}$$



Proof of uniqueness of tight structure on S^3 (Tomography)

