Fractal spectrum and quasi-periodic potential

ERIC AKKERMANS PHYSICS-TECHNION

Benefitted from discussions and collaborations with:

Photo Archive

Evgeni Gurevich, Technion Jacqueline Bloch, Marcoussis Dimitri Tannese, Marcoussis Julien Gabelli Orsay Gerald Dunne UConn. Sasha Teplyaev, UConn.

5th Cornell Conference on Fractals, June 2014

Friday, July 4, 14

Large deviations and some stochastic processes on graphs and fractals

Elaborations

Large deviations and some stochastic processes on graphs and fractals

THE SIMPLE SYMMETRIC EXCLUSION PROCESS (SSEP)

Large deviations and some stochastic processes on graphs and fractals

THE SIMPLE SYMMETRIC EXCLUSION PROCESS (SSEP)

Friday, July 4, 14

BACK TO QUANTUM PHYSICS ON FRACTALS

A LARGE VARIETY OF PROBLEMS ARE CONVENIENTLY DESCRIBED IN TERMS OF SPECTRAL CLASSES

(absolutely continuous / singular-continuous / point spectrum):

- Anderson localization
- Quantum and classical wave diffusion
- Random magnetism

A LARGE VARIETY OF PROBLEMS ARE CONVENIENTLY DESCRIBED IN TERMS OF SPECTRAL CLASSES

AN INTERESTING PROBLEM IN THAT CONTEXT

Spontaneous emission from a fractal QED cavity/spectrum

E.A. G. Dunne, A. Teplyaev, EPL, E.A. and G. Dunne, PRL 2010 E.A and E. Gurevich, EPL,2013

atom

Fractal spectrum ?

Fractal ↔ Self-similar

Fractal ↔ Self-similar

Fractal ↔ **Self-similar**

Discrete scaling symmetry

A quasi-periodic stack of dielectric layers of two types (n_A,n_B)

(Kohmoto et. al., '87)

A quasi-periodic stack of dielectric layers of two types (n_A,n_B)

Fibonacci sequence: $S_{j\geq 2} = \begin{bmatrix} S_{j-1}S_{j-2} \end{bmatrix}, S_0 = B, S_1 = A$ A \rightarrow AB \rightarrow ABA \rightarrow ABAAB \rightarrow ABAABA \rightarrow ABAABAABA \rightarrow ...


```
(Kohmoto et. al., '87)
```

A quasi-periodic stack of dielectric layers of two types (n_A,n_B)

Fibonacci sequence: $S_{j\geq 2} = \begin{bmatrix} S_{j-1}S_{j-2} \end{bmatrix}, S_0 = B, S_1 = A$ A \rightarrow AB \rightarrow ABA \rightarrow ABAAB \rightarrow ABAABA \rightarrow ABAABAABA \rightarrow ...

The density of modes $\rho(\omega)$:

(Kohmoto et. al., '87)

A quasi-periodic stack of dielectric layers of two types (n_A,n_B)

Fibonacci sequence: $S_{j\geq 2} = \begin{bmatrix} S_{j-1}S_{j-2} \end{bmatrix}, S_0 = B, S_1 = A$ A \rightarrow AB \rightarrow ABA \rightarrow ABAAB \rightarrow ABAABA \rightarrow ABAABAABA \rightarrow ...

The density of modes $\rho(\omega)$:

(Kohmoto et. al., '87)

A quasi-periodic stack of dielectric layers of two types (n_A,n_B)

Fibonacci sequence: $S_{j\geq 2} = \begin{bmatrix} S_{j-1}S_{j-2} \end{bmatrix}, S_0 = B, S_1 = A$ A \rightarrow AB \rightarrow ABA \rightarrow ABAAB \rightarrow ABAABA \rightarrow ABAABAABA \rightarrow ...

The density of modes $\rho(\omega)$:

 $N_{\omega}(b \Delta \omega) = a N_{\omega}(\Delta \omega)$ b, a - fixed scaling factors

$$N_{\omega}(b^{2}\Delta\omega) = a^{2}N_{\omega}(\Delta\omega)$$

b, a - fixed scaling factors

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \quad p \in \mathbb{Z}$$

b, a - fixed scaling factors **Discrete scaling**
symmetry

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int_{\omega}^{\omega+\Delta\omega} \rho(\omega')d\omega'$$

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int \rho(\omega')d\omega'$$

 $\omega + \Delta \omega$

ω

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times (\cdots) , \qquad \alpha = \frac{\ln a}{\ln b}$$

 $0 \le \alpha \le 1$ - fractal exponent (absolutely continuous : $\alpha = 1$, pure-point : $\alpha = 0$)

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int^{\omega+\Delta\omega} \rho(\omega')d\omega'$$

ω

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times F\left(\frac{\ln |\Delta \omega|}{\ln b}\right), \qquad \alpha = \frac{\ln a}{\ln b}, \quad F(x+1) = F(x)$$
- fractal exponent (absolutely continuous : $\alpha = 1$, pure-point : $\alpha = 0$)

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int^{\omega+\Delta\omega} \rho(\omega')d\omega'$$

ω

g(x)

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times F\left(\frac{\ln |\Delta \omega|}{\ln b}\right), \qquad \alpha = \frac{\ln a}{\ln b}, \quad F(x+1) = F(x)$$
- fractal exponent (absolutely continuous : \alpha = 1, pure-point : \alpha = 0)

Similarly for the convolution of $\rho(\omega)$ with a window function

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g\left(\frac{\omega'-\omega}{\Delta\omega}\right) p(\omega')d\omega' = (\Delta\omega)^{\alpha} \times F_g\left(\frac{\ln|\Delta\omega|}{\ln b}\right),$$

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int \rho(\omega')d\omega'$$

ω

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times F\left(\frac{\ln |\Delta \omega|}{\ln b}\right), \qquad \alpha = \frac{\ln a}{\ln b}, \quad F(x+1) = F(x)$$

$$\leq 1 \quad \text{- fractal exponent (absolutely continuous } : \alpha = 1 \quad \text{, pure-point } : \alpha = 0)$$

Similarly for the convolution of $\rho(\omega)$ with a window function g(x)

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g\left(\frac{\omega'-\omega}{\Delta\omega}\right) p(\omega')d\omega' = (\Delta\omega)^{\alpha} \times F_g\left(\frac{\ln|\Delta\omega|}{\ln b}\right),$$

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int^{\omega+\Delta\omega} \rho(\omega')d\omega'$$

ω

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times F\left(\frac{\ln |\Delta \omega|}{\ln b}\right), \qquad \alpha = \frac{\ln a}{\ln b}, \quad F(x+1) = F(x)$$

$$\leq 1 \quad \text{- fractal exponent (absolutely continuous :} \alpha = 1 \text{, pure-point : } \alpha = 0 \text{)}$$

Similarly for the convolution of $\rho(\omega)$ with a window function g(x)

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g\left(\frac{\omega'-\omega}{\Delta\omega}\right) p(\omega')d\omega' = (\Delta\omega)^{\alpha} \times F_g\left(\frac{\ln|\Delta\omega|}{\ln b}\right),$$

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int^{\omega+\Delta\omega} \rho(\omega')d\omega'$$

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times F\left(\frac{\ln |\Delta \omega|}{\ln b}\right), \qquad \alpha = \frac{\ln a}{\ln b}, \quad F(x+1) = F(x)$$

$$\leq 1 \quad \text{- fractal exponent (absolutely continuous } : \alpha = 1 \quad \text{, pure-point } : \alpha = 0)$$

Similarly for the convolution of $\rho(\omega)$ with a window function g(x)

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g\left(\frac{\omega'-\omega}{\Delta\omega}\right) p(\omega')d\omega' = (\Delta\omega)^{\alpha} \times F_g\left(\frac{\ln|\Delta\omega|}{\ln b}\right)$$

(Ghez and Vaienti, '89: the wavelet transform of fractal measures)

ω

Testing the discrete scaling symmetry - an example

A quasi-periodic dielectric stack

A quasi-periodic dielectric stack

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g\left(\frac{\omega'-\omega}{\Delta\omega}\right) \mathbf{p}(\omega')d\omega' = (\Delta\omega)^{\alpha} \times F_g\left(\frac{\ln|\Delta\omega|}{\ln b}\right),$$

A quasi-periodic dielectric stack

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g \left(\frac{\omega' - \omega}{\Delta\omega} \right) p(\omega') d\omega' \stackrel{?}{=} (\Delta\omega)^{\alpha} \times F_g \left(\frac{\ln |\Delta\omega|}{\ln b} \right),$$

$$g(x) = \frac{\sin(x)}{\pi x}$$

$$\int_{0^4}^{10^6} \int_{0.45}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.55} \int_{0.5$$

p(0)

A quasi-periodic dielectric stack

$$N_{\omega}^{(g)}(\Delta \omega) \equiv \int g \left(\frac{\omega' - \omega}{\Delta \omega} \right) p(\omega') d\omega' \stackrel{?}{=} (\Delta \omega)^{\alpha} \times F_g \left(\frac{\ln |\Delta \omega|}{\ln b} \right),$$

$$g(x) = \frac{\sin(x)}{\pi x}$$

$$\int_{0^4}^{10^6} \int_{0.45}^{0.5} \int_{0.5}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.55} \int_{0.55$$

p(0)

A quasi-periodic dielectric stack

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g \left(\underbrace{\omega' - \omega}{\Delta\omega} \right) (\omega') d\omega' \stackrel{?}{=} (\Delta\omega)^{\alpha} \times F_g \left(\frac{\ln |\Delta\omega|}{\ln b} \right),$$

$$g(x) = \frac{\sin(x)}{\pi x}$$
numerics
$$g(x) = \frac{\sin(x)}{\pi x}$$

$$g$$

Friday, July 4, 14

A quasi-periodic dielectric stack

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g \left(\underbrace{\omega' - \omega}{\Delta\omega} \right) (\omega') d\omega' \stackrel{?}{=} (\Delta\omega)^{\alpha} \times F_g \left(\frac{\ln |\Delta\omega|}{\ln b} \right),$$

$$g(x) = \frac{\sin(x)}{\pi x}$$

$$(\widehat{a})^{0} = \underbrace{(\Delta\omega)^{0.78}}_{0.5} \underbrace{(\Delta\omega)^{0.78}}_{0.5}$$

Experimental study of a fractal energy spectrum :

Cavity polaritons in a Fibonacci quasi-periodic potential

D. Tanese, J. Bloch, E. Gurevich, E.A. PRL, 2014.

The Fibonacci problem has a long and rich (theoretical and experimental) history.

(Kohmoto, Luck, Gellerman, Damanik, Bellissard, Simon,...)

The Fibonacci problem has a long and rich (theoretical and experimental) history.

(Kohmoto, Luck, Gellerman, Damanik, Bellissard, Simon,...)

But still much to be done ...

Number of letters of a sequence S_j is the Fibonacci number F_j so that $F_j = F_{j-1} + F_{j-2}$

Number of letters of a sequence S_j is the Fibonacci number F_j so that $F_j = F_{j-1} + F_{j-2}$

Measure of spectral function E(k) intensity maps

Friday, July 4, 14

Measure of spectral function E(k) intensity maps

Quantitative description!

Effective 1D model

$$\left[-\frac{\hbar^2}{2M}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

where

 $V(x) = \sum \chi(\sigma^{-1}n)u_b(x-an)$ n

Effective 1D model

$$\left[-\frac{\hbar^2}{2M}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

where

 $V(x) = \sum \chi(\sigma^{-1}n)u_b(x-an)$ n

 $\sigma = \frac{\sqrt{5}-1}{2}$ is the inverse golden mean

Effective 1D model

$$\left[-\frac{\hbar^2}{2M}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

where

Shape of each letter

 $\sigma = (\sqrt{5} - 1)/2$ is the inverse golden mean

Labeling the gaps...

Labeling the gaps...

Calculating the integrated density of states (IDOS)

Integrated density of states (IDOS)-Gap labeling

$$\left[-\frac{\hbar^2}{2M}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

where

Shape of each letter

 $\sigma = \frac{(\sqrt{5}-1)}{2}$ is the inverse golden mean

 $\chi(x) = \begin{array}{c} 1, -\sigma < x < -\sigma^3 \\ 0, -\sigma^3 < x < \sigma^2 \end{array}$

 $V(k) = \mathbf{u}_{b}(k) \times \sum \chi_{q} \,\delta\big(ka - 2\pi \big[p + \sigma q\big]\big)$ p,q

Each pair{p,q} of integers defines a unique Bragg peak (σ is irrational).

 $V(k) = \mathbf{u}_{b}(k) \times \sum \chi_{q} \,\delta\big(ka - 2\pi \big[p + \sigma q\big]\big)$

Each pair{p,q} of integers defines a unique Bragg peak (σ is irrational).

Bragg peaks are dense (Cantor set) \implies Must use periodic approximants, *i.e.* replacing irrational σ by

 $\sigma \approx \frac{F_j}{F_{j+1}}$

 $V(k) = \mathbf{u}_{b}(k) \times \sum \chi_{q} \,\delta\big(ka - 2\pi \big[p + \sigma q\big]\big)$

Each pair $\{p,q\}$ of integers defines a unique Bragg peak (σ is irrational).

Bragg peaks are dense (Cantor set) \implies Must use periodic approximants, *i.e.* replacing irrational σ by

 $\sigma \approx \frac{F_j}{F_{j+1}}$

Periodic crystal of length aF_{i+1} and potential

 $V(k) = \mathbf{u}_{b}(k) \times \sum \chi_{q} \delta \left(ka - \frac{2\pi}{F_{i+1}} \left[F_{j+1} p + F_{j} q \right] \right)$

 $V(k) = \mathbf{u}_{b}(k) \times \sum \chi_{q} \,\delta\big(ka - 2\pi \big[p + \sigma q\big]\big)$

Each pair{p,q} of integers defines a unique Bragg peak (σ is irrational).

Bragg peaks are dense (Cantor set) \implies Must use periodic approximants, *i.e.* replacing irrational σ by

 $\sigma \approx \frac{F_j}{F_{j+1}}$

Periodic crystal of length $a F_{i+1}$ and potential

$$V(k) = \mathbf{u}_{b}(k) \times \sum_{p,q} \chi_{q} \,\delta\left(ka - \frac{2\pi}{F_{j+1}}\left[F_{j+1} \,p + F_{j} \,q\right]\right)$$

Bragg peaks at values $k = Q \equiv \frac{1}{a} (F_{j+1} p + F_j q) \xrightarrow{j \to \infty} \frac{1}{a} (p + q\sigma)$

Perturbation theory

 $\left[-\frac{\hbar^2}{2M}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$ small

Perturbation theory

 $\left[-\frac{\hbar^2}{2M}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$ small

Experimentally, it is not the case !

Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each value of the (independent) Bragg peaks (Bloch thm.).

 $k = Q \equiv \frac{1}{a} \left(F_{j+1} p + F_j q \right) \xrightarrow{j \to \infty} \frac{1}{a} \left(p + q \sigma \right)$

Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each value of the (independent) Bragg peaks (Bloch thm.).

$$k = Q \equiv \frac{1}{a} \left(F_{j+1} p + F_j q \right) \xrightarrow{j \to \infty} \frac{1}{a} \left(p + q \sigma \right)$$

To first order in V, each Bragg peak hybridizes degenerate Bloch waves $\pm \frac{Q}{2}$ and a gap opens at energies $\varepsilon = E_{\pm \frac{Q}{2}}$

Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each value of the (independent) Bragg peaks (Bloch thm.).

$$k = Q \equiv \frac{1}{a} \left(F_{j+1} p + F_j q \right) \xrightarrow{j \to \infty} \frac{1}{a} \left(p + q \sigma \right)$$

To first order in V, each Bragg peak hybridizes degenerate Bloch waves $\pm \frac{Q}{2}$ and a gap opens at energies $\varepsilon = E_{\pm \frac{Q}{2}}$

The (normalized) IDOS inside a gap labeled by $\{p,q\}$ is

$$N\left(\boldsymbol{\varepsilon}=E_{Q_{p,q}/2}\right)=p+q\boldsymbol{\sigma}$$

Integrated Density of States-Gap Labeling

Topological invariants - independent of potential strength, inhomogeneity, ...

Integrated Density of States-Log-periodic oscillations outside {*p*,*q*} gaps

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times F\left(\frac{\ln|\Delta \omega|}{\ln b}\right), \qquad \alpha = \frac{\ln a}{\ln b}, \quad F(x+1) = F(x)$$

Imaging the modes in real space : spatially and spectrally resolved emission

SUMMARY-FURTHER DIRECTIONS

- Coupling of a quantum emitter to a fractal quasi-continuum leads to an unusual decay dynamics.
- The decay exhibits scaling properties related to the discrete scaling symmetry of the quasi-continuum.
- The experimental study of a macroscopic coherent polariton gas in a Fibonacci cavity allows for a quantitative study of a fractal singular continuous energy spectrum : spectral function, wave functions and gap labeling.

FURTHER DIRECTIONS

• Long time dynamics of wave packets with a quasicontinuum fractal spectrum. Log-periodic oscillations.

FURTHER DIRECTIONS

- Long time dynamics of wave packets with a quasicontinuum fractal spectrum. Log-periodic oscillations.
- Different experimental realizations : tunnel junction and / or squbit in a microwave fractal resonator (J. Gabelli, Orsay) : Notion of photons- counting statisticszero point motion with fractal spectra.

FURTHER DIRECTIONS

- Long time dynamics of wave packets with a quasicontinuum fractal spectrum. Log-periodic oscillations.
- Different experimental realizations : tunnel junction and / or squbit in a microwave fractal resonator (J. Gabelli, Orsay) : Notion of photons- counting statisticszero point motion with fractal spectra.

A preliminary experiment at room temperature

Friday, July 4, 14

• A hard problem ! Several approaches on the market.

- A hard problem ! Several approaches on the market.
- We consider quantum fluctuations around the classical (Einstein) solution (semi-classical approach)

- Several approaches on the market.
- Consider here quantum fluctuations around the classical (Einstein) solution : semi-classical approach
- At short scales, the resulting space-time seems to have a fractal structure (Numerics & RG→ Martin Reuter).

Friday, July 4, 14

- At short scales, the resulting space-time seems to have a fractal structure.
- A good guess (See Sasha Teplyaev) seems to be a scalar quantum field on barycentric fractals.

FIGURE 2.1. Barrycentric subdivision

Apparently not that weird...

Apparently not that weird... F. Englert proposed a very similar idea back in 1986.

METRIC SPACE-TIME AS FIXED POINT OF THE RENORMALIZATION GROUP EQUATIONS ON FRACTAL STRUCTURES

Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding to the euclidean fixed point. Vertices are labelled according to fig. 4.