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BACK TO QUANTUM PHYSICS
ON FRACTALS




A LARGE VARIETY OF PROBLEMS ARE CONVENIENTLY
DESCRIBED IN TERMS OF SPECTRAL CLASSES

( absolutely continuous / singular-continuous / point spectrum):

» Anderson localization
» Quantum and classical wave diffusion

» Random magnetism
>
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A LARGE VARIETY OF PROBLEMS ARE CONVENIENTLY
DESCRIBED IN TERMS OF SPECTRAL CLASSES
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AN INTERESTING PROBLEM
IN THAT CONTEXT




Spontaneous emission from a fractal QED
cavity/spectrum
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E.A. G. Dunne,A.Teplyaeyv, EPL,
E.A.and G. Dunne, PRL 2010
E.A and E. Gurevich, EPL,201 3
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Spontaneous emission for different QED vacua
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Spontaneous emission for different QED vacua

— p. ()]

smooth continuum Wigner-Weisskopf decay
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Spontaneous emission for different QED vacua
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smooth continuum Wigner-Weisskopf decay

-

guasi-discrete mode vacuum Rabi oscillations
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Spontaneous emission for different QED vacua

t A
— p.(1) ik
smooth continuum Wigner-Weisskopf decay
e p.(?)
structured continuum non-exp./incomplete decay

(photonic crystals, Yablonovitch '87, Kofman et.al., John et.al. ‘94)
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quasi-discrete mode vacuum Rabi oscillations
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Spontaneous emission for different QED vacua
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fractal spectrum 7
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structured continuum non-exp./incomplete decay
(photonic crystals, Yablonovitch '87, Kofman et.al., John et.al. ‘94)
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quasi-discrete mode vacuum Rabi oscillations
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Fractal spectrum ?
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Fractal < Self-similar
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Fractal < Self-similar
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Fractal spectrum - an example

A quasi-periodic stack of dielectric layers of two types (n,,ng)

1B
A A0 A A A
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(Kohmoto et. al., '87)
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Fractal spectrum - an example

A quasi-periodic stack of dielectric layers of two types (n,,ng)

Fibonacci sequence: S]>2 [S S ], S =B, S,=4
A%AB%ABA%ABAAB%ABAABABA%... I l
A1 0 A A A

-
Il

(Kohmoto et. al., '87)
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Fractal spectrum - an example

A quasi-periodic stack of dielectric layers of two types (n,,ng)

Fib ' : - -
ibonacci sequence Sj>2 [S S ] S =B, S =4
ASAB_ABA_ABAAB_>ABAABABAs. . I I

A A0 A A

The density of modes p(w) :
, , , E IR

(Kohmoto et. al., '87)
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Fractal spectrum - an example

A quasi-periodic stack of dielectric layers of two types (n,,ng)

Fib ' : - -
ibonacci sequence S,>2 [S S ], S =B, S =4
ASAB_ABA_ABAAB_>ABAABABAs. . I .

A A0\ A
i

The density of modes p(w) :

-
Il

(Kohmoto et. al., '87)

10

p(w)

10

0.4 0. 495 1

Q

Friday, July 4, 14



Fractal spectrum - an example

A quasi-periodic stack of dielectric layers of two types (n,,ng)

S =848,

Fibonacci sequence:
A—AB—ABA—ABAAB ABAABABA

SOB,§|

The density of modes p(w) :
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Discrete scaling symmetry

(Kohmoto et. al., '87)
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Discrete scaling symmetry: formal description
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Discrete scaling symmetry: formal description

s |
‘ : 10" || ;
105' . { | : | | |
gos £ 1 . | | —
Q -
: -~
107} 1 | S
, 10" (§ ¥ | l =
¥ 7 — S = . 4 f : ‘_ .':: | VU ““ ‘ ‘ '.\ 100.
045 05 0.55 g ——I
o [a.u.] 049 04% 05 0505 051
®
— Aw—

\ W +A®

Counting func:tion:]\]&)(Am)E j p(m")dw' = (#of states in [w, w+Aw])

®

Friday, July 4, 14



Discrete scaling symmetry: formal description
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Discrete scaling symmetry: formal description
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Discrete scaling symmetry: formal description
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Testing the discrete scaling symmetry

Scaling equation

N, (b"A®)=a"N_ (A®), N (Aw) = j p(0"dw'

Q)
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Testing the discrete scaling symmetry

Scaling equation

W+A®

N, (b"A®)=a"N_ (A®), N (Aw) = j p(0"dw'
has the following general solution (dimensionless w):
N (Ao)=(Ao)Y'x () , o=
Inb

- fractal exponent (absolutely continuous : , pure-point : )
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Testing the discrete scaling symmetry

Scaling equation

N, (b"A®)=a"N_ (A®), N (Aw) = j p(0"dw'

Q)

has the following general solution (dimensionless w):

4 )

N, (A®) = (Aw)” xF(lnl‘A:‘ } o = ln_a, F(x+1)=F(x)
n

Inb
- fractal exponent (absolutely continuous : , pure-point : )

- J
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Testing the discrete scaling symmetry

Scaling equation

N, (b"A®)=a"N_ (A®), N (Aw) = j p(0"dw'

Q)

has the following general solution (dimensionless w):

N (Aw) = (A®)* xF(ln‘Am‘ j 0= pet]) = F(x)

Inb

- fractal exponent (absolutely continuous : , pure-point :

)
Similarly for the convolution of p(w) with a window function g(x) /\. 1
N —g T S

4 )

N(E)g)(AO)) = Jg ((DA_O()D )J((D Ndo'=(Am)" ><Fg (IH‘A(D‘ ],

Inb

g J
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Testing the discrete scaling symmetry

Scaling equation

O+Aw®
N, (b"A®)=a"N_ (A®), N (Aw) = j p(0"dw'
has the following general solution (dimensionless w):
In|A® |
N, (A®) = (A®)* X F A o a=—2 F(x+1)=F(x)
Inb Inb
- fractal exponent (absolutely continuous : , pure-point : )
Similarly for the convolution of p(w) with a window function 2(x)
4 )
N A0 = [ (B2 P @)do' = (M) < F InjAw
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Testing the discrete scaling symmetry

Scaling equation

N, (b"A®)=a"N_ (A®), N (Aw) = j p(0"dw'

Q)

has the following general solution (dimensionless w):

N (Aw) = (A®)* xF(ln‘Am‘ ] 0= pet]) = F(x)

Inb

- fractal exponent (absolutely continuous : , pure-point : )

Similarly for the convolution of p(w) with a window function g2(x)
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Testing the discrete scaling symmetry

Scaling equation

N, (b"A®)=a"N_ (A®), N (Aw) = j p(0"dw'

Q)

has the following general solution (dimensionless w):

= 10h’ F(x+1)=F(x)

- fractal exponent (absolutely continuous : , pure-point : )

In|A®
Nw(Am):(Aw)“xF( i ‘j, o =24

Similarly for the convolution of p(w) with a window function g2(x)

4 )
' ln‘A(D‘ /\
(g) _ W —® ' " o - : :
N ° (Am)_Jg(Aw )a(u) )do'=(Aw) ng( - ], [ o N

g J

(Ghez and Vaienti, '89: the wavelet transform of fractal measures) Qmo_ I' "
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Testing the discrete scaling symmetry - an example

A quasi-periodic dielectric stack
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Testing the discrete scaling symmetry - an example

A quasi-periodic dielectric stack A AIA AIAIA AIA
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' : ln‘A(x)‘
N(g)A — ((D—(D> Ndo' = (A®) X F ,
S (80)= 2 ((5g p@)do’ = (80)"xF,|——

p(m)

|1y
/ l""l' % id \ | J"l \ ' & '.-x‘j I |
05 055

0.45

\I

® [au]

Friday, July 4, 14



Testing the discrete scaling symmetry - an example

A quasi-periodic dielectric stack A AIA AIAIA AIA
. o' 7 (Ao
N (Aw)EJg(Aoo ))((D')d(g' = (Am)” XF, np I
n
a(x) = sin(x)
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Testing the discrete scaling symmetry - an example

A quasi-periodic dielectric stack A AIA AIAIA AIA

(?
' : ln‘A(x)‘
N(g)A — ((D—(D> Ndo' = (A®) X F ,
S (80)= 2 (5g p@)do’ = (80)"xF,|——

sin(x)

g(x)=

p(m)
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Testing the discrete scaling symmetry - an example

A quasi-periodic dielectric stack A AIA AIAIA AIA

. ?
N(E)g)(A(D) Ejg((DA_Q()D }((D')d(ﬂ' _ (A(D)a XFg[ln‘A(D‘ ],

\ Inb

sin(x)

g(x)=

numerics>
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Testing the discrete scaling symmetry - an example

A quasi-periodic dielectric stack A AIA AIAIA AIA

. ?
N(E)g)(A(D) Ejg((DA_Q()D }((D')d(ﬂ' _ (A(D)a XFg[ln‘A(D‘ ],

\ Inb

sin(x) At \
g(x)= — -2}
q 3
: 23
numerlcs> = 4
10° | —’
> -6
B = O<a <l
Q.
10° %0 8 6 4 2 0
. log(Aw)
0.45 05 0.55 o =o0.(n,,n,)=0.777 (Kohmoto et. al.,"87)
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Experimental study of a fractal energy spectrum :

Cavity polaritons in a Fibonaccl quasi-periodic potential

D. Tanese, J. Bloch, E. Gurevich, E.A. PRL, 2014.
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The Fibonacci problem has a long and rich
(theoretical and experimental) history.

(Kohmoto,Luck, Gellerman, Damanik, Bellissard,Simon,...)
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The Fibonacci problem has a long and rich

(theoretical and experimental) history.

(Kohmoto,Luck, Gellerman, Damanik, Bellissard,Simon,...)

But still much to be done...
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A AB A

Number of letters of a sequence § ]. 1s the Fibonacci
number F/‘ so that F/’ — F/'—l e F/._7

..BAABABAA...

(233 letters)
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Fibonacci sequence: S :[S‘/#IS,/—z]’ S =B, S =4
A—AB—ABA—ABAAB—ABAABABA

Number of letters of a sequence § ]. 1s the Fibonacci
number F/‘ so that F/’ — F/'— e F/._7

(233 letters)
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Measure of spectral function E'(k)intensity maps
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Measure of spectral function E'(k)intensity maps

Friday, July 4, 14



—_—

_

where

V(x)= zn:)((cr_ln)ub (x — an)

Efftective 1D model

e

= 2M dx

= V.(X)

—_

—_—

w(x)=Ey(x)
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Efftective 1D model

— —_—

he —-d =
— =4+ V(x x)=EWx
M i (x) [y (x)=Ly(x)

— —_—

where

V(x)= zn:)((cr_ln)ub (x — an)

o:(' o= / 1s the inverse golden mean
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Efftective 1D model

— —_—

s .
= e 8, A (2 x)=Ey(x
M i (x) |y (x)=Ey(x)

_ —

where

V(x)= Z){(G_ln)ub (x — an)
Shape of each letter

o:(- o= % 1s the inverse golden mean
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Energy (meV)

\ EXPERIMENT

\ [1.-1]
[3.-4] \

[24] [

-9 1.2

X/

-
[-4.7]
[4.-6]
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Labeling the gaps...

\ EXPERIMENT

\ [1.-1]
[3.-4] \

[24] [

-9 1.2

X/

-
[-4.7]
[4.-6]

Energy (meV)
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\ EXPERIMENT ol THEORY

Labeling the gaps...

-
4

\ [1,-1]
[3,-4] \

2,4
[ [2;‘_9] [-1,2]

X
-
[-4.7]
[4.-6]

Energy (meV)

Calculating the integrated density of states (IDOS)

(@) x 10° . . . (C) g X 10 . . . .
B523T EXPERIMENT f"f’] THEORY
10 -
%‘ [-1,2] [1,-1] s [2 3] ., 6][1 ] _
c [-4,71[7,-6] l 3 [471
0 . . ' . . 0 _) M\N\W
1592 1593 1594 1595 1596 1592 1593 1594 1595 1596

—
O
~
—~~
o
~

y
o
e

<« [1,-1]

IDOS

<« [-1,2]

o
)

o
!

Normalized Integrated
Intensit
o
B

1592 1593 1594 1595 1596 1592 1593 1594 1595 1596
Energy (meV) Energy (meV)
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Integrated density of states (IDOS)-Gap labeling

Sl ~+V(x) |ly(x)=Ey(x)

where

V(x)= zn:)((a_ln)ub (x — an)

Shape of each letter | "=

O,—O’3<x<0'2 B AAB A

(¥5-

G ' % 1s the inverse golden mean
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V(k)=u,(k)x Y x,6(ka—2x[p+0q])

Pq

Each pair{ p.q} of integers defines a unique Bragg
peak (O 1s irrational).
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V(k)=u,(k)x Y. x,6(ka—2r[p+o0q])

Pq

Each pair{ p.q} of integers defines a unique Bragg
peak (O 1s irrational).

Bragg peaks are dense (Cantor set) —» Must use

periodic approximants, t.e.replacing irrational o by

S
Sl

j+1
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V(k)=u,(k)x Y. x,6(ka—2r[p+o0q])

Pq

Each pair{ p.q} of integers defines a unique Bragg
peak (O 1s irrational).

Bragg peaks are dense (Cantor set) —» Must use
periodic approximants, t.e.replacing irrational o by

o="s
Fii

Periodic crystal of length a F,,| and potential

V(/\)—u,(k)XZ)( (ka 2/4_ F., /)+F/.q])
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V(k)=u,(k)x Y. x,6(ka—2r[p+o0q])

Pq

Each pair{ p.q} of integers defines a unique Bragg
peak (O 1s irrational).

Bragg peaks are dense (Cantor set) —» Must use
periodic approximants, t.e.replacing irrational o by

0’7
Fj+|

Periodic crystal of length a F,,| and potential

V(/\)—ub(k)XZ)( (ka 2/; F..p+F (/])

Bragg peaks at values &= Q——( 2 P+F q)—— s~ (p+40)

a
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Perturbation theory

=

= 2M dx’

+V(x)

—

y(x)=Ey(x)

small
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Perturbation theory

-2 L v [y =Ey )

small

Experimentally, it 1s not the case |

Friday, July 4, 14



Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each
value of the (independent) Bragg peaks (Bloch thm.).

I I
k=Q=—(F, p+F,q)—=——(p+q0)
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Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each
value of the (independent) Bragg peaks (Bloch thm.).

l

oo >a(1’+‘10)

k= Q——(mp+Fq)

To first order in V, each Bragg peak hybridizes
degenerate Bloch waves %4 and a gap opens at

=7/

energles€ = FE 0/
£
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Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each
value of the (independent) Bragg peaks (Bloch thm.).

l

—>—(p+q0)

k = Q__( ,+1p+F(1) =

To first order in V, each Bragg peak hybridizes
degenerate Bloch waves %4 and a gap opens at
energies € = E+£7

et

The (normalized) IDOS inside a gap labeled by { p,g}is

N(e E pq/z) =p+qO
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Integrated Density of States-Gap Labeling

) -3
(a) X110 1 1 1 1 (C)GX110 1 1 1 1
[3,-5]2,-3] EXPERIMENT [f’ﬂ THEORY
£ ® k.2 -] | o 4 [f ’ [ 6][1’-1]
c [—4,7][7,-6]l o [-4,7][7.- l
E 5- l . a ) [lm _
ol | | | | ol J UL | M
1592 1593 1594 1595 1596 1592 1593 1594 1595 1596
2 (b)
©
3 - 0.6
c =
7))
N c
< — 0.21 )
=
5 0 . : : : —F 0 : : : : —F
Z 1592 1593 1594 1595 1596 159 1593 1594 1595 1596
Energy (meV) Energy (meV)

N(g = EQp,q/2) =p+qgo withina{p.q| gap

Topological invariants - independent of potential
strength, inhomogeneity, ...
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Integrated Density of States-LLog-periodic

oscillations .
outside { pP,q } gaps

1596.5 \ EXPERIMENT ' ‘
1596 -0.5- EXPERIMENT
1595.5 \ [1.-1] THEORY »
o 159 JCRIRY - 1 A
= - @p) - /
21594.5 [-2,1(]3’_9] 2] O 15 =
5 1594 - g N v
W 1593 5 ~ - £
[-4,7] = /
1593 [4,-6] 251
1592.5 A il ,
1592 (e)
) -3.5 v .
5 4 -3 -2 1 0
In(Ener Y'EOVE;;-
In|Ao| Ina
N, (A®) =(A®)” X F : o=—-1, F(x+1)=F(x)
Inb Inb
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Imaging the modes 1n real space : spatially and
spectrally resolved emission

EXPERIMENT

Energy (meV)

Energy (meV)
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SUMMARY-FURTHER DIRECTIONS

 Coupling of a quantum emitter to a fractal quasi-continuum
leads to an unusual decay dynamics.

e The decay exhibits scaling properties related to the discrete
scaling symmetry of the quasi-continuum.

e The experimental study of a macroscopic coherent polariton
gas in a Fibonacci cavity allows for a quantitative study of a
fractal singular continuous energy spectrum : spectral
function, wave functions and gap labeling.

Friday, July 4, 14



FURTHER DIRECTIONS

e Long time dynamics of wave packets with a quasi-
continuum fractal spectrum. Log-periodic oscillations.
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FURTHER DIRECTIONS

e Long time dynamics of wave packets with a quasi-
continuum fractal spectrum. Log-periodic oscillations.

e Different experimental realizations : tunnel junction
and / or squbit in a microwave fractal resonator (J.
Gabelli, Orsay) : Notion of photons- counting statistics-
zero point motion with fractal spectra.
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FURTHER DIRECTIONS

e Long time dynamics of wave packets with a quasi-
continuum fractal spectrum. Log-periodic oscillations.

e Different experimental realizations : tunnel junction
and / or squbit in a microwave fractal resonator (J.
Gabelli, Orsay) : Notion of photons- counting statistics-
zero point motion with fractal spectra.

A _
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A preliminary experiment at room

temperature
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FURTHER DIRECTIONS -
QUANTUM GRAVITY

e A hard problem ! Several approaches on the market.
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FURTHER DIRECTIONS -
QUANTUM GRAVITY

e A hard problem ! Several approaches on the market.

e We consider quantum fluctuations around the classical
(Einstein) solution (semi-classical approach)
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FURTHER DIRECTIONS -
QUANTUM GRAVITY

e Several approaches on the market.

e (onsider here quantum fluctuations around the classical
(Einstein) solution : semi-classical approach

e At short scales, the resulting space-time seems to have a
fractal structure (Numerics & RG—> Martin Reuter).
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We measure the spectral dimension of universes emerging from nonperturbative quantun
defined through state sums of causal triangulated geometries. While four dimensional on large s
quantum universe appears two dimensional at short distances. We conclude that quantum gravit
“self-renormalizing™ at the Planck scale, by virtue of a mechanism of dynamical dimensional r

DOI: 10.1103/PhysRevLett.95.171301 PACS numbers: 04.60.Gw, 04.60.Nc
Quantum gravity as an ultraviolet regulator? —A shared tral dimension, a diffeomorphism-ir

hope of researchers in otherwise disparate approaches to  tained from studying diffusion on th
aguantum eravity s that the microstructure of space and of seometries. On laree scales and
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FURTHER DIRECTIONS -
QUANTUM GRAVITY

e At short scales, the resulting space-time seems to have a
fractal structure.

e A good guess (See Sasha Teplyaev) seems to be a scalar
quantum field on barycentric fractals.

FiGure 2.1. Barrycentric subdivision
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Apparently not that weird...

E. Englert proposed a very similar idea back
in 1986.

METRIC SPACE-TIME AS FIXED POINT
OF THE RENORMALIZATION GROUP EQUATIONS
ON FRACTAL STRUCTURES
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